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Abstract— X-optimism is a precarious problem in RTL 

simulation. It can hide X bugs to cause serious issues in real 

silicon. Such hidden bugs are aggravated in power aware 

simulation due to injection of additional 'X' from power down 

regions. Traditional verification techniques such as tool 

generated assertions [4] and custom bind checkers [5] cannot 

catch such issues. Nowadays a new technique X-propagation is 

used to catch x-optimism related issues in RTL simulation. But 

this technique lacks the knowledge of power intent of design, 

causes unnecessary noise, and therefore not very useful in power 

aware simulation. In this paper, the authors would describe an 

effective technique to catch x related issues such as reset failures, 

wake up failures and x-optimism issues in power aware 

simulation. 

In this paper we present a method to use power aware 

knowledge on existing x-propagation technique for 

comprehensive x verification which is fully automated and 

provides ease of debug. Our solution will selectively apply X 

propagation technique according to system power state in a 

controlled way. This dynamic selection and controllability would 

ensure minimal noise, relevant x-propagation and better debug 

capability. The propagated x values can be observed in 

simulation waveforms and debug tools. This will catch x-

optimism issues in a power aware simulation which are known to 

cause design failure at synthesis level. 

Also, our solution will automatically insert SystemVerilog 

assertions to catch x-errors at the source. These assertions would 

be active according to current simstate of the system and they 

can also be used as an alternate for custom bind checker or low 

power assertion checks. This solution has advantage that it is 

fully automatic, comprehensive and free from user input. The 

downside is that it could generate some noise because the RTL 

morphing could be overly pessimistic. 

In the paper we will further discuss the tradeoffs and 

methodology in detail. 
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I.  INTRODUCTION 

Power Aware verification has become increasingly critical 
for the semiconductor industry. Due to shrinking process 
geometry designers are focusing more on reducing static and 

dynamic power and it puts immense burdens on verification 
teams to ensure complete power aware verification.  

The common trend is to start power aware verification once 
functional RTL verification is complete. The power aware 
behavior is imparted on the functional RTL design using UPF 
and liberty cells (optional). The various EDA vendors provide 
simulation tools to verify powers aware techniques like power 
shut-off, back-biasing and voltage scaling using UPF.  

 In simulation context these techniques are verified using 
corruption which means injecting x values on the signals of 
concern and propagating them further down the logic. These x-
values require a competent handling, efficient tracking and 
painless debugging. In recent past there have been significant 
investments in this area and as a result good debug tools, faster 
power aware simulation and low-power assertion checks have 
been developed. Although these are good at catching x related 
issues visible at RTL level, they fail to catch certain silicon 
related issues arising due to x-optimism of RTL. 

 X-optimism [1] is when there is some uncertainty on an 
input to an expression or gate (the silicon value might be 0 or 
1), but simulation comes up with a known result instead of X 
.For example SystemVerilog has an optimistic behavior when 
the control condition of an if...else statement is unknown.  

 

 

 

 

 

Fig. 1 X-optimism example 

 
There are techniques like xprop to catch the RTL x-

optimism related issues but they are not well suited for power 
aware designs and need proper tuning and adjustments to be 
helpful for power aware design. Also these techniques cannot 
always point to the source of problem and it would be tedious 
to debug the actual bug. X-prop and X-trap technique 
customized according to power intent can be a good approach 
to this problem. 

always_comb begin 

 if (sel) y = a; 

else y = b;//if sel is X (Potential mismatch with silicon) 

end 



II. X SOURCES IN POWER AWARE DESIGN 

A. RTL sources 

There are several conditions where simulation will 

generate x logic. Some of which are as follows: 

 Uninitialized 4-state variables 

 Uninitialized state elements 

 Unconnected module input ports 

 User assigned x-values 

 Bus contention 

 Logic gates with ‘x’ inputs  

 

B. Power Shut-down 

The main idea of using power-shut down is to turn off 
massive unused parts of the design and, as a result, gain low 
current consumption. In UPF power-shut down corresponds to 
CORRUPT state of the power domain. In this power state, state 
elements powered by the domain supply and the logic nets 
driven by elements powered by the domain supply are 
corrupted. The simulation environment mimics the corruption 
by injecting X values. These X values can propagate further to 
other connected domains if isolation is not placed. 

C. Back-biasing 

These techniques are used to raise the threshold at which a 
transistor can change its state. While back bias slows the 
performance of the transistor it greatly reduces leakage. In UPF 
terms, the power domain has limited power, just enough to 
retain the state of its elements and cannot perform any 
switching activity.  

In UPF [3] back-biasing corresponds to following state of 
the power domain: 

 CORRUPT_ON_ACTIVITY 

In this simstate, the power characteristics of the 
primary supply set of power domain are insufficient to 
support activity in domain. Any activity would cause 
the corruption of the domain elements. 

 CORRUPT_STATE_ON_ACTIVITY  

In this simstate, the power characteristics of the 
primary supply set of power domain are insufficient to 
support activity inside state elements, whether that 
activity would result in any state change or not. Any 
activity on the input of the state element would cause 
its corruption. 

 CORRUPT_STATE_ON_CHANGE   

In this simstate, the power characteristics of the supply 
set are insufficient to support a change of state for state 
elements. Any activity that results in state change for 
state element would cause the corruption of that state 
element. 

D. Voltage Scaling 

In this technique, two interacting power domains operate 
with different voltage ranges. In this case, logic 1 value might 

be represented in the driving domain using a voltage that would 
not be seen as an unambiguous 1 in the receiving domain. 
Level-shifters are inserted at a domain boundary to translate 
from a lower to a higher voltage range, and sometimes from a 
higher to a lower voltage range as well. The translation ensures 
the logic value sent by the driving logic in one domain is 
correctly received by the receiving logic in the other domain. In 
absence of these level shifters, the signals get corrupted while 
crossing the domain. 

E. Power aware cells 

Power aware verification makes use of some special cells 

which can generate ‘x’ values when their power is off or their 

control signals are ‘x’. These cells can be divided into 

following categories. 

1) Isolation cell: It is a design element that passes logic 

value during normal mode and clamps its output to some 

specified logic value when control signal is asserted. If the 

control signal is x or the power supply of the cell is off then it 

drives ‘x’ value at output. 

2) Level-shifter cell: It is a design element that translates 

signal values from an input voltage swing to a different output 

voltage. If the power supply of the cell is off then it drives ‘x’ 

value at output. 

3) Retention cell: These cells are used to impart retention 

behavior on state elements. If the power supply of the cell is 

off or due to some incorrect protocol it can drive ‘x’ value at 

the retention register output. 

4) Buffer cell: Buffers can be inserted to power the ports 

of a hard macro. These cells drive ‘x’ values if their power 

goes off. 

 

III. EXISTING SOLUTIONS FOR POWER RELATED X ISSUES 

Some of the existing solutions used to find X related issues 
in power aware design are: 

A. Low power checks and custom bind checker 

Today, Most of the EDA vendors provide automated   
assertions to verify the various UPF protocols such as Control 
Signal corruption check, Missing isolation check, power 
control sequence protocol check etc.[4] A lot of assertions are 
inserted in RTL to catch the power intent bugs. Designers also 
specify their own checks using UPF command bind_checker 
[5]. These assertions are able to identify many power intent 
issues but they are failed to catch X-optimism issues. Also, it is 
painstaking task for user to specify bind_checker commands 
for complete design and there is always a chance to miss some 
protocol. 

B. X-propagation and X-trapping 

X-propagation is the latest technique to address X-
optimism by propagating X values forward in time. It mostly 
involves if statements, case statements, and conditional 
assignments. For example, when a conditional expression has 
the value of X, the X-propagation enhanced simulator changes 
the language semantics to propagate X values. These values 



can be observed in simulation waveforms and the downstream 
logic is affected by the propagated X values. If the Xs are not 
blocked or handled correctly in the design, the simulation could 
fail. In particular, the design’s silicon implementation could 
subject to similar random failures, which is completely missed 
by normal RTL simulator.  

X-trapping is a debugging technique used alongside X-
propagation to efficiently debug the ‘X’. When an X appears in 
simulation, it is a daunting task to triage and trace its cause. It 
is better to detect the X at the moment it occurs. Various tools 
implicitly instrument System Verilog (SVA) assertions [1][2]  
to do this. During simulation, these assertions trap Xs at their 
sources. They are managed with the current assertion 
infrastructure—just like other assertions in the design. 

X-prop and X-trap techniques modified the existing RTL in 
following way:  

TABLE I.  X-PROP AND X-TRAP EXAMPLE 

 

 

However, in power aware, this technique cannot be used in 
its existing form because the power down region generates lot 
of Xs which are not error scenarios and this technique will 
cause lot of false assertion failures, making it difficult to 
identify actual X issue. Also the issues which are caused due to 
corruption (Un-Initialization) of various power control signals 
would not be caught at the source by the existing technique.  

IV. MOTIVATION BEHIND THE PAPER 

In recent past Power Aware verification at RTL level has 
grown tremendously and several papers have been written on 
X-verification technique using powerful assertions and bind 
checkers. EDA vendors also provide automated assertions and 
dedicated power aware debug to ease the verification. In spite 
of these tools and techniques, there is a real risk of either not 
catching subtle low-power bugs or caching it very late during 
expensive gate-level simulation, or not at all, causing 
disastrous functional product failures. 

The motivation behind this paper is to demonstrate the 
technique proposed by us to  

1) Catch some of these issues at RTL level itself by 
combining x-prop technique with power aware intent.  

2) Provide clean and efficient debugging of source of the 
problem using x-trap in conjunction with power 
intent. 

3) Provide efficient automated checks to catch various 
power related issues. 

V. PROPOSED XPROP-PA SOLUTION 

 
We propose to take the X-propagation technique one step 

further and combine it with power intent of design to provide a 
complete and efficient solution. 

A. Catch x-optimisim related issues in Power Aware 

Simulation 

      Let's consider a simple power aware example in which 

signal y1 crosses from power domain PD1 to power domain 

PD2. 

TABLE II.  POWER AWARE EXAMPLE 

PD1 PD2 

   assign sel = in1 & in2; 

 

   always_comb  

   begin  

          if(sel) 

              y1 = a; 

          else 

              y1 = b; 

   end 

 

   always_comb  

   begin  

          if(y1) 

              y2 = a; 

          else 

              y2 = b; 

   end 

 

 

Following table summarizes the concerned state of PD1, PD2 

and various outputs. 

TABLE III.  OUTPUTS WHEN PD1 GOES OFF 

PD1 PD2 sel y1 y2 

Off On x x b 

 

The desirous value of y2 is 'x' but a normal power aware 

simulation will impart it value 'b'. This x-optimism issue can 

be handled by applying xprop in PD2. 

 

 

 

 

 

 

 

 

 

 

 

 

RTL X-PROP AND X-TRAP 

   always_comb  

   begin  

          if(sel) 

              y1 = a; 

          else 

              y1 = b; 

   end 
 

   always_comb 

   begin  

         if($isunknown(sel)) begin 

assert (!$isunknown(sel)) 

else  $error("sel goes X");  

 y1 = x; 

         end else if(sel) 

              y1 = a; 

          else 

              y1 = b; 

   end 
 

always_comb 

   begin  

         if($isunknown(y1)) begin 

assert (!$isunknown(y1)) else              

$error("y1 goes X");  

 y2 = x; 

         end else if(y1) 

              y2 = a; 

          else 

              y2 = b; 

   end 



Fig. 2 Resultant RTL after applying xprop 

 

Following table summarizes the xprop results. 

TABLE IV.  OUTPUT AFTER APPLYING X-PROP 

PD1 PD2 sel y1 y2 

Off On x x x 

 

B. Provide a noise free efficient x-verification 

Noise:  Excessive useless error messages which do not 

point to actual design issue instead interfere in debugging 

the actual design problems.   

 

1) Automated noise reduction  

      Consider the same example mentioned in Table II, after 

applying xprop on power domain PD1 and PD2 following 

outcome would be achieved. 

TABLE V.  XPROP SIMULATION RESULTS 

PD1 PD2 sel y1 y2 Assertion 

Failure of 

‘sel’ 

Assertion 

Failure of 

‘y1’ 

On On x x x Yes Yes 

Off On x x x Yes Yes 

Off Off x x x Yes Yes 

On  Off - - x - Yes 

 
         In power aware simulation, X value on ‘sel’ is expected 
when PD1 goes OFF. So, any xprop assertion failure in this 
power domain is a noise. Similar is the case with ‘y1’ when 
PD2 goes OFF. There can be lot of such dummy failures when 
power domain goes off and they can interfere in identifying 
actual x-optimism issue (just like the one described in Table 
III).  Even a single lost bug because of noise can have 
disastrous effects. 

We propose to reduce the noise by controlling the xprop 
behavior according to the current simstate of the power 
domain. When power goes OFF the xprop would be disabled 
for that domain, thus reducing the dummy errors from that 
domain. 

 The instrumented behavior of PD1 logic would look like 
Fig. 3. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Resultant RTL after applying Xprop-PA 

Similar behavior will be imparted on logic of PD2 where xprop 
behavior would be governed by current simstate of PD2.  

The proposed behavior has following benefits: 

 Noise will be reduced.  

 Need to debug only actual x-issues. 

 Fewer chances of lost bugs in noise. 

 Assertion failure reduction would cause 
simulation performance boost.  

The final output looks as per following table: 

TABLE VI.  XPROP-PA SIMULATION RESULTS 

PD1 PD2 sel y1 y2 Assertion 

Failure of 

‘sel’ 

Assertion 

Failure of 

‘y1’ 

On On x x x Yes Yes 

Off On x x x No Yes 

Off Off x x x No No 

On  Off - - x - No 

 

2) Handling of UPF simstates 

 

      Xprop behavior is controlled according to current simstate 

of primary supply of power domain. We are proposing 

following behavior for each simstate: 

 CORRUPT 
In this simstate, all the state and logic elements would 
be corrupted.  So it is recommended to switch off 
xprop for this state to avoid noise. 

 CORRUPT_ON_ACTIVITY (COA) 
In this simstate, any activity on the input (including 
X) would trigger corruption of connected logic by 
power aware simulator.  So it is advised to switch off 
xprop in this state too. 

 CORRUPT_STATE_ON_ACTIVITY (CSOA) 

In this simstate, power aware simulator would corrupt 
state elements whenever there is any activity on any 
input of state element, while combinatorial logic 
would still active. So, xprop should be enabled for 
combinatorial logic only. 

 CORRUPT_STATE_ON_CHANGE (CSOC) 

In this simstate, power aware simulator would 

corrupt only when output of state element changes. 

Changed output can impact other state or 

combinatorial element which power aware simulator 

cannot catch. So, we propose to turn on xprop on 

state as well as combinatorial elements. 

 

  

Here is the summary of our proposed xprop behavior in 

various UPF simstates for combinatorial and state elements. 

 

assign control = function(PD1 current  simstate);    

 

always_comb 

   begin  

         if($isunknown(sel) && control) begin 

assert (!$isunknown(sel)) else              

$error("sel goes X");  

 y1 = x; 

         end else if(sel) 

              y1 = a; 

          else 

              y1 = b; 

   end 



TABLE VII.  XPROP-PA CONTROL LOGIC FOR UPF SIMSTATES 

Simstate Xprop for 

Combinatorial  logic 

Xprop for 

State elements 

CORRUPT OFF OFF 

COA OFF OFF 

CSOA ON OFF 

CSOC ON ON 

 

3) Behavioral Models 

      There are some models of PLL, memories and analog parts 

that designer prefer to exclude from being corrupted in power 

aware simulation. Power aware vendors provide ways to 

exclude such blocks for power aware processing. X-

propagation is also meant to find RTL-GLS mismatches for 

synthesizable code only.  So it is recommended to exclude the 

behavioral models in Xprop-PA too. It would also make the 

simulation faster and less noisy. 

 

4) User controlled X-propagation 

      In many power aware designs, design reset happens after 

power is ON, commonly known as Power on Reset (POR). 

During the period between power ON and reset, the design is 

in unknown state with many signals have X values. 

 

 
Fig. 4 wave diagram showing POR 

 

These X’s are noise and need to be filtered from xprop. We 

recommend that x-prop should be enabled only after reset is 

performed. Either it could be an automated reset detector or a 

manual input from user to control the Xprop behavior.  This 

solution would further reduce the noise to some extent. 

 

5) Controlled Assertion Failures 

           There should be mechanism to limit the fail count of 

any assertion. Sometimes same assertion is reported large 

number of times at each clock activity, creating noise. Tool 

should provide default as well as user control input to limit the 

failure count. 

 

C. Efficient debugging 

1) SV Assertions 

     SV Assertions play very important role to catch the 

bugs in RTL verification and Xprop-PA can use them to 

trap the 'X' at its source. This technique is known as X-

trapping [2]. It pin points to exact bug and user can easily 

debug it with tool assertion window just like any other 

RTL assertion. 

 

2) Design element categorization 

     The tool debug capability can be further enhanced by 

grouping the assertion messages according to type of RTL 

construct.  The label of error message should be created in 

such a way that user can easily identify the construct for 

which error is flagged. In this way, user can give 

preference to more critical constructs.  

     We are suggesting following labels for some of the 

common constructs: 

 

 XPROP-FF  

This label should be used when any asynchronous 

control of a RTL flop goes x. 

 

 

 

 

 XPROP-CLK 

This label should be used for clocks. 

 

 

 

 

 XPROP-LATCH 

This label is for latch enable of a RTL latch. 

 XPROP-FSM 

If state variable of a FSM goes x then this label 

should be used. 

 

 

 

 

 XPROP-MEM 

This label is for memories when read enable, 

write enable or address bus of a memory goes x,  

 XPROP-COMB 

This is generic label for all the combinatorial 

logic. It can be further divided according to logic.  

 

 

 

 

 

D. Automated power aware checks 

    In addition to trapping 'X', assertions can also be used in 

validating many UPF protocols. Some of the useful checks 

being done by our proposed solutions are as follows: 

 

1) Control signal corruption check 

      Power aware cells inserted by UPF are governed by 

control signals coming from HDL. These signals are not 

actually connected to DUT but driven at test bench for power 

aware verification only. A functional xprop would not be able 

to catch ‘x’ issues on these signals as they are not used in any 

DUT logic in non-power aware simulation. If any of these 

signals goes to ‘X’ then power aware simulation fails but it 

# ** Error: XPROP-FF: 'reset' goes X. 

#    Time: 2 ns Scope: tb.dut File: 

./src/vl_file/lib/rtl.v Line: 6 

 

# ** Error: XPROP-COMB: 'ack' goes X. 

#    Time: 10 ns Scope: tb.dut File: 

./src/vl_file/lib/rtl.v Line: 46 

 

# ** Error: XPROP-CLK: 'clk' goes X. 

#    Time: 12 ns Scope: tb.dut File: 

./src/vl_file/lib/rtl.v Line: 8 

 

# ** Error: XPROP-FSM: 'cst' goes X. 

#    Time: 12 ns Scope: tb.dut File: 

./src/vl_file/lib/rtl.v Line:28 

 



could be painful to find the source of the problem. Our Xprop-

PA solution would trigger the assertion at its source. 

       One such example is when save/restore signal of retention 

cell is ‘X’ at power up. The state logic controlled by these 

save/restore signals would trigger xprop assertion.  

 

 
 

Fig. 5 Wave diagram showing ret signal is x at power up 

 

 

 

 

 

      Another example is the power up failure of the power 

domain. This happens when control signal of the switch 

controlling the primary supply of the domain is coming 

through a power down region. In this case xprop would flag 

the assertion for the power switch as soon as the control signal 

goes x.  

 

2) Missing isolation 

      It is one of the most common scenarios of power aware 

design failure when power domain boundaries are not properly 

isolated, and many such issues are missed in RTL verification 

because of the X-optimism. Example referred in Table II is the 

case of missing isolation cell at domain boundary PD1-PD2.   

 

3) Reset Failures 

      It is very common X-propagation issue, when 'X' value on 

asynchronous controls does not affect RTL simulation because 

of X-optimism.  

 

 

 

 

 

 

 

 

 

Fig. 6 DFF with asynchronous reset 

 

 
 

Fig. 7 Wave diagram showing DFF output when reset goes x 

From RTL simulation, DFF with async-reset is not sensitive to 

‘x’ at the reset pin which is a potential bug. It would be caught 

at its source by Xprop-PA. 

VI. RESULTS 

The ideas proposed in the paper are the outcome of our 

experiment on various designs. Some of the proposed methods 

like “controlled assertion failure” and “design element 

categorization” are the based on the user feedback from non-

power aware customer designs. Other ideas like “noise 

reduction” and “power aware checks” have come out of our 

research on power aware designs. The simulation performance 

and debug features of the proposed solution are good enough 

to be used for active development. 

VII. CONCLUSION 

      In this paper we have discussed how xprop can be used for 

power aware designs in a controlled way to catch x related 

issues. 

      Firstly, we started with explaining the problem of noise in 

xprop simulation on power aware designs. This is primarily 

due to corruption induced as a result of various power saving 

techniques e.g. power shut-off; back biasing, voltage scaling 

and power cells.  

     Secondly, we proposed a controlled xprop mechanism 

based on the current simstate of the power domain to reduce 

noise and catch x-optimism related issues. We also proposed 

some customization in the tool to handle POR and other noise 

related issues. 

     Then, we suggested some of the debugging techniques for 

efficient debugging.  

      Finally we explained some of the power aware automated 

checks performed by xprop and how they can be useful in 

catching x issues at the source rather than doing a trace back 

and debug.  

      We have good confidence that the proposed power aware 

xprop solution would be a strong and efficient tool to uncover 

power related x bugs and reduce gate level simulation effort. 
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# ** Error: XPROP-FF: 'ret' goes X. 

#           Time: 2 ns Scope: tb File: ./src/vl_file/lib/dut.v 

Line: 37 

 

always @(posedge clk_s or negedge rst_n_s) 

begin: ff_verilog_model 

      if(rst_n_s == 1’b0) 

           q_s <= 1’b0; 

      else 

           q_s <= d_s; 

end 


