
Is your Power Aware design really x-aware ?

Durgesh Prasad

Design and Verification Technology

Mentor Graphics

durgesh_prasad@mentor.com

Jitesh Bansal

Design and Verification Technology

Mentor Graphics

jitesh_bansal@mentor.com

Abstract— X-optimism is a precarious problem in RTL

simulation. It can hide X bugs to cause serious issues in real

silicon. Such hidden bugs are aggravated in power aware

simulation due to injection of additional 'X' from power down

regions. Traditional verification techniques such as tool

generated assertions [4] and custom bind checkers [5] cannot

catch such issues. Nowadays a new technique X-propagation is

used to catch x-optimism related issues in RTL simulation. But

this technique lacks the knowledge of power intent of design,

causes unnecessary noise, and therefore not very useful in power

aware simulation. In this paper, the authors would describe an

effective technique to catch x related issues such as reset failures,

wake up failures and x-optimism issues in power aware

simulation.

In this paper we present a method to use power aware

knowledge on existing x-propagation technique for

comprehensive x verification which is fully automated and

provides ease of debug. Our solution will selectively apply X

propagation technique according to system power state in a

controlled way. This dynamic selection and controllability would

ensure minimal noise, relevant x-propagation and better debug

capability. The propagated x values can be observed in

simulation waveforms and debug tools. This will catch x-

optimism issues in a power aware simulation which are known to

cause design failure at synthesis level.

Also, our solution will automatically insert SystemVerilog

assertions to catch x-errors at the source. These assertions would

be active according to current simstate of the system and they

can also be used as an alternate for custom bind checker or low

power assertion checks. This solution has advantage that it is

fully automatic, comprehensive and free from user input. The

downside is that it could generate some noise because the RTL

morphing could be overly pessimistic.

In the paper we will further discuss the tradeoffs and

methodology in detail.

Keywords—assertions; RTL; SystemVerilog; waveforms; debug

tools; state elements; UPF; Power Domain; isolation; DUT;domain

supply;simstate;X-optimism

I. INTRODUCTION

Power Aware verification has become increasingly critical
for the semiconductor industry. Due to shrinking process
geometry designers are focusing more on reducing static and

dynamic power and it puts immense burdens on verification
teams to ensure complete power aware verification.

The common trend is to start power aware verification once
functional RTL verification is complete. The power aware
behavior is imparted on the functional RTL design using UPF
and liberty cells (optional). The various EDA vendors provide
simulation tools to verify powers aware techniques like power
shut-off, back-biasing and voltage scaling using UPF.

 In simulation context these techniques are verified using
corruption which means injecting x values on the signals of
concern and propagating them further down the logic. These x-
values require a competent handling, efficient tracking and
painless debugging. In recent past there have been significant
investments in this area and as a result good debug tools, faster
power aware simulation and low-power assertion checks have
been developed. Although these are good at catching x related
issues visible at RTL level, they fail to catch certain silicon
related issues arising due to x-optimism of RTL.

 X-optimism [1] is when there is some uncertainty on an
input to an expression or gate (the silicon value might be 0 or
1), but simulation comes up with a known result instead of X
.For example SystemVerilog has an optimistic behavior when
the control condition of an if...else statement is unknown.

Fig. 1 X-optimism example

There are techniques like xprop to catch the RTL x-

optimism related issues but they are not well suited for power
aware designs and need proper tuning and adjustments to be
helpful for power aware design. Also these techniques cannot
always point to the source of problem and it would be tedious
to debug the actual bug. X-prop and X-trap technique
customized according to power intent can be a good approach
to this problem.

always_comb begin

 if (sel) y = a;

else y = b;//if sel is X (Potential mismatch with silicon)

end

II. X SOURCES IN POWER AWARE DESIGN

A. RTL sources

There are several conditions where simulation will

generate x logic. Some of which are as follows:

 Uninitialized 4-state variables

 Uninitialized state elements

 Unconnected module input ports

 User assigned x-values

 Bus contention

 Logic gates with ‘x’ inputs

B. Power Shut-down

The main idea of using power-shut down is to turn off
massive unused parts of the design and, as a result, gain low
current consumption. In UPF power-shut down corresponds to
CORRUPT state of the power domain. In this power state, state
elements powered by the domain supply and the logic nets
driven by elements powered by the domain supply are
corrupted. The simulation environment mimics the corruption
by injecting X values. These X values can propagate further to
other connected domains if isolation is not placed.

C. Back-biasing

These techniques are used to raise the threshold at which a
transistor can change its state. While back bias slows the
performance of the transistor it greatly reduces leakage. In UPF
terms, the power domain has limited power, just enough to
retain the state of its elements and cannot perform any
switching activity.

In UPF [3] back-biasing corresponds to following state of
the power domain:

 CORRUPT_ON_ACTIVITY

In this simstate, the power characteristics of the
primary supply set of power domain are insufficient to
support activity in domain. Any activity would cause
the corruption of the domain elements.

 CORRUPT_STATE_ON_ACTIVITY

In this simstate, the power characteristics of the
primary supply set of power domain are insufficient to
support activity inside state elements, whether that
activity would result in any state change or not. Any
activity on the input of the state element would cause
its corruption.

 CORRUPT_STATE_ON_CHANGE

In this simstate, the power characteristics of the supply
set are insufficient to support a change of state for state
elements. Any activity that results in state change for
state element would cause the corruption of that state
element.

D. Voltage Scaling

In this technique, two interacting power domains operate
with different voltage ranges. In this case, logic 1 value might

be represented in the driving domain using a voltage that would
not be seen as an unambiguous 1 in the receiving domain.
Level-shifters are inserted at a domain boundary to translate
from a lower to a higher voltage range, and sometimes from a
higher to a lower voltage range as well. The translation ensures
the logic value sent by the driving logic in one domain is
correctly received by the receiving logic in the other domain. In
absence of these level shifters, the signals get corrupted while
crossing the domain.

E. Power aware cells

Power aware verification makes use of some special cells

which can generate ‘x’ values when their power is off or their

control signals are ‘x’. These cells can be divided into

following categories.

1) Isolation cell: It is a design element that passes logic

value during normal mode and clamps its output to some

specified logic value when control signal is asserted. If the

control signal is x or the power supply of the cell is off then it

drives ‘x’ value at output.

2) Level-shifter cell: It is a design element that translates

signal values from an input voltage swing to a different output

voltage. If the power supply of the cell is off then it drives ‘x’

value at output.

3) Retention cell: These cells are used to impart retention

behavior on state elements. If the power supply of the cell is

off or due to some incorrect protocol it can drive ‘x’ value at

the retention register output.

4) Buffer cell: Buffers can be inserted to power the ports

of a hard macro. These cells drive ‘x’ values if their power

goes off.

III. EXISTING SOLUTIONS FOR POWER RELATED X ISSUES

Some of the existing solutions used to find X related issues
in power aware design are:

A. Low power checks and custom bind checker

Today, Most of the EDA vendors provide automated
assertions to verify the various UPF protocols such as Control
Signal corruption check, Missing isolation check, power
control sequence protocol check etc.[4] A lot of assertions are
inserted in RTL to catch the power intent bugs. Designers also
specify their own checks using UPF command bind_checker
[5]. These assertions are able to identify many power intent
issues but they are failed to catch X-optimism issues. Also, it is
painstaking task for user to specify bind_checker commands
for complete design and there is always a chance to miss some
protocol.

B. X-propagation and X-trapping

X-propagation is the latest technique to address X-
optimism by propagating X values forward in time. It mostly
involves if statements, case statements, and conditional
assignments. For example, when a conditional expression has
the value of X, the X-propagation enhanced simulator changes
the language semantics to propagate X values. These values

can be observed in simulation waveforms and the downstream
logic is affected by the propagated X values. If the Xs are not
blocked or handled correctly in the design, the simulation could
fail. In particular, the design’s silicon implementation could
subject to similar random failures, which is completely missed
by normal RTL simulator.

X-trapping is a debugging technique used alongside X-
propagation to efficiently debug the ‘X’. When an X appears in
simulation, it is a daunting task to triage and trace its cause. It
is better to detect the X at the moment it occurs. Various tools
implicitly instrument System Verilog (SVA) assertions [1][2]
to do this. During simulation, these assertions trap Xs at their
sources. They are managed with the current assertion
infrastructure—just like other assertions in the design.

X-prop and X-trap techniques modified the existing RTL in
following way:

TABLE I. X-PROP AND X-TRAP EXAMPLE

However, in power aware, this technique cannot be used in
its existing form because the power down region generates lot
of Xs which are not error scenarios and this technique will
cause lot of false assertion failures, making it difficult to
identify actual X issue. Also the issues which are caused due to
corruption (Un-Initialization) of various power control signals
would not be caught at the source by the existing technique.

IV. MOTIVATION BEHIND THE PAPER

In recent past Power Aware verification at RTL level has
grown tremendously and several papers have been written on
X-verification technique using powerful assertions and bind
checkers. EDA vendors also provide automated assertions and
dedicated power aware debug to ease the verification. In spite
of these tools and techniques, there is a real risk of either not
catching subtle low-power bugs or caching it very late during
expensive gate-level simulation, or not at all, causing
disastrous functional product failures.

The motivation behind this paper is to demonstrate the
technique proposed by us to

1) Catch some of these issues at RTL level itself by
combining x-prop technique with power aware intent.

2) Provide clean and efficient debugging of source of the
problem using x-trap in conjunction with power
intent.

3) Provide efficient automated checks to catch various
power related issues.

V. PROPOSED XPROP-PA SOLUTION

We propose to take the X-propagation technique one step

further and combine it with power intent of design to provide a
complete and efficient solution.

A. Catch x-optimisim related issues in Power Aware

Simulation

 Let's consider a simple power aware example in which

signal y1 crosses from power domain PD1 to power domain

PD2.

TABLE II. POWER AWARE EXAMPLE

PD1 PD2

 assign sel = in1 & in2;

 always_comb

 begin

 if(sel)

 y1 = a;

 else

 y1 = b;

 end

 always_comb

 begin

 if(y1)

 y2 = a;

 else

 y2 = b;

 end

Following table summarizes the concerned state of PD1, PD2

and various outputs.

TABLE III. OUTPUTS WHEN PD1 GOES OFF

PD1 PD2 sel y1 y2

Off On x x b

The desirous value of y2 is 'x' but a normal power aware

simulation will impart it value 'b'. This x-optimism issue can

be handled by applying xprop in PD2.

RTL X-PROP AND X-TRAP

 always_comb

 begin

 if(sel)

 y1 = a;

 else

 y1 = b;

 end

 always_comb

 begin

 if($isunknown(sel)) begin

assert (!$isunknown(sel))

else $error("sel goes X");

 y1 = x;

 end else if(sel)

 y1 = a;

 else

 y1 = b;

 end

always_comb

 begin

 if($isunknown(y1)) begin

assert (!$isunknown(y1)) else

$error("y1 goes X");

 y2 = x;

 end else if(y1)

 y2 = a;

 else

 y2 = b;

 end

Fig. 2 Resultant RTL after applying xprop

Following table summarizes the xprop results.

TABLE IV. OUTPUT AFTER APPLYING X-PROP

PD1 PD2 sel y1 y2

Off On x x x

B. Provide a noise free efficient x-verification

Noise: Excessive useless error messages which do not

point to actual design issue instead interfere in debugging

the actual design problems.

1) Automated noise reduction

 Consider the same example mentioned in Table II, after

applying xprop on power domain PD1 and PD2 following

outcome would be achieved.

TABLE V. XPROP SIMULATION RESULTS

PD1 PD2 sel y1 y2 Assertion

Failure of

‘sel’

Assertion

Failure of

‘y1’

On On x x x Yes Yes

Off On x x x Yes Yes

Off Off x x x Yes Yes

On Off - - x - Yes

 In power aware simulation, X value on ‘sel’ is expected
when PD1 goes OFF. So, any xprop assertion failure in this
power domain is a noise. Similar is the case with ‘y1’ when
PD2 goes OFF. There can be lot of such dummy failures when
power domain goes off and they can interfere in identifying
actual x-optimism issue (just like the one described in Table
III). Even a single lost bug because of noise can have
disastrous effects.

We propose to reduce the noise by controlling the xprop
behavior according to the current simstate of the power
domain. When power goes OFF the xprop would be disabled
for that domain, thus reducing the dummy errors from that
domain.

 The instrumented behavior of PD1 logic would look like
Fig. 3.

Fig. 3 Resultant RTL after applying Xprop-PA

Similar behavior will be imparted on logic of PD2 where xprop
behavior would be governed by current simstate of PD2.

The proposed behavior has following benefits:

 Noise will be reduced.

 Need to debug only actual x-issues.

 Fewer chances of lost bugs in noise.

 Assertion failure reduction would cause
simulation performance boost.

The final output looks as per following table:

TABLE VI. XPROP-PA SIMULATION RESULTS

PD1 PD2 sel y1 y2 Assertion

Failure of

‘sel’

Assertion

Failure of

‘y1’

On On x x x Yes Yes

Off On x x x No Yes

Off Off x x x No No

On Off - - x - No

2) Handling of UPF simstates

 Xprop behavior is controlled according to current simstate

of primary supply of power domain. We are proposing

following behavior for each simstate:

 CORRUPT
In this simstate, all the state and logic elements would
be corrupted. So it is recommended to switch off
xprop for this state to avoid noise.

 CORRUPT_ON_ACTIVITY (COA)
In this simstate, any activity on the input (including
X) would trigger corruption of connected logic by
power aware simulator. So it is advised to switch off
xprop in this state too.

 CORRUPT_STATE_ON_ACTIVITY (CSOA)

In this simstate, power aware simulator would corrupt
state elements whenever there is any activity on any
input of state element, while combinatorial logic
would still active. So, xprop should be enabled for
combinatorial logic only.

 CORRUPT_STATE_ON_CHANGE (CSOC)

In this simstate, power aware simulator would

corrupt only when output of state element changes.

Changed output can impact other state or

combinatorial element which power aware simulator

cannot catch. So, we propose to turn on xprop on

state as well as combinatorial elements.

Here is the summary of our proposed xprop behavior in

various UPF simstates for combinatorial and state elements.

assign control = function(PD1 current simstate);

always_comb

 begin

 if($isunknown(sel) && control) begin

assert (!$isunknown(sel)) else

$error("sel goes X");

 y1 = x;

 end else if(sel)

 y1 = a;

 else

 y1 = b;

 end

TABLE VII. XPROP-PA CONTROL LOGIC FOR UPF SIMSTATES

Simstate Xprop for

Combinatorial logic

Xprop for

State elements

CORRUPT OFF OFF

COA OFF OFF

CSOA ON OFF

CSOC ON ON

3) Behavioral Models

 There are some models of PLL, memories and analog parts

that designer prefer to exclude from being corrupted in power

aware simulation. Power aware vendors provide ways to

exclude such blocks for power aware processing. X-

propagation is also meant to find RTL-GLS mismatches for

synthesizable code only. So it is recommended to exclude the

behavioral models in Xprop-PA too. It would also make the

simulation faster and less noisy.

4) User controlled X-propagation

 In many power aware designs, design reset happens after

power is ON, commonly known as Power on Reset (POR).

During the period between power ON and reset, the design is

in unknown state with many signals have X values.

Fig. 4 wave diagram showing POR

These X’s are noise and need to be filtered from xprop. We

recommend that x-prop should be enabled only after reset is

performed. Either it could be an automated reset detector or a

manual input from user to control the Xprop behavior. This

solution would further reduce the noise to some extent.

5) Controlled Assertion Failures

 There should be mechanism to limit the fail count of

any assertion. Sometimes same assertion is reported large

number of times at each clock activity, creating noise. Tool

should provide default as well as user control input to limit the

failure count.

C. Efficient debugging

1) SV Assertions

 SV Assertions play very important role to catch the

bugs in RTL verification and Xprop-PA can use them to

trap the 'X' at its source. This technique is known as X-

trapping [2]. It pin points to exact bug and user can easily

debug it with tool assertion window just like any other

RTL assertion.

2) Design element categorization

 The tool debug capability can be further enhanced by

grouping the assertion messages according to type of RTL

construct. The label of error message should be created in

such a way that user can easily identify the construct for

which error is flagged. In this way, user can give

preference to more critical constructs.

 We are suggesting following labels for some of the

common constructs:

 XPROP-FF

This label should be used when any asynchronous

control of a RTL flop goes x.

 XPROP-CLK

This label should be used for clocks.

 XPROP-LATCH

This label is for latch enable of a RTL latch.

 XPROP-FSM

If state variable of a FSM goes x then this label

should be used.

 XPROP-MEM

This label is for memories when read enable,

write enable or address bus of a memory goes x,

 XPROP-COMB

This is generic label for all the combinatorial

logic. It can be further divided according to logic.

D. Automated power aware checks

 In addition to trapping 'X', assertions can also be used in

validating many UPF protocols. Some of the useful checks

being done by our proposed solutions are as follows:

1) Control signal corruption check

 Power aware cells inserted by UPF are governed by

control signals coming from HDL. These signals are not

actually connected to DUT but driven at test bench for power

aware verification only. A functional xprop would not be able

to catch ‘x’ issues on these signals as they are not used in any

DUT logic in non-power aware simulation. If any of these

signals goes to ‘X’ then power aware simulation fails but it

** Error: XPROP-FF: 'reset' goes X.

Time: 2 ns Scope: tb.dut File:

./src/vl_file/lib/rtl.v Line: 6

** Error: XPROP-COMB: 'ack' goes X.

Time: 10 ns Scope: tb.dut File:

./src/vl_file/lib/rtl.v Line: 46

** Error: XPROP-CLK: 'clk' goes X.

Time: 12 ns Scope: tb.dut File:

./src/vl_file/lib/rtl.v Line: 8

** Error: XPROP-FSM: 'cst' goes X.

Time: 12 ns Scope: tb.dut File:

./src/vl_file/lib/rtl.v Line:28

could be painful to find the source of the problem. Our Xprop-

PA solution would trigger the assertion at its source.

 One such example is when save/restore signal of retention

cell is ‘X’ at power up. The state logic controlled by these

save/restore signals would trigger xprop assertion.

Fig. 5 Wave diagram showing ret signal is x at power up

 Another example is the power up failure of the power

domain. This happens when control signal of the switch

controlling the primary supply of the domain is coming

through a power down region. In this case xprop would flag

the assertion for the power switch as soon as the control signal

goes x.

2) Missing isolation

 It is one of the most common scenarios of power aware

design failure when power domain boundaries are not properly

isolated, and many such issues are missed in RTL verification

because of the X-optimism. Example referred in Table II is the

case of missing isolation cell at domain boundary PD1-PD2.

3) Reset Failures

 It is very common X-propagation issue, when 'X' value on

asynchronous controls does not affect RTL simulation because

of X-optimism.

Fig. 6 DFF with asynchronous reset

Fig. 7 Wave diagram showing DFF output when reset goes x

From RTL simulation, DFF with async-reset is not sensitive to

‘x’ at the reset pin which is a potential bug. It would be caught

at its source by Xprop-PA.

VI. RESULTS

The ideas proposed in the paper are the outcome of our

experiment on various designs. Some of the proposed methods

like “controlled assertion failure” and “design element

categorization” are the based on the user feedback from non-

power aware customer designs. Other ideas like “noise

reduction” and “power aware checks” have come out of our

research on power aware designs. The simulation performance

and debug features of the proposed solution are good enough

to be used for active development.

VII. CONCLUSION

 In this paper we have discussed how xprop can be used for

power aware designs in a controlled way to catch x related

issues.

 Firstly, we started with explaining the problem of noise in

xprop simulation on power aware designs. This is primarily

due to corruption induced as a result of various power saving

techniques e.g. power shut-off; back biasing, voltage scaling

and power cells.

 Secondly, we proposed a controlled xprop mechanism

based on the current simstate of the power domain to reduce

noise and catch x-optimism related issues. We also proposed

some customization in the tool to handle POR and other noise

related issues.

 Then, we suggested some of the debugging techniques for

efficient debugging.

 Finally we explained some of the power aware automated

checks performed by xprop and how they can be useful in

catching x issues at the source rather than doing a trace back

and debug.

 We have good confidence that the proposed power aware

xprop solution would be a strong and efficient tool to uncover

power related x bugs and reduce gate level simulation effort.

VIII. ACKNOWLEDGEMNT

We would like to express our great thanks to Yeung Ping who

helped us a lot in early stages of our xprop solution. Many

thanks to every member of Mentor Power Aware team who

gave us several enlightening ideas and suggestions for this

paper. Finally, thanks to all our xprop customers, whose

feedback gave us confidence to write this paper.

IX. REFERENCES

[1] Stuart Sutherland, “I’m Still In Love With My X!”, DVCon 2013

[2] Don Mills, “Being Assertive With Your X”, User2user 2013

[3] UPF LRM IEEE_1801_2009, “IEEE standard for Design and
Verification of Low Power Integrated Circuit”.

[4] Bembaron F., Kakkar S., Mukherjee R. and Srivastava A., “Low Power
Verification Methodology using UPF”, DVCon 2009

[5] Harsh Chilwal, Manish Jain, Bhaskar Pal, “An Integrated Framework for
Power Aware Verification”

[6] Colin Dong,Cherin Joseph, “Catch hidden x bugs in RTL simulation
with X-propagation technology”,SNUG 2012

** Error: XPROP-FF: 'ret' goes X.

Time: 2 ns Scope: tb File: ./src/vl_file/lib/dut.v

Line: 37

always @(posedge clk_s or negedge rst_n_s)

begin: ff_verilog_model

 if(rst_n_s == 1’b0)

 q_s <= 1’b0;

 else

 q_s <= d_s;

end

