
Is your Power Aware design
really x-aware ?

Durgesh Prasad, Design and Verification Technology
Jitesh Bansal, Design and Verification Technology

Introduction

• Power Aware simulation
– Inject x-values to mimic design shut-off, back

biasing, voltage scaling, PA cells shut-off.
– Simulation can catch many design issues arising

due to these power techniques.
• Automated power aware checks and assertions(bind

checker) further help in catching these issues.

– ssues arising due to x-optimism/pessimism of RTL
can not be caught by a raw power aware
simulation.

X Optimism: Condition stmts
• Appears commonly in simulation

– If-statements :
if (cond)
reg_a <= f0;

else
reg_a <= f1;

– Case-statements :
case (cond)
2’b00: reg_b <= f0;
2’b11: reg_b <= f1;
default: reg_b <= f2;

endcase

– h/w will consider all scenarios

• “Simulation” is not simulating what happens in actual h/w
– Some bugs cannot be detected using simulation

Simulation picks this

Simulation skips this

Simulation picks this

X

X

X-optimism solution: X-Prop
• Propagating X values forward

if (cond)
reg_a <= f0;

else
reg_a <= f1;

cond f0 f1 RTLsim X-Prop

X 0 0 0 X

X 0 1 1 X

X 1 0 0 X

X 1 1 1 X

Results from synthesis are
unpredictable.
Simulation may not exercise
the worst scenario.

-> Propagating Xs

f0

f1

cond

f0

f1

X-Optimism Solution: x-Trap
• Conditional statement

always_comb begin
if (cond)

reg_a <= f0;
else

reg_a <= f1;
end

• Conditional statement with
implicit assertion

always_comb begin
assert !$isunknown(cond);
if (cond)

reg_a <= f0;
else

reg_a <= f1;
end

cond

To catch Xs in condition
expressions ASAP

X-Prop PA solution
• Catch x-optimism issues

PD1
assign sel = in1 & in2;

always_comb
begin

if(sel)
y1 = a;

else
y1 = b;

end

PD2
always_comb

if($isunknown(y1))
begin

$error("y1 goes X");
y2 = x;

end else if(y1)
y2 = a;

else
y2 = b;

Missing
ISO on

y1

PD1 PD2 sel y1 RTL sim (y2) X-prop PA
(y2)

Off On x x b x

X-Prop PA(Handling Noise)
• Automated Noise Reduction

PD1 PD2 sel y1 y2 Error for
‘sel’

Error for
‘y1’

Xprop-PA
Error for

‘sel’

Xprop-PA
Error for

‘y1’
On On x x x Yes Yes Yes Yes
Off On x x x Yes Yes No Yes
Off Off x x x Yes Yes No No
On Off - - x - Yes - No

PD1
always_comb

begin
if(sel)

y1 = a;
else

y1 = b;
end

PD2
assign ctrl = xprop_pa_logic(PD2 simstate);
always_comb

if($isunknown(sel) && ctrl)
begin

$error("sel goes X");
y1 = x;

end else if(sel)
y1 = a;

else
y1 = b;

X-Prop PA(Handling Simstates)

• xprop_pa_logic can be defined by following table:

Simstate Xprop for
Combinatorial

logic

Xprop for
State elements

CORRUPT OFF OFF

CORRUPT_ON_ACTIVITY OFF OFF

CORRUPT_STATE_ON_ACTIVITY ON OFF

CORRUPT_STATE_ON_CHANGE ON ON

X-Prop PA(Debugging)

• The proposed solution uses SV Assertions, which is known for it’s
controllability and ease of debug.

• Design element categorization
• XPROP-FF

** Error: XPROP-FF: 'reset' goes X.
Time: 2 ns Scope: tb.dut File: ./src/vl_file/lib/rtl.v Line: 6

• XPROP-CLK
• XPROP-LATCH
• XPROP-FSM
• XPROP-COMB

• User controlled x-propagation
• Provide enabling and disabling of x-prop logic based on timing to handle

POR.

X-Prop PA(Automated checks)

• Control signal corruption check
– save/restore signal(ret) of retention cell is ‘X’ at power up(a potential

bug). The state logic controlled by these save/restore signals would
trigger xprop assertion.

** Error: XPROP-FF: 'ret' goes X.
Time: 2 ns Scope: tb File: ./src/vl_file/lib/dut.v Line: 37

X-Prop PA(Automated checks)

• Reset failures
– From RTL simulation, DFF with async-reset is not

sensitive to ‘x’ at the reset pin which is a potential
bug(would be caught by x-prop assertion)

always @(posedge clk_s or negedge rst_n_s)
begin: ff_verilog_model

if(rst_n_s == 1;b0)
q_s <= 1’b0;

else
q_s <= d_s;

end

Conclusion and References

• Conclusion
– A controlled x-prop PA solution can catch x-optimism related issues specific to

power aware designs.
– The various simstates of the power domain can be simulated to catch

potential issue without generating noise.
– Techniques like “controlled assertion failure” and “design element

categorization” can make debugging user friendly.
– This technique also provide automated checks like “control signal corruption”

and “reset failure”.
• References

– Don Mills, “Being Assertive With Your X’, User2user 2013
– Stuart Sutherland, “I’m Still In Love With My X!”, DVCon 2013
– Mike Turpin, “The Dangers of Living with an X” ARM 2003

	Slide Number 1
	Introduction
	 X Optimism: Condition stmts
	X-optimism solution: X-Prop
	X-Optimism Solution: x-Trap
	X-Prop PA solution
	X-Prop PA(Handling Noise)
	X-Prop PA(Handling Simstates)
	X-Prop PA(Debugging)
	X-Prop PA(Automated checks)
	X-Prop PA(Automated checks)
	Conclusion and References

