
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Both UVM-SV and UVM-e include register models as
part of their methodology, but the two
implementations are distinct and separate. UVM-e
uses a model called “vr_ad” whereas UVM-SV has
the UVM Register Layer implementation. The base
UVM-ML OA implementation includes a TLM interface
providing access to a vr_ad based register model
from UVM-SV. This consists of a basic interfaces for
reading, writing, peeking, and poking registers from
UVM-SV through the vr_ad model, however it does
not include a mode that provides the same seamless
type of integration as the stimulus aspects do. To
make the model more usable from both languages,
SDL implemented a proxy mechanism to bridge
between the UVM-SV register layer model and the
UVM-e vr_ad model.

The implementation depicted in the above figure
consists of a proxy UVM-SV VC and adapters for
interfacing with the UVM Register Layer. Like the
stimulus implementation, all accesses (frontdoor and
backdoor) are proxied to vr_ad for interacting with the
DUT. Register changes observed by vr_ad are also
send back through as if monitored natively in UVM-
SV. This allows sequences and checkers to be written
in either language while keeping all the register states
in sync.

This type of setup requires duplicate register models
in UVM-SV and Specman. To solve this SDL
extended its existing CSR automation infrastructure
to support both vr_ad and UVM-SV register model
generation from a common CSR source description.

Is Specman Still Relevant? Using UVM-ML to Take
Advantage of Multiple Verification Languages

Timothy Pertuit, David Lacey, Doug Gibson

Why UVM-ML
From SystemVerilog, to Specman/e, to SystemC
companies need the flexibility to choose the right
language for the right problem. They need to reuse
existing code and tests from a variety of sources from
a long history of verification. UVM-ML provides a
mechanism for companies to utilize the best of all
technologies, deploying them based on the needs of
the program, the cost of the tools, the target
audience, and the many other factors that drive our
industry today.

UVM-ML Register Model Porting UVMe to UVM-ML

SystemVerilog and UVM-SV have nearly become the
de facto standard for the Verification Industry. It
offers a wide variety of benefits due to it’s widespread
use. Specman/e has a long history going back
through eRM that helped to shape UVM. SystemC
can offer best in class performance and excels at
high level modeling. Each of these languages can be
used to build highly capable verification solutions
across a wide variety of use cases and types of
designs.

UVM itself is a standard that aims to improve the
interoperability of VIP along with reducing the cost of
repurchasing or rewriting IP for each new project.
With multiple languages in use an additional
framework is needed to reach the interoperability
goal. UVM-ML is an open source framework that
aims to bridge these languages to provide an even
greater level of reuse.

UVM-SV UVMe

UVM-SC

UVM-ML

Highly
Capable

Verification
Solutions

UVM-ML Stimulus
Integrating stimulus mechanisms across multiple
languages is required in order to provide a full
featured UVM-ML environment. UVM-ML provides a
set of TLM ports and implementations to facilitate the
passing of data between the sequencers of different
languages. These ports help to define a “proxy”
sequencer that can be used in the foreign language
and interact with the native language sequencer of
the UVM component being used to drive stimulus.

In sophisticated UVM components, it is not
uncommon for the sequencer to provide functionality
to its sequences to aid in creating interesting and
complex stimulus. With UVM-ML, the test writer may
not have direct access to the native sequencer that
the sequences will be run on. It takes some thought
and care to develop an API that will be exported to
the foreign language for use by the remote
sequences.

While UVM-ML provides the basics for supporting
stimulus across the language, one area that it did not
natively support was the handling of deferred
responses. Many protocols support a deferred
response capability where many requests may be
issued at a time and responses come back much
later in time, potentially out of order with respect to
the original requests. The paper details the
implementation of a mechanism for proxying the
responses from a UVM-SV’s “get_response()” API
through back to a UVMe sequencer to enable more
complex sequence and test writing.

UVM-SV Register
Model

vr_ad_proxy_env

vr_ad_proxy_agent

vr_ad_proxy
monitor

vr_ad_proxy
sequencer

vr_ad_proxy
driver

vr_ad2reg_predictor

vr_ad_proxy
reg_adapter

UVMe Register Model (vr_ad)

Active
Register

Interface VC

read/write
peek/poke

DUT

TLM Port

TLM Port

TLM Port

TLM Port

Backdoor
Peek/Poke

Frontdoor
Read/Write

Conclusion

The paper discusses two interface VCs that were
converted from UVM-e to UVM-SV including support
for UVM-ML. These two VCs were ported because
the usage of them needed to shift from internal use
only VIP to ones that would be shared across multiple
companies. UVM-ML made it possible to transition
these interface VCs to UVM-SV with a minimum of
disruption to existing test benches and tests spanning
four IP block environments and three chip
environments.

The Gen-Z VC pictured below was directly ported,
nearly line by line, from UVM-e to UVM-SV. In most
cases the UVM-e/aspect oriented functionality was
able to be refactored to fit within the limits of
SystemVerilog. The UVM-e implementation of the
Gen-Z VC was approximately 4000 lines while the
UVM-SV content was 4600 lines. The UVM-ML (e
and SV) content accounted for about 600 additional
lines. Through this conversion, we grew the total lines
of code by about 25% over all, but half of that growth
was in the UVM-ML content itself.

SDL has been using UVM-ML functionality for
multiple years across numerous projects and
designs. Through multiple projects, SDL has been
able to take advantage of many of the advanced
testing features available in Specman/e while utilizing
a variety of UVM-SV content from internally
developed VCs to externally purchased Verification
Ips. Through the capabilities already present in UVM-
ML as well as those added by SDL itself, the larger
integration and test teams have been insulated from
most of the multi-language aspects.
So is Specman still relevant? We believe yes! It is
still relevant to our industry as it has many advanced
features that are not available in other languages.
However UVM-ML is a necessary component of the
solution as it is clear that no one language has yet
filled all of the needs of the verification industry.

UVM-ML Basics
The foundation of the UVM-ML framework is in
providing a mechanism for creating communication
channels between various languages. This is
accomplished primarily through the use of TLM ports.
UVM-ML provides the backend components
necessary for creating connections between TLM
ports of different languages

Pr
ox

y
En

v UVM-ML Stimulus
Native Env

TLM Communication

 Gen-Z ML Proxy

TX AgentRX Agent

 Gen-Z ML Env

Performance Analysis

UVM-e

Proxy
SequencerMon Mon

TLM PortTLM Port

Checkers and
Scoreboards

e Tests / Sequences

Config

TLM Port

 Gen-Z Env

TX Agent

Mon Driver

SequencerRX Agent

Mon

Protocol
Emulators/
Checkers

Config

TLM Port

UVM-SV

TLM Port

TLM Port

Specman
Native UVM-SV

UVM-ML

25% Total Code Growth

½ of Total Code Growth
in UVM-ML Content

UVM-ML Basics (cont)

Connection Framework

Data Serialization

Data Deserialization

Source Language TLM Ports

Destination Language TLM Ports

UVM-ML supports TLM 1.0 and 2.0 to enable support
for a wide variety of applications and use cases

UVMe Register
Model (vr_ad)

UVM-SV Reg
Model RTL

DocumentationCSR Description
Language

(ex IP-XACT)

	Slide Number 1

