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Abstract: Independent of the HDL, UPF [1] provides a 

consistent format to specify power-aware design intent 

and semantics for verification and implementation. 

Using the UPF, one can define power supply network, 

supply network behavior, and additional logical 

structures such as retention, isolation, and level shifter 

needed for a low power design.  In the UPF, the Power 

State Table (PST) describes all the possible power states 

of a design and is used as a golden reference by 

implementation tools and static verification checkers. 

With chips becoming complex, hierarchical power 

domain distribution methodologies are becoming 

common. As a typical case in complex low power SoCs, 

hierarchical PSTs need to be merged resulting in 

several 1000s of states and depending on merging 

principles, the resultant PST can error prone. This 

makes verification and implementation a challenging 

task.  It becomes complicated to ensure that all legal 

states for the design (architectural intent) are captured 

in the user intended PST before it is considered as 

‘golden’. Only extensive and thorough simulation can 

ensure whether the PST coverage is complete or not 

before it can be considered golden. If the PST is over 

constrained, it will result in structural redundancy in 

implemented design while a under constrained PST will 

result in structural violations. UPF does not provide the 

capabilities to describe PST at abstract design level to 

describe the golden rules for merging, state completion 

and coverage semantics.  

In this paper, we propose a methodology to qualify PST 

completeness and coherence with respect to High Level 

Voltage Relationship Constraints (HLVRC). HLVRC 

defines the relationship between voltage rails at 

architectural level. Using HLVRC, all possible low 

power Legal Design States (LDS) can be generated as 

per low power design rules. These states can become 

golden for verification and implementation flows. LDS 

can be used to validate the user specified PST or 

merged PST for missing or redundant states. In 

addition, LDS can also be used to check for structural, 

functional and architectural integrity of an 

implemented low power design. 

Index Terms—Low Power Verification, Static Verification, 

UPF, 

 
I. INTRODUCTION 

The demand for low power design methodology led 

to the formalization of power formats such as UPF 

which allows the specification of power semantics, 

originally not possible to specify in HDL. UPF, with 

its ability to define power states and corruption 

semantics on them, has made low power flows 

powerful. At the same time, to manage the design 

complexity, hierarchical power domain distribution 

methodology, which exploits the concept of divide 

and conquer, is becoming common. Bottom-up and 

top-down implementation flows make power 

constraints handling a difficult job. In the design 

flows, as the constraints become complex, there is a 

need for a high level abstraction view with which all 

the constraints can be contrasted and cross checked 

for consistency.  

PST is a collection of all possible power states for all 

input supply nets/ports of a design. Given a PST, 

implementation tools will implement the design in 

such a way that no structural (protection), functional 

and electrical violations could be found in the design. 

If there is a single PST for an entire design, it is clear 

that it represents the power states of the whole 

design. However, if there are multiple PSTs for a 

design – For example, if the design has multiple 

blocks, each having its own PST, and also has a top-

level PST – it is not clear how these different PSTs 

relate to each other, and how they compose to 

represent the power states of the complete design. If 
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implementation and verification tools employ 

merging principles, the resultant merged PST may 

include "legal" states that are actually unreachable 

due to the design's supply network structure. If PST 

is specified for a block, it includes supply ports and 

supply nets defined at and below its current scope. In 

addition, there is supply network that is virtually 

created (supply ports, supply nets, connections, 

power switches) and that links different PSTs, there 

by posing certain physical constraints. In such a case, 

the following question arises: 

- Do PSTs in their combined effect represent 

architectural power state intent correctly? 

As power intent gets elaborated, transformed and 

modified in design flows, there is a need for an 

alternate way to specify abstracted concise 

constraints (voltage relationships) that can be used 

for: 

- Automatic derivation of elaborated 

constraints (PST). 

- Automatic comparison and consistency 

checks on user supplied constraints (PST) 

before they are golden for implementation 

and static verification flows. 

In the following sections, we will highlight how the 

complex power methodologies open a new set of 

problems in terms of merging rules of different PSTs 

defined at different scopes. We will also question the 

coverage of PST states‘ defined in the UPF with 

respect to architectural intent. In the process, we will 

also recommend some simple rules for writing PSTs 

which will help in managing PST complexity.  To 

address the completeness and coherence of large and 

multiple PSTs, we propose a methodology to qualify 

PSTs with respect to High Level Voltage 

Relationship Constraints (HLVRC). With HLVRC, 

we can guarantee that PST transformations are in line 

with architectural intent.  While automatic derivation 

of PST from HLVRC will help in arriving at 

comprehensive PST, only extensive dynamic 

simulation can validate the reach ability of PST states 

and coverage to that effect. Dynamic low power 

simulation is outside the scope of this paper. 

II. PST-ITS SIGNIFICANCE 

Any power management strategy or technique starts 

with a PST. It is a user input to describe the operating 

environment of a low power design. It defines the 

power mode in which the design works and 

relationship among various supply rails, supply nets 

that distribute power to various domains in the 

design. In effect, it defines all the possible power 

state combinations, which can exist at the same time 

during the operation of the design.  

The UPF file describes the architectural power intent 

in two main forms, namely the power supply network 

and PSTs. The implementation tools use ―power 

supply network‖ information to do ―physical‖ power 

network implementation whose consistency can be 

verified by static checkers. To implement and check 

the protection requirements (Level Shifters, Isolation 

cells, Retention Registers and Always On Buffers), 

implementation and static checkers rely on the values 

that can be applied on each supply net, and valid 

combinations of supply nets. This information is 

referred to as the ‗Power State Table‖ (PST). The 

main focus of implementation and static verification 

tools is to ensure that the design is implemented and 

verified in such a way that no protection violations 

can be found in any power state in the user supplied 

PST. 

III. PST- COMPLEXITIES 

A. Exponential State Space 

 

The total number of states in a PST can grow 

exponentially with respect to the total number of 

supply nets, and number of voltage states on each of 

them. For example, in a design with 20 power 

domain, each domain being independently ON or 

OFF (2 states) will theoretically lead to 2^20 states in 

the PST.  If each domain can have different ON 

voltages (ex: 1.0, 1.2, 0.9), then the state space 

expands even more. Even if the ‗practical‘ or ‗legal‘ 

state space is much less than the theoretical space, it 

is still of the order of 100s of thousands in large 

SoCs. This typically leads problems such as: 

 

- User errors in coding large PSTs 

- Redundancy in PST states leading to huge 

run times and bad structural inference 

- Under constrained PST states leading to bad 

structural inference 



 

B. State Reachability 

 

An implementation tool synthesizes using PSTs as 

constraints, making low power verification 

comprehensive.  This concept is similar to the idea of 

synthesis of functionally verified RTL where 

comprehensive verification is done using assertions 

and simulation techniques. The first objective of 

verification is to exercise the Power State Table. 

Assuming that static verification yields a clean result, 

we can assume that in a steady multi-voltage state, 

there are no further obvious electrically hazardous 

conditions. The corner cases may exist that need to 

be uncovered by dynamic verification. However, 

before we use dynamic verification, we have some 

basic functionality to verify [3].  

Simulation and formal techniques are needed to 

prove that a given PST state is actually reachable or 

not. For example, given the PST in Figure 1, we 

might want to detect whether the State1 is reachable 

or not? 

 

 neta netb netc 

State1 ON OFF OFF 

State2 ON ON ON 

  Figure 1: PST 

 

In other words, it is required to explore the 

relationships of nets {neta, netb, netc} to see whether 

{neta:ON; netb:OFF} can force {netc:OFF} or not. 

Similarly all such permutations need to be exercised. 

In simple cases, it can be solved, but it is not always 

easy to track when PST state space grows.  

Furthermore, when any of these nets is controlled by 

switches with control functions driven by registers, it 

becomes a sequential use case which can be solved 

theoretically by a formal or a simulation tool [4]. 

 

C. Hierarchical Flows 

To support hierarchical flows, it is necessary to allow 

PSTs to be defined for top and block level scopes. If 

implementation and verification tools employ 

merging principles, the resultant merged PST may 

include "legal" states that actually are unreachable 

due to the design's supply network. Based on supply 

network resolution and PST merging principles, the 

resultant PST may be: 

- Over constrained – redundant states are 

generated   

- Under constrained – valid states are lost.  

In such cases, users might want to review the merged 

PST and correct power network or port states or 

individual PSTs to ensure that the resultant PST is in 

line with the architectural intent, else it will lead to 

incorrect implementation. For instance, bufferization 

of the signals that cross power domains must be 

performed with the knowledge of the ―rail ordering‖ 

and the use of always on buffers which can remain 

ON while the power domain is shutdown. The rail 

ordering is essentially derived from resultant PSTs in 

cases of hierarchical flows. This demands strict rules 

in merging principles and strong syntax and semantic 

checks before merged PSTs can be considered golden 

for implementation and static verification. 

Also, in hierarchical flows, if some blocks are not 

allowed to change, structural violations are 

impossible to resolve if they happen within fixed 

blocks. Those errors can only be prevented by 

enforcing certain relationship among PSTs specified 

at different hierarchy. 

IV. HIGH LEVEL VOLTAGE RELATIONSHIP 

CONSTRAINTS 

In order to address the complexities highlighted in 

the above section, we introduce HLVRC to capture 

high level low power architectural intent of design. 

HLVRC is an abstract representation of the 

following: 

(1) hierarchical rail order relationships 

(2) power network dependencies 

This serves the need for specifying abstract and 

concise constraints (voltage relationships) that can be 

used for (a) Automatic derivation of elaborated 

constraints (PST) for implementation and verification 

(b) automatic comparison and consistency checks on 

user supplied constraints (PST) before they are 

golden constraints for implementation and static 

verification 



As power intent gets transformed in the design flows, 

HLVRC can be used to ensure that the 

transformations are in-line with the architectural 

intent. 

The following code example introduces various 

components that defines the format for HLVRC 

 
 

A. Definition: define_rail _name 

define_rail _name defines the rails present in 

the design and their respective voltage values 

as per high level design intent.     

B. Definition:set_rail_order 

set_rail_order is used to indicate the order of 

the rails. ‗0‘ order number indicates the rail is 

more ‗on‘ than all other rails. The increasing 

order number indicates the rails are more 

relative off. A particular order number can 

have multiple rails, but a rail should only be 

present in one order. Multiple rails can be 

added to same order in case they are 

equivalent and independent 

C. Definition : set_rail_constraint 

set_rail_constraint is used to define the 

dependency among rails of different order. 

There can be multiple dependent rails on a 

signal main rail. 

Let us take an example of a topology as mentioned in 

Figure 2[2]. The design has 20 voltage domains that 

have a hierarchical relationship. The domain C5 is 

mostly ON while the relative-OFF domains are 

mentioned in lower rows. The arrows capture the 

dependencies or independence of various voltage 

rails. 

 

Figure 2: Domain Voltage Hierarchical Relation [2] 

For such a design, the low power architecture is so 

complex and yet the architectural power intent is very 

concisely and crisply captured in a diagram. If power 

intent were to be detailed, the formats may run into 

10s of thousands of lines. Assuming that each domain 

can be ON or OFF, the theoretical state space is 2^20. 

Using the voltage relationships and power network 

information should bring down the state space, but 

still for such complex designs, the PST state space  is 

still a huge number which cannot be hand written or 

will be prone to errors. 

 



The above HLVRC snippets show how HLVRC can 

be written for such complex architectures in a few 

lines. Having captured the intent using HLVRC, 

golden PST can be deduced automatically. If 

hierarchical flows are used then block PSTs can be 

inferred automatically. 

V. PST-MANAGEMENT (SOME BEST 

PRACTICES) 

In this section, simple guidelines for writing PSTs in 

UPF are highlighted. These guidelines will help to 

address PST‘s complexity. The assumption is that the 

implementation and verification tools will have 

consistent merging principle which is outlined below. 

  

Merging Principle: A "block" PST cannot make a 

legal state which is illegal according to a "top" PST.  

Neither can a "top" PST make a legal state that is 

illegal according to a "block" PST.  Any state that is 

illegal according to any PST must be illegal.  The 

final set of legal states is those that are not ruled out 

by any other PST.  

In addition, the strong syntax and semantic checks 

should be as per the guidelines mentioned below. 

 

(1) Multiple PSTs per scope 

When multiple PSTs are defined in one scope, the 

intersection of the entries of all the PST becomes 

PST of that scope. This practice makes it much easier 

to construct a PST instead of user writing a large PST 

For example, assume that supply port SP1, SP2, SP3, 

SP4, SP5 and SP6 are all defined in scope "top/mid", 

where SP1 SP2 and SP3 are related, and SP4, SP5 

and SP6 are related. Specifically, the user intended 

PST table is described in Figure 3. 

 SP1 SP2 SP3 SP4 SP5 SP6 
State1 S1 S1 S1 S4 S4 S4 
State2 S2 S2 S2 S4 S4 S4 
State3 S3 S3 S3 S4 S4 S4 
State4 S1 S1 S1 S5 S5 S5 
State5 S2 S2 S2 S5 S5 S5 
State6 S3 S3 S3 S5 S5 S5 
State7 S1 S1 S1 S6 S6 S6 
State8 S2 S2 S2 S6 S6 S6 
State9 S3 S3 S3 S6 S6 S6 

Figure 3: PST 

The same PST could be defined by the intersection of 

the following two tables as specified in Figure 4. 

 SP1 SP2 SP3 
State1 S1 S1 S1 
State2 S2 S2 S2 
State3 S3 S3 S3 

 

 

 

                   Figure 4: Multiple PSTs 

 

(2) Use of don‘t cares or wild cards for similar rails 

in a PST state will make PST more concise and 

more readable  

For the above example, the following PSTs can also 
represent the same PST but in a more precise manner 

with the use of wild card. 

 SP1 SP2 SP3 SP4 SP5 SP6 
State1 S1 S1 S1 * * * 
State2 S2 S2 S2 * * * 
State3 S3 S3 S3 * * * 

 

 SP1 SP2 SP3 SP4 SP5 SP6 
State1 * * * S4 S4 S4 
State2 * * * S5 S5 S5 
State3 * * * S6 S6 S6 

Figure 5: PSTs with Wild Card 

There are totally 6 PST entries in above two tables, 

but it takes 9 entries to define the PST in one single 

table. It is easy to see that use of multiple tables 

could significantly reduce the total number of entries 

in the PST.  

(3) Establish PST relationships using direct 

references. 

 

There is no need to re-define the intermediate states 

and values in PST implying a relationship with other 
PST‘s when these states can be referenced directly in 

the PST.  This practice will also help tools, and 

otherwise the manual merging of PSTs  

 

(4) Restrict supply-net availability to have optimal  

number of supply nets in PST.   

 

 SP4 SP5 SP6 
State1 S4 S4 S4 
State2 S5 S5 S5 
State3 S6 S6 S6 



Supply nets should be declared optimally and   reused 

as much as possible. There is no need to re-declare a 

net in every scope when it can be re-used in another 

scope. 

 
VI. CASE STUDY 

Through our case study, we demonstrate the various 

issues that can be addressed by HLVRC. We will 

analyze a topology specified in Figure 6. 

Figure 6: Case Study Topology 

The HLVRC to capture the architectural intent for 

this topology is specified below: 

 

 

   Figure 7: Case Study Ordering  

The individual state tables generated for case study 

topology are specified in Figure 8. 

 A B 

PS1 ON OFF 

PS2 ON ON 

PS3 OFF ON 

PS4 OFF OFF 

 

 B C 

PS1 ON ON 

PS2 ON OFF 

 

 B D 

PS1 ON ON 

PS2 ON OFF 

 
        Figure 8:  Block  Level PSTs 

The golden PST is derived from HLVRC in Figure 9. 

In the PST the ‗*‘ indicates don‘t care as per the best 

practices from previous section. The maximum 

possible number of states for this topology is 16 but 

with the HLVRC inference, the states were reduced 

to 10.  

 A B C D 

State1 ON ON * * 

State2 ON OFF OFF OFF 

State3 OFF ON * * 

State4 OFF OFF OFF OFF 

Figure 9: Golden PST Inferred 

VII. APPLICATION OF HLVRC 

 

A. Syntax Checks For Rails 

Ideally all the rails present in HLVRC should be 

present in the PST defined in the UPF. If a rail is not 

specified in the PST defined in UPF and is present in 

HLVRC, an inconsistency is observed and an error is 

flagged for in completeness.  

For example, if the PST for case study topology is as 

specified below, the analysis for rail D as specified in 

HLVRC is missing and it should be flagged as an 

error. 

 A B C 

State1 ON ON * 

State2 ON OFF OFF 

State3 OFF ON * 

State4 OFF OFF OFF 

Figure 10: PST 



 

B. Over Constraint/ Under Constraint PST  

A PST defined in UPF is over constraint when the 

number of states in the PST is more than the states 

which can be inferred from the design. This might 

lead to testing the design in the states which never 

occurs, and results in redundant protection devices, 

and other low power constructs.  

For example, if the PST defined in UPF for case 

study topology has state specified below  

 A B C D 

State7 ON OFF ON OFF 

Figure 11: PST State 

This above state is not a valid state as rail C and D 

are dependent on rail B and are also of lower order 

then B. So the design will never reach this state. On 

co-relation with golden PST specified in Figure 9, 

this redundancy can be detected before 

implementation and verification flows. 

A PST defined in UPF can also be under constraint 

when there are some states which are possible in a 

design but are not present in PST. This leads to 

wrong implementation results as tools will never 

implement the entire intent and verification will not 

be done on the design for missed out state. 

Understanding the relation between the rails, it is 

feasible to comment on all the possible permutations 

of different rails, which a design can possess. 

For example, if the PST defined in UPF for case 

study topology does not have a valid state specified 

below. 

 A B C D 

State6 ON ON ON OFF 

Figure 12: PST State 

If this state is not present in PST, then design will 

never be tested for this state. 

C. Merged PST 

With complex low power topologies emerging, 

merged PST as a concept has become is quite 

common in the hierarchal flows, where the blocks are 

individually verified with their respective PST 

defined for block level UPF‘s. This approach is 

helpful in managing small PST at the top level. But 

when these block level  PSTs are merged at top level, 

the merged PST is error prone as various blocks of 

PST states gets missed in the merging process 

because they do not find the overlap in the other 

PST‘s.  

For example, if the PSTs specified on left side are 

from various blocks of UPF‘s and are merged to 

define the top level UPF as specified below. 

  

Figure 13: Merged PST 

The merged PST is over constraint with reference to 

golden PST specified in Figure 9 and has the 

unnecessary states present, which are not possible in 

the design. If this merged PST is used by the 

verification tool, it might end up giving wrong results 

with respect to the requirement of the isolations cells 

in the design. If this PST is used by the 

implementation tool, it will insert the isolation cells 

in the design which will never be required as per the 

functionality of the design.  

VIII. CONCLUSION 

 

In this paper, we have acknowledged the problem of 

considering the PST defined in UPF as golden in 

view of complex low power SoCs with hierarchical 

PST with each PST having a large no of states. To 

address the problem, we have presenting the HLVRC 

framework. It defines the guidelines for a reference 

check for PST. The framework also provides the 

ability to define the overall architectural intent of the 

design that can be used as metrics in terms of quality, 

coverage, and signoff. In doing so, it brings down the 

turnaround time for fixing a design issue and 

effectively portraying the accurate status design.  

 



IX. Limitations 

 

At present, the framework does not honor the 

multiple voltage states for a supply net. 

 

X. Future Work 

Our future goal is to incorporate the HLVRC 

framework in static verification tools and multiple 

voltage state support for a supply net. We also intend 

to define more appropriate semantics to capture 

architectural design constraints.  
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