
Is Power State Table Golden?

Harsha Vardhan
#1

 , Ankush Bagotra
#2

, Neha Bajaj
#3

#
Synopsys India Pvt. Ltd

Bangalore, India
1
dhv@synopsys.com

2
ankushb@synopsys.com
3
nehab@synopsys.com

Abstract: Independent of the HDL, UPF [1] provides a

consistent format to specify power-aware design intent

and semantics for verification and implementation.

Using the UPF, one can define power supply network,

supply network behavior, and additional logical

structures such as retention, isolation, and level shifter

needed for a low power design. In the UPF, the Power

State Table (PST) describes all the possible power states

of a design and is used as a golden reference by

implementation tools and static verification checkers.

With chips becoming complex, hierarchical power

domain distribution methodologies are becoming

common. As a typical case in complex low power SoCs,

hierarchical PSTs need to be merged resulting in

several 1000s of states and depending on merging

principles, the resultant PST can error prone. This

makes verification and implementation a challenging

task. It becomes complicated to ensure that all legal

states for the design (architectural intent) are captured

in the user intended PST before it is considered as

‘golden’. Only extensive and thorough simulation can

ensure whether the PST coverage is complete or not

before it can be considered golden. If the PST is over

constrained, it will result in structural redundancy in

implemented design while a under constrained PST will

result in structural violations. UPF does not provide the

capabilities to describe PST at abstract design level to

describe the golden rules for merging, state completion

and coverage semantics.

In this paper, we propose a methodology to qualify PST

completeness and coherence with respect to High Level

Voltage Relationship Constraints (HLVRC). HLVRC

defines the relationship between voltage rails at

architectural level. Using HLVRC, all possible low

power Legal Design States (LDS) can be generated as

per low power design rules. These states can become

golden for verification and implementation flows. LDS

can be used to validate the user specified PST or

merged PST for missing or redundant states. In

addition, LDS can also be used to check for structural,

functional and architectural integrity of an

implemented low power design.

Index Terms—Low Power Verification, Static Verification,

UPF,

I. INTRODUCTION

The demand for low power design methodology led

to the formalization of power formats such as UPF

which allows the specification of power semantics,

originally not possible to specify in HDL. UPF, with

its ability to define power states and corruption

semantics on them, has made low power flows

powerful. At the same time, to manage the design

complexity, hierarchical power domain distribution

methodology, which exploits the concept of divide

and conquer, is becoming common. Bottom-up and

top-down implementation flows make power

constraints handling a difficult job. In the design

flows, as the constraints become complex, there is a

need for a high level abstraction view with which all

the constraints can be contrasted and cross checked

for consistency.

PST is a collection of all possible power states for all

input supply nets/ports of a design. Given a PST,

implementation tools will implement the design in

such a way that no structural (protection), functional

and electrical violations could be found in the design.

If there is a single PST for an entire design, it is clear

that it represents the power states of the whole

design. However, if there are multiple PSTs for a

design – For example, if the design has multiple

blocks, each having its own PST, and also has a top-

level PST – it is not clear how these different PSTs

relate to each other, and how they compose to

represent the power states of the complete design. If

mailto:1kaustav@synopsys.com
mailto:ankushb@synopsys.com

implementation and verification tools employ

merging principles, the resultant merged PST may

include "legal" states that are actually unreachable

due to the design's supply network structure. If PST

is specified for a block, it includes supply ports and

supply nets defined at and below its current scope. In

addition, there is supply network that is virtually

created (supply ports, supply nets, connections,

power switches) and that links different PSTs, there

by posing certain physical constraints. In such a case,

the following question arises:

- Do PSTs in their combined effect represent

architectural power state intent correctly?

As power intent gets elaborated, transformed and

modified in design flows, there is a need for an

alternate way to specify abstracted concise

constraints (voltage relationships) that can be used

for:

- Automatic derivation of elaborated

constraints (PST).

- Automatic comparison and consistency

checks on user supplied constraints (PST)

before they are golden for implementation

and static verification flows.

In the following sections, we will highlight how the

complex power methodologies open a new set of

problems in terms of merging rules of different PSTs

defined at different scopes. We will also question the

coverage of PST states‘ defined in the UPF with

respect to architectural intent. In the process, we will

also recommend some simple rules for writing PSTs

which will help in managing PST complexity. To

address the completeness and coherence of large and

multiple PSTs, we propose a methodology to qualify

PSTs with respect to High Level Voltage

Relationship Constraints (HLVRC). With HLVRC,

we can guarantee that PST transformations are in line

with architectural intent. While automatic derivation

of PST from HLVRC will help in arriving at

comprehensive PST, only extensive dynamic

simulation can validate the reach ability of PST states

and coverage to that effect. Dynamic low power

simulation is outside the scope of this paper.

II. PST-ITS SIGNIFICANCE

Any power management strategy or technique starts

with a PST. It is a user input to describe the operating

environment of a low power design. It defines the

power mode in which the design works and

relationship among various supply rails, supply nets

that distribute power to various domains in the

design. In effect, it defines all the possible power

state combinations, which can exist at the same time

during the operation of the design.

The UPF file describes the architectural power intent

in two main forms, namely the power supply network

and PSTs. The implementation tools use ―power

supply network‖ information to do ―physical‖ power

network implementation whose consistency can be

verified by static checkers. To implement and check

the protection requirements (Level Shifters, Isolation

cells, Retention Registers and Always On Buffers),

implementation and static checkers rely on the values

that can be applied on each supply net, and valid

combinations of supply nets. This information is

referred to as the ‗Power State Table‖ (PST). The

main focus of implementation and static verification

tools is to ensure that the design is implemented and

verified in such a way that no protection violations

can be found in any power state in the user supplied

PST.

III. PST- COMPLEXITIES

A. Exponential State Space

The total number of states in a PST can grow

exponentially with respect to the total number of

supply nets, and number of voltage states on each of

them. For example, in a design with 20 power

domain, each domain being independently ON or

OFF (2 states) will theoretically lead to 2^20 states in

the PST. If each domain can have different ON

voltages (ex: 1.0, 1.2, 0.9), then the state space

expands even more. Even if the ‗practical‘ or ‗legal‘

state space is much less than the theoretical space, it

is still of the order of 100s of thousands in large

SoCs. This typically leads problems such as:

- User errors in coding large PSTs

- Redundancy in PST states leading to huge

run times and bad structural inference

- Under constrained PST states leading to bad

structural inference

B. State Reachability

An implementation tool synthesizes using PSTs as

constraints, making low power verification

comprehensive. This concept is similar to the idea of

synthesis of functionally verified RTL where

comprehensive verification is done using assertions

and simulation techniques. The first objective of

verification is to exercise the Power State Table.

Assuming that static verification yields a clean result,

we can assume that in a steady multi-voltage state,

there are no further obvious electrically hazardous

conditions. The corner cases may exist that need to

be uncovered by dynamic verification. However,

before we use dynamic verification, we have some

basic functionality to verify [3].

Simulation and formal techniques are needed to

prove that a given PST state is actually reachable or

not. For example, given the PST in Figure 1, we

might want to detect whether the State1 is reachable

or not?

 neta netb netc

State1 ON OFF OFF

State2 ON ON ON

 Figure 1: PST

In other words, it is required to explore the

relationships of nets {neta, netb, netc} to see whether

{neta:ON; netb:OFF} can force {netc:OFF} or not.

Similarly all such permutations need to be exercised.

In simple cases, it can be solved, but it is not always

easy to track when PST state space grows.

Furthermore, when any of these nets is controlled by

switches with control functions driven by registers, it

becomes a sequential use case which can be solved

theoretically by a formal or a simulation tool [4].

C. Hierarchical Flows

To support hierarchical flows, it is necessary to allow

PSTs to be defined for top and block level scopes. If

implementation and verification tools employ

merging principles, the resultant merged PST may

include "legal" states that actually are unreachable

due to the design's supply network. Based on supply

network resolution and PST merging principles, the

resultant PST may be:

- Over constrained – redundant states are

generated

- Under constrained – valid states are lost.

In such cases, users might want to review the merged

PST and correct power network or port states or

individual PSTs to ensure that the resultant PST is in

line with the architectural intent, else it will lead to

incorrect implementation. For instance, bufferization

of the signals that cross power domains must be

performed with the knowledge of the ―rail ordering‖

and the use of always on buffers which can remain

ON while the power domain is shutdown. The rail

ordering is essentially derived from resultant PSTs in

cases of hierarchical flows. This demands strict rules

in merging principles and strong syntax and semantic

checks before merged PSTs can be considered golden

for implementation and static verification.

Also, in hierarchical flows, if some blocks are not

allowed to change, structural violations are

impossible to resolve if they happen within fixed

blocks. Those errors can only be prevented by

enforcing certain relationship among PSTs specified

at different hierarchy.

IV. HIGH LEVEL VOLTAGE RELATIONSHIP

CONSTRAINTS

In order to address the complexities highlighted in

the above section, we introduce HLVRC to capture

high level low power architectural intent of design.

HLVRC is an abstract representation of the

following:

(1) hierarchical rail order relationships

(2) power network dependencies

This serves the need for specifying abstract and

concise constraints (voltage relationships) that can be

used for (a) Automatic derivation of elaborated

constraints (PST) for implementation and verification

(b) automatic comparison and consistency checks on

user supplied constraints (PST) before they are

golden constraints for implementation and static

verification

As power intent gets transformed in the design flows,

HLVRC can be used to ensure that the

transformations are in-line with the architectural

intent.

The following code example introduces various

components that defines the format for HLVRC

A. Definition: define_rail _name

define_rail _name defines the rails present in

the design and their respective voltage values

as per high level design intent.

B. Definition:set_rail_order

set_rail_order is used to indicate the order of

the rails. ‗0‘ order number indicates the rail is

more ‗on‘ than all other rails. The increasing

order number indicates the rails are more

relative off. A particular order number can

have multiple rails, but a rail should only be

present in one order. Multiple rails can be

added to same order in case they are

equivalent and independent

C. Definition : set_rail_constraint

set_rail_constraint is used to define the

dependency among rails of different order.

There can be multiple dependent rails on a

signal main rail.

Let us take an example of a topology as mentioned in

Figure 2[2]. The design has 20 voltage domains that

have a hierarchical relationship. The domain C5 is

mostly ON while the relative-OFF domains are

mentioned in lower rows. The arrows capture the

dependencies or independence of various voltage

rails.

Figure 2: Domain Voltage Hierarchical Relation [2]

For such a design, the low power architecture is so

complex and yet the architectural power intent is very

concisely and crisply captured in a diagram. If power

intent were to be detailed, the formats may run into

10s of thousands of lines. Assuming that each domain

can be ON or OFF, the theoretical state space is 2^20.

Using the voltage relationships and power network

information should bring down the state space, but

still for such complex designs, the PST state space is

still a huge number which cannot be hand written or

will be prone to errors.

The above HLVRC snippets show how HLVRC can

be written for such complex architectures in a few

lines. Having captured the intent using HLVRC,

golden PST can be deduced automatically. If

hierarchical flows are used then block PSTs can be

inferred automatically.

V. PST-MANAGEMENT (SOME BEST

PRACTICES)

In this section, simple guidelines for writing PSTs in

UPF are highlighted. These guidelines will help to

address PST‘s complexity. The assumption is that the

implementation and verification tools will have

consistent merging principle which is outlined below.

Merging Principle: A "block" PST cannot make a

legal state which is illegal according to a "top" PST.

Neither can a "top" PST make a legal state that is

illegal according to a "block" PST. Any state that is

illegal according to any PST must be illegal. The

final set of legal states is those that are not ruled out

by any other PST.

In addition, the strong syntax and semantic checks

should be as per the guidelines mentioned below.

(1) Multiple PSTs per scope

When multiple PSTs are defined in one scope, the

intersection of the entries of all the PST becomes

PST of that scope. This practice makes it much easier

to construct a PST instead of user writing a large PST

For example, assume that supply port SP1, SP2, SP3,

SP4, SP5 and SP6 are all defined in scope "top/mid",

where SP1 SP2 and SP3 are related, and SP4, SP5

and SP6 are related. Specifically, the user intended

PST table is described in Figure 3.

 SP1 SP2 SP3 SP4 SP5 SP6
State1 S1 S1 S1 S4 S4 S4
State2 S2 S2 S2 S4 S4 S4
State3 S3 S3 S3 S4 S4 S4
State4 S1 S1 S1 S5 S5 S5
State5 S2 S2 S2 S5 S5 S5
State6 S3 S3 S3 S5 S5 S5
State7 S1 S1 S1 S6 S6 S6
State8 S2 S2 S2 S6 S6 S6
State9 S3 S3 S3 S6 S6 S6

Figure 3: PST

The same PST could be defined by the intersection of

the following two tables as specified in Figure 4.

 SP1 SP2 SP3
State1 S1 S1 S1
State2 S2 S2 S2
State3 S3 S3 S3

 Figure 4: Multiple PSTs

(2) Use of don‘t cares or wild cards for similar rails

in a PST state will make PST more concise and

more readable

For the above example, the following PSTs can also
represent the same PST but in a more precise manner

with the use of wild card.

 SP1 SP2 SP3 SP4 SP5 SP6
State1 S1 S1 S1 * * *
State2 S2 S2 S2 * * *
State3 S3 S3 S3 * * *

 SP1 SP2 SP3 SP4 SP5 SP6
State1 * * * S4 S4 S4
State2 * * * S5 S5 S5
State3 * * * S6 S6 S6

Figure 5: PSTs with Wild Card

There are totally 6 PST entries in above two tables,

but it takes 9 entries to define the PST in one single

table. It is easy to see that use of multiple tables

could significantly reduce the total number of entries

in the PST.

(3) Establish PST relationships using direct

references.

There is no need to re-define the intermediate states

and values in PST implying a relationship with other
PST‘s when these states can be referenced directly in

the PST. This practice will also help tools, and

otherwise the manual merging of PSTs

(4) Restrict supply-net availability to have optimal

number of supply nets in PST.

 SP4 SP5 SP6
State1 S4 S4 S4
State2 S5 S5 S5
State3 S6 S6 S6

Supply nets should be declared optimally and reused

as much as possible. There is no need to re-declare a

net in every scope when it can be re-used in another

scope.

VI. CASE STUDY

Through our case study, we demonstrate the various

issues that can be addressed by HLVRC. We will

analyze a topology specified in Figure 6.

Figure 6: Case Study Topology

The HLVRC to capture the architectural intent for

this topology is specified below:

 Figure 7: Case Study Ordering

The individual state tables generated for case study

topology are specified in Figure 8.

 A B

PS1 ON OFF

PS2 ON ON

PS3 OFF ON

PS4 OFF OFF

 B C

PS1 ON ON

PS2 ON OFF

 B D

PS1 ON ON

PS2 ON OFF

 Figure 8: Block Level PSTs

The golden PST is derived from HLVRC in Figure 9.

In the PST the ‗*‘ indicates don‘t care as per the best

practices from previous section. The maximum

possible number of states for this topology is 16 but

with the HLVRC inference, the states were reduced

to 10.

 A B C D

State1 ON ON * *

State2 ON OFF OFF OFF

State3 OFF ON * *

State4 OFF OFF OFF OFF

Figure 9: Golden PST Inferred

VII. APPLICATION OF HLVRC

A. Syntax Checks For Rails

Ideally all the rails present in HLVRC should be

present in the PST defined in the UPF. If a rail is not

specified in the PST defined in UPF and is present in

HLVRC, an inconsistency is observed and an error is

flagged for in completeness.

For example, if the PST for case study topology is as

specified below, the analysis for rail D as specified in

HLVRC is missing and it should be flagged as an

error.

 A B C

State1 ON ON *

State2 ON OFF OFF

State3 OFF ON *

State4 OFF OFF OFF

Figure 10: PST

B. Over Constraint/ Under Constraint PST

A PST defined in UPF is over constraint when the

number of states in the PST is more than the states

which can be inferred from the design. This might

lead to testing the design in the states which never

occurs, and results in redundant protection devices,

and other low power constructs.

For example, if the PST defined in UPF for case

study topology has state specified below

 A B C D

State7 ON OFF ON OFF

Figure 11: PST State

This above state is not a valid state as rail C and D

are dependent on rail B and are also of lower order

then B. So the design will never reach this state. On

co-relation with golden PST specified in Figure 9,

this redundancy can be detected before

implementation and verification flows.

A PST defined in UPF can also be under constraint

when there are some states which are possible in a

design but are not present in PST. This leads to

wrong implementation results as tools will never

implement the entire intent and verification will not

be done on the design for missed out state.

Understanding the relation between the rails, it is

feasible to comment on all the possible permutations

of different rails, which a design can possess.

For example, if the PST defined in UPF for case

study topology does not have a valid state specified

below.

 A B C D

State6 ON ON ON OFF

Figure 12: PST State

If this state is not present in PST, then design will

never be tested for this state.

C. Merged PST

With complex low power topologies emerging,

merged PST as a concept has become is quite

common in the hierarchal flows, where the blocks are

individually verified with their respective PST

defined for block level UPF‘s. This approach is

helpful in managing small PST at the top level. But

when these block level PSTs are merged at top level,

the merged PST is error prone as various blocks of

PST states gets missed in the merging process

because they do not find the overlap in the other

PST‘s.

For example, if the PSTs specified on left side are

from various blocks of UPF‘s and are merged to

define the top level UPF as specified below.

Figure 13: Merged PST

The merged PST is over constraint with reference to

golden PST specified in Figure 9 and has the

unnecessary states present, which are not possible in

the design. If this merged PST is used by the

verification tool, it might end up giving wrong results

with respect to the requirement of the isolations cells

in the design. If this PST is used by the

implementation tool, it will insert the isolation cells

in the design which will never be required as per the

functionality of the design.

VIII. CONCLUSION

In this paper, we have acknowledged the problem of

considering the PST defined in UPF as golden in

view of complex low power SoCs with hierarchical

PST with each PST having a large no of states. To

address the problem, we have presenting the HLVRC

framework. It defines the guidelines for a reference

check for PST. The framework also provides the

ability to define the overall architectural intent of the

design that can be used as metrics in terms of quality,

coverage, and signoff. In doing so, it brings down the

turnaround time for fixing a design issue and

effectively portraying the accurate status design.

IX. Limitations

At present, the framework does not honor the

multiple voltage states for a supply net.

X. Future Work

Our future goal is to incorporate the HLVRC

framework in static verification tools and multiple

voltage state support for a supply net. We also intend

to define more appropriate semantics to capture

architectural design constraints.

XI. Reference

1. Unified Power Format (UPF 2.0) Standard

[Draft Version]; IEEE Draft Standard for Design

and Verification of Low Power Integrated

Circuits, IEEE P1801/D18; 23rd October, 2008.

2. Hierarchical Power Distribution and Power

Management Scheme for a Single Chip Mobile
Processor. DAC, 2006.

3. Low Power Methodology Manual,

http://www.synopsys.com/community/partners/a

rm/pages/lpmm.aspx

4. SNUG 2011- ―UPF power state table verification

methodology using MVSIM‖, Christophe

Chavel, ST Ericson,

https://www.synopsys.com/news/pubs/snug/fran

ce2011/b2_clavel_paper.pdf

http://www.synopsys.com/community/partners/arm/pages/lpmm.aspx
http://www.synopsys.com/community/partners/arm/pages/lpmm.aspx
https://www.synopsys.com/news/pubs/snug/france2011/b2_clavel_paper.pdf
https://www.synopsys.com/news/pubs/snug/france2011/b2_clavel_paper.pdf

