
Ironic But Effective: How
Formal Analysis Can Perfect
Your Simulation Constraints

Penny Yang, Jin Hou, Yuya Kao,
Nan-Sheng Huang, Ping Yeung, Joe Hupcey

Introduction
• As SoC size increases,

bus fabric design
becomes more
complicated and
verification IPs (VIP) are
needed in constrained
random simulations.
– Isolate the issues
– Before designs are ready
– Flexible and faster

12/22/2016 Penny Yang, Mediatek Inc 2

Bus Fabric

VIP VIP VIP

Introduction (Cont.)
• These VIPs are usually constrained according to the

information provided by DUT owners.

12/22/2016 Penny Yang, Mediatek Inc 3

Simulation Testbench

Bus Fabric

Master
VIP

Master
VIP

Slave
VIP

Slave
VIP

Slave
VIP

Master
VIP

Introduction (Cont.)
• VIPs should behave the same as their substituted

design modules. If not the same, the outcomes are:
– VIP has less functionalities than DUT

• the VIP over-constrains the environment of the bus
fabric, and may hide extra functionalities and bugs in the
bus fabric

– VIP has more functionalities than DUT
• the VIP under-constrains the environment of the bus

fabric, resulting in false firings in simulation runs that only
waste simulation and debug time

3/1/2022 Penny Yang, Mediatek Inc 4

Introduction (Cont.)

5

• How to verify the correctness of the configuration
information for VIPs?

3/1/2022 Penny Yang, Mediatek Inc

Simulation Testbench

Bus Fabric

Master
VIP

Master
VIP

Master
VIP

Slave
VIP

Slave
VIP

Slave
VIP

Real Design

Bus Fabric

Master
DUT

Master
DUT

Master
DUT

Slave
DUT

Slave
DUT

Slave
DUT

?

Methodology
• Collect VIP configuration specifications from block

designers and create a table for each VIP in our
database.

• Code the configuration specifications using SVA and
bind them to the design modules

• After the RTL design is ready, setup formal
verification environment using scripts.

• Run SVA against the substituted design modules
using formal tool

• Analyze results

3/1/2022 6Penny Yang, Mediatek Inc

Collect VIP Configuration Spec

• For each VIP used in the simulation environment, list
its configurations in a table.

3/1/2022 7

For legal behavior, we use cover property
to check if it does exist.
For illegal behavior or something always
true, we use assert property for it.

Penny Yang, Mediatek Inc

Code SVA

3/1/2022 8

• Examples
– AXI burst length: AXI burst length can be from 1 to 16

defined by awlen from 0 to 15

default clocking @(posedge clock); endclocking
default disable iff (~reset);
generate
for (genvar i=0; i<16; i++) begin
Cover_burst_size: cover property (awvalid && awlen==i);

end
endgenerate

Penny Yang, Mediatek Inc

Code SVA (Cont.)

3/1/2022 9

– Address aligned:

Assert_addr_aligned: assert property (
htrans==NSEQ |-> addr_align);

module AXI_assertions (clock, resetn,…);
…
endmodule
bind AXI_design1 AXI_assertions AXI_inst
(.clock(aclk),
.resetn(aresetn),
…
);

Penny Yang, Mediatek Inc

– The SVA assertions are in separate files and connected to
the design modules using SVA bind command

Create Formal Script

3/1/2022 10

• Example of Makefile to run Questa Propcheck
• Automatically generate Makefiles using perl script

Run: compile formal
compile:

vlib work
vlog –f filelist

formal:
qformal –c –od log –do “ \
do directives.tcl; \
formal compile –d dut; \
formal verify –init init_file; \
exit”

Initial sequence

Other Questa formal
commands defining
clock, reset, constant
pins and etc.

Penny Yang, Mediatek Inc

Waveform

3/1/2022 11

• GUI can show counterexamples of fired properties and the
sequences of covered properties.
– Example: The burst length (awlen==8) is covered

Penny Yang, Mediatek Inc

Result Analysis
• Create a table for each VIP and its substituted

design module to compare the configurations
– First row lists all configuration types, and the first

column lists all design module names.
– Values outside of brackets are the VIP configurations,

but actual design functions are inside the brackets

3/1/2022 12Penny Yang, Mediatek Inc

module R/W Burst Length Burst Size Burst Type
Burst
cross
4KB

LOCK
Access

Exclusive
Access

AxID
permitted

value

Address
aligned

Write
Outstanding

Read
Outstanding

Write Data
Interleaving

Write-data-
before-addr

A ALL ALL
(R:!2~16) 8/16/32/64 ALL(INCR) N N 0 252/254

(252) N(W:Y) 1 1 1 N

B R 1~8(R:16) 64 INCR N(R:Y) N 0 0 N(Y) 32(0) 32(0) 16(1) N

Result Analysis (Cont.)

– Green items are the ones DUT==VIP, pink items are
DUT>VIP, yellow items are DUT<VIP, orange items
are inconclusive

– Red letters are real errors confirmed by designers,
green letters are mismatches that can be ignored

12/22/2016 Penny Yang, Mediatek Inc 13

module R/W Burst Length Burst Size Burst Type
Burst
cross
4KB

LOCK
Access

Exclusive
Access

AxID
permitted

value

Address
aligned

Write
Outstanding

Read
Outstanding

Write Data
Interleaving

Write-data-
before-addr

A ALL ALL
(R:!2~16) 8/16/32/64 ALL(INCR) N N 0 252/254

(252) N(W:Y) 1 1 1 N

B R 1~8(R:16) 64 INCR N(R:Y) N 0 0 N(Y) 32(0) 32(0) 16(1) N

F ALL ALL 8/16/32/64
(R:64) INCR N N 0 0~2(0) N (R:Y) 4 4 1 N

DUT > VIP
VIP’s test item (DUT’s capability)

DUT < VIP
VIP’s test item (DUT’s capability)

DUT == VIP Inconclusive

Results
• We applied this methodology on a smart phone project.
• Tested 17 configurations of AXI VIPs for 18 design modules.
• Tested 11 configurations of AHB VIPs for 9 design modules.

3/1/2022 14Penny Yang, Mediatek Inc

Protocol
Total
tests DUT == VIP DUT > VIP DUT < VIP Inconclusive
% # % # % # %

AXI 306 205 67%
64
(11+53)

21%
(4%+17%)

24
(6+18)

8%
(2%+6%) 13 4%

AHB 99 75 76%
13
(3+10)

13%
(3%+10%)

7
(6+1)

7%
(6%+1%) 4 4%

Error False Alarm

Results (Cont.)
• Spent 3 days to implement the SVA assertions.
• Spent 2 days to setup the formal environment for 27

design modules which was 20x faster than simulation
• Run-time of 96% properties is less than 1 hour
• Spent 1 week to get all the results in the previous table.
• Found 26 real errors in the configurations of the VIPs

that could produce incorrect verification results of the
bus fabric.

3/1/2022 15Penny Yang, Mediatek Inc

Conclusion

• Formal verification is an efficient and effective way
to verify the correctness of the constrained VIPs
used in simulation environment.
– No simulation testbenches are needed that can save a

lot of time.
– Formal can verify the situation of VIP<DUT or VIP>DUT.
– Formal environment is easy to setup.
– Formal post process debugging is easy.

• Formal verification really works to perfect your
simulation constraints!

3/1/2022 16Penny Yang, Mediatek Inc

Future Work

– Reduce false alarms
• Apply correct constraints with AIP

– Reduce inconclusive properties
• Follow tool vendor’s guidelines

– Raise success rate
• Prove dozens of DUTs at once
• Bug Hunting first

– Together with simulation to make a robust design

3/1/2022 17Penny Yang, Mediatek Inc

	Ironic But Effective: How Formal Analysis Can Perfect Your Simulation Constraints
	Introduction
	Introduction (Cont.)
	Introduction (Cont.)
	Introduction (Cont.)
	Methodology
	Collect VIP Configuration Spec
	Code SVA
	Code SVA (Cont.)
	Create Formal Script
	Waveform
	Result Analysis
	Result Analysis (Cont.)
	Results
	Results (Cont.)
	Conclusion
	Future Work

