
IP-XACT based SoC Interconnect

Verification Automation

YoungRae Cho1 YoungSik Kim2 Seonil Brian Choi3

Samsung Electronics Co., Ltd., Seoul, Korea

(1yr76.cho@samsung.com, 2ys31.kim@samsung.com, 3seonilb.choi@samsung.com).

Abstract- In complex modern Systems on Chip (SoCs), verifying its backbone interconnect with large numbers of bus

masters and slaves is one of the most significant challenges. It requires verifying various interface protocols, conversions of

different transaction types, and large combinational transaction paths. To cope with this problem, we used Verification

Intellectual Property (VIP) for each protocol and a verification platform for interconnect. However, configuring each VIP to

connect them with entire master and slave interfaces is a cumbersome manual process. It is also very challenging to update its

configuration to comply with frequent specification changes that accommodate market changes. By automatically generating

these configurations for the interconnect verification environment using IP-XACT, we can dramatically reduce the time and

the effort required for SoC backbone interconnect verification.

Keywords - Interconnect Verification, IP-XACT, Automation

I. INTRODUCTION

To reduce the cost of silicon chips, the SoC industry is trending to merge various functionalities (such as GPS,

Modem, Wi-Fi, Bluetooth) into a single chip or Systems on Chip (SoC). Its complexity, as well as its size, increases

rapidly. This causes that a backplane (backbone interconnect) in the SoC includes a significantly large number of

master IPs (such as CPU cores and other MCUs) and slave IPs (memories or Bluetooth). Thus, it is challenging to

verify the backplane considering reachability, routing correctness, memory map, and address space, deadlock-free,

performance validation (bottleneck-free), etc. The dedicated backplane verification environment is required where it

consists of the backplane RTL and the verification IPs replacing real master and slave IPs. However, it is very time

consuming and error-prone to create this verification environment since its test bench is used to be coded manually

and every master and slave IPs are configured individually.

To overcome these challenges, the SoC industry shifted the paradigm for SoC integration from a text-oriented

coding to an IP-XACT [1] (i.e., metadata) based generation. After the cluster level integration and full chip level

integration are performed with the metadata, cluster and full chip RTLs are generated instead of manually coded.

The IP-XACT metadata used in SoC integration originally includes only the specification information required for

integration. To improve a verification productivity, the IP-XACT based flow is extended to package the

specification is necessary for the backplane verification into the IP-XACT efficiently and utilize the specification

information to generate a dedicated verification environment automatically. In this paper, the challenges in creating

verification environment for the SoC backplane verification are discussed. The approach to resolving them and the

enhancement result due to the automation are presented followed by the conclusion.

II. CHALLENGES IN SOC INTERCONNECT VERIFICATION

We have been applying the UVM-based verification environment setup to create the verification environment of

SoC backplane, as shown in Figure 1. In this environment, to connect VIPs to the backplane interfaces instead of

real IP, we force the IP interface to connect to the VIP. For example, we force interface of IPs such as host CPU

which connected with the slave interface of the backplane to connect to master VIP. And also force slave interface

of IPs such as memory controllers or peripherals to slave VIPs.

The use of VIPs for the interfaces which have different protocols enables the generation of transactions through

the interconnect which randomly covers the address space and the interconnect routes. In this environment, the

protocol validation also can be checked automatically by the VIP included checkers. To verify the end to end

transactions, it is needed appropriate system level scoreboard [3]. So we also install Interconnect Validator VIP[4]

which is a system-level VIP that monitors transactions within a interconnect fabric and performs checking if the

transactions behave correctly.

Figure 1. Interconnect Verification Environment

For VIP setup, we need to specify various configuration for each VIP such as a hierarchical location of connection

points, interface type, port name and list, bit-width of each port, FIFO depth, multiple outstanding values. Also, we

need to specify the spec of SoC backplane such as memory map, address space, decoding, reachability, and so on.

To maintain these configurations efficiently, we used to have a spreadsheet-based tool which generates test bench.

In the spreadsheet-based flow, we have to make a spreadsheet as shown in Figure 2[2]. For example, If we want to

make interconnect verification environment such as Figure 1. We have to describe configurations for 2 ACE master,

3 AXI master, 1 ACE slave, 1 AHB, and 2 APB slave VIPs on spreadsheet format like Figure 2. The ‘Mater

interface configurations’ of the spreadsheet should include VIP types such as ACE and AXI3, address width, data

width, id width, interface name and so on which needed for VIP configuration for the five master VIPs. We also

describe configurations for the four slave VIPs on ‘Slave Interface Configurations’ table on the spreadsheet. The

configuration also should include VIP type, port width, name and the address range which the interface has.

Moreover, then we have to describe the reachability from the Master VIPs to Slave interfaces on the ‘Master / Salve

mapping table’ of the spreadsheet. If a master VIP to a slave VIP is reachable, it is ‘T’ for true or ‘F’ for false.

Figure 2. Spreadsheet-based VIP configuration

Once we specify all configuration of VIP and backplane on the spreadsheet manually, we generate verification

environment and then we have to connect the generated test bench to the DUT. The port level connection of each

interface between VIP and backplane is needed to be done also manually such that the hierarchical location of each

VIP instance and signal mapping between the VIP instance and the actual DUT's signal should be described as

shown in Figure 3.

Figure 4. Example code for instance hierarchy and map between the VIP instance and the actual DUT's signal

From above procedure description, we can easily understand that configuring entire VIPs and typing-in to the

spreadsheet is not an easy job since our SoC consists of hundreds of master and slave interfaces should be connected

with VIPs for interconnect verification. The amount of routing information we had to define is multiplied by the

number of masters and slaves. The codes for the port connection between VIP ports and RTL ports we have to

manually type-in is also tens of thousands of lines. Moreover, during the SoC integration progress, SoC spec is

frequently changed, which causes RTL modification such as instance name, hierarchy, port name, or routing spec of

each backplane component. These SoC spec changes need to be applied to the verification environment also, and

this work is not an easy job to comply every RTL change.

It is a hectic, time-consuming, error-prone process, and due to this challenges, verification group faces many

incorrect verification failures which also results in the massive amount of waste of engineering resource and

sometimes hides real design bugs.

III. IP-XACT BASED VERIFICATION AUTOMATION

As mentioned in the introduction chapter, our SoC integration process was changed from text-based to metadata-

based flow, and the metadata is IP-XACT. Originally we included design spec information in IP-XACT, for

example, an IP-XACT component for each IP includes port list, bit-width, bus interfaces, memory map, register

definition, and so on. In IP-XACT standard, there are set of schema for capturing spec of a bridge, i.e., routing

information between its input interfaces (i.e., slave interfaces) and output interfaces (i.e., master interfaces) for

interconnect IPs such as CCI and AXI2APB Bridge.

For SoC or subsystem level interconnect verification, all interconnect components should have routing

information. However, in design integration flow, the routing information is not needed, and it should be

additionally added for interconnect verification.

As shown in Figure 5, the routing information in IP-XACT consists of the input bus interface and the memory

map, the subspace map of the memory map, the reference from the subspace map to the output interface, the base

address, and address space for the output interface. This description is quite complicated to express routing

information for interconnect components with many input and outputs, and it is quite a burden to IP designers.

Figure 5. Routing information for Interconnect component.

To resolve this complicated issue, we developed automation script to package routing information into IP-XACT

easily for the interconnect IPs.

Most of our system-level interconnects which are connecting sub-system to sub-system or other system-level

interconnect to sub-system are automatically generated by a tool. In case of AMBA interconnects like NIC and CCI,

they are generated by AMBA generators such as AMBA Designer [5] and the generators also generate IP-XACT

which already includes routing information. Our in-house bus generators also generate there routing information as

text format. So our script converts the text-based routing information into IP-XACT standard format and integrates

into the IP-XACT file for the component as Figure 6.

Figure 5. Routing information integration flow with routing information text.

In case of AMBA bridges like 1 by 16 AXI2APB bridge, usually they are used to connect system level

interconnect with leaf IPs, they have a full matrix form input bus interfaces to output bus interfaces. The address

ranged from the output interfaces are with evenly divided. For example, the 1 by 4 AXI2APB bridge, which input

address range is from 0x0 to 0xffff, the address space range for each output interface is 0x4000. For this kind of

bridges, the routing information can be added to input address range like Figure 6.

Figure 6. Routing information integration flow for AMBA bridges.

In case of one to one bridges such as protocol changer like AXI2APB, the full range of address for input interface

is directly mapped to output interfaces. In this case, the routing information can be easily added by the script like

Figure 7

Figure 7. Routing information integration flow for one to one bridges.

In our last SoC project, routing information for 120 of 130 interconnect components are added by our automated

script.

For the rest of interconnect we also used GUI based routing information integration tool [6] for designers who are

not familiar with IP-XACT as Figure 8. To make routing information, using the GUI editor, designers just click

input slave interface to make memory map. And click output master interface to make address space with range like

0x10000. And then click and drag the address space to the memory map with base address.

Figure 8. GUI editor for IP-XACT routing information

During the SoC integration process, each IP is instantiated in subsystems, and each subsystem is also integrated

into top-level SoC. After the integration, the IP-XACT data for each subsystem and top-level SoC already contain

connection specification such as port mapping and bit-with, hierarchical architecture of SoC and configurations.

Using this SoC IP-XACT data, reachability(routing) and memory map from any master interface such as CPU to

any slave interface such as DRAM or IP register path can be calculated and interconnect verification environment

can be generated automatically by using this information.

Figure 9. SoC level IP-XACT information for interconnect verification.

We collaborated with EDA and built this automated flow [5] to generate interconnect verification environment

without any human intervention. Using this flow, we just load IP-XACT for the integrated SoC design on the tool

and then select master and slave interfaces which should be connected to verification IP on GUI as Figure 10. Then

all manual work of configuration for every VIP and SoC interconnect specification does not necessary. The IP-

XACT database includes each interface information such as hierarchy, protocol type, master/slave mode, port

mapping, port width and routing information from any master to any slave. So it is not needed to check the design

specifications to update verification environment and configure verification environment and port mapping

manually. So, whenever SoC RTL is updated during the integration process, the SoC IP-XACT data is also updated

and we can quickly re-generate interconnect verification environment based on the IP-XACT.

Figure 10. Working flow and GUI of IP-XACT based interconnect verification environment generation

IV. RESULT

Our recent SoC interconnect verification environment includes more than 50 master and 400 slave interfaces

which connected with VIPs. It took over two weeks to create an initial version of interconnect validation

environment by the previous manual process. However, IP-XACT-based automation shortens this work into only

one day. In manual processes, just end-to-end interconnect instances (i.e., leaf IP’s interface) was supposed to be

connected with verification IPs. In IP-XACT-based automation, however, any interfaces inside any hierarchical-

level of SoC can be selected as verification point to be connected with Verification IP. IP-XACT based verification

environment automation also enables to generate multiple test bench for subsystem or SoC and different test bench

behavior. In our project, we can generate more than 5 different TB for SoC and each sub-system.

These automation reduced time to test bench modification to comply architectural or design dramatically. So we

also can generate new test bench for every RTL update at an early stage of the project, which happens one or two

times for every week. As a result, we obtain less number of false-negative report, time to run more tests, finding

more interconnect bugs in the early stage of the project.

V. CONCLUSION

In this paper, we introduced our experience for verifying complicated SoC level interconnect verification. We

already developed interconnect verification environment using interface VIP and interconnect validator VIP [4] and

excel based automated flow. However, the configuration of every VIP to connect them into DUT’s entire

master/slave interface is an entirely manual process. Moreover, it is difficult to update the configuration to comply

DUT speciation change because the number of masters and slaves are enormous and yet the DUT speciation is

frequently changed during the SoC integration process. Thanks to IP-XACT based design integration flow, we can

get much information from this metadata for interconnect verification environment. However, routing information

for all interconnect component which is needed for interconnecting verification should be added in the IP-XACT,

and it is a little burden for design integration flow. So we developed a method to add this information for each

interconnect components. We can automatically generate interconnect verification environment based on the IP-

XACT, and it dramatically reduced our turnaround time to setup interconnect verification environment. As a result,

we obtain less number of false-negative report, time to run more tests, finding more interconnect bugs in the early

stage of the project.

REFERENCES

[1] IEEE. "1685-2009 IEEE standard for IP-XACT, Standard Structure, Packaging, Integrating, and Reusing IP within Tool Flows.".

[2] Cadence Interconnect Workbench. [Online] https://ip.cadence.com/ipportfolio/verification-ip/interconnect-solution/interconnect-workbench

[3] François Cerisier and Mike Bartley, “SoC Interconnect Verification Challenge,” Design & Reuse, 2014

[4] Cadence Interconnect Validator. [Online] https://ip.cadence.com/ipportfolio/verification-ip/interconnect-solution/interconnect-validator-

coherent

[5] AMBA Designer user guide [Online] https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-network-interconnect-

family/docs/100459/latest/system-ip-tooling/amba-designer

[6] Cadence Verification Workbench User Guide

https://ip.cadence.com/ipportfolio/verification-ip/interconnect-solution/interconnect-workbench
https://ip.cadence.com/ipportfolio/verification-ip/interconnect-solution/interconnect-validator-coherent
https://ip.cadence.com/ipportfolio/verification-ip/interconnect-solution/interconnect-validator-coherent
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-network-interconnect-family/docs/100459/latest/system-ip-tooling/amba-designer
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-network-interconnect-family/docs/100459/latest/system-ip-tooling/amba-designer

