
© Accellera Systems Initiative

Creating reusable intellectual properties (IPs) is the dream of all designers. Who will
not want to create a design once and have it used a multitude of times in the future?
Each time the design is reused, the return on investment (ROI) continues to increase
monotonically. Yet creating a perfectly usable IP design is challenging and resource
intensive. In addition, the challenge of creating a reusable IP is not limited to just the
register-transfer-level (RTL) design.

It impacts all aspects of system-on-chip (SoC) development, such as firmware,
software, verification, and even documentation.

● Designers spend a huge amount of time creating standard IPs.
○ These IPs are very rigid and brittle at the same time.

● To control the flow and reuse of such IPs, engineers use a parameter-based flow,
○ but they generally break when used in a different environment because changes in a

port list or customization of these IPs is difficult.
● Also, when the RTL changes, it becomes of utmost importance to vary the

corresponding application programming interfaces (APIs) and sequences already
created for it.

Problem Statement

Implementation Details

Proposed Methodology

Application - Trigger Word Detector
We have created a real-life example, Trigger Word Detector (TWD), which uses DMA, I2S, and
GPIO IP. The design implements a machine learning trigger word detector algorithm to
generate a prediction, based on the input spectrogram values of a voice sample that is fetched
using the I2S interface. On each run, the design can detect one of the four unique words in the
audio sample and then drive the appropriate LED, LED0-LED3, using the GPIO interface. If none
of the words is detected, LED4 glows.Each set of weights is trained to detect four unique words.
mem1_csr block is connected to a dual port memory. The memory on the other end is
connected to mem2_csr by a read-only interface. On pressing the button[0] the first set of
weights is loaded by the DMA into the sample regmap from the mem2_csr. The neural net
logic uses these weights and input audio sample spectrogram values to generate an output
which in turn drives the LEDs. Similarly, on pressing button[1] the second set of weights is
loaded.

We have worked to automatically
generate the most common IPs used
in SoCs today. These include, but are
not limited to, the following:
• General Purpose Input/Output (GPIO)
• Advanced Encryption Standard (AES)
• Programmable Interrupt Controller

(PIC)
• Serial Peripheral Interface (SPI)
• Pulse Width Modulation (PWM)
• Direct Memory Access (DMA)
• Inter-Integrated Circuit (I2C)
• Integrated Inter-IC Sound Bus (I2S)
• Universal Asynchronous

Receiver/Transmitter (UART)
• Timer

Amanjyot Kaur, Agnisys

IP Generators - A Better
Reuse Methodology

• Philips Semiconductor: https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
• Texas Instruments: https://www.ti.com/lit/ug/sprufx4b/sprufx4b.pdf?ts=1621515564485&ref_url=https%253A%252F%252Fwww.google.com%252F
• Intel: https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/nios2/qts_qii55003.pdf
• Texas Instruments: https://www.ti.com/lit/ug/spruem8a/spruem8a.pdf?ts=1628097487990&ref_url=https%253A%252F%252Fwww.google.com%252F

Results Table Conclusion
In any SoC design there are certain standard IPs that are ubiquitous and are
required and reused across various environments. A designer, generally, spends a
huge amount of time creating such IPs from scratch. Such designs are very rigid and
break when used in even slightly changed environments. The concept of generating
reusable IPs and their APIs has been leveraged to help users create not just RTLs
and their corresponding documentation and verification environment, but also
target the firmware and software aspect of the development flow. Some of the
benefits offered by approach discussed in the paper are:

● Fully configurable
● Easily customizable
● IPs are generated from the command line or on a click of a button
● Unencrypted code
● Ability to target multiple platforms (Design, Verification, Firmware, Software, and

Documentation)
Using IP Generators, for about 10 different IPs, and about 50 different
instantiations, users can easily generate 100,000 lines of RTL code, UVM, and C test
environment with a click of a button as compared to manual efforts that would
take several months.

This section shows the automatically
generated aggregation logic of the top
TWD block, with code for RTL, UVM,
and HTML (Figure 3,4). It also contains
sample code (Figure 5) for initialization
configuration API of GPIO in C and UVM.

REFERENCES

We came up with a solution to improve the development process of IPs to create
highly configurable and customizable IPs. Once the user selects the appropriate
configuration settings, the IP, its verification environment, documentation and
corresponding set of APIs can be generated with minimal time and effort. Instead
of trying to create a reusable design, create an IP generator. We have deployed this
approach for multiple SoC development teams with resounding success. While
creating IP generators, there are the following focal points:

• Configuring the IPs using parameters:
o Generate time
o Instance/elaboration time

• Customizations required, such as additional fields or registers added to the register
map (regmap) of the IP

• Creating interconnections between different IPs
• Automatic generation of configuration APIs in UVM and C format
• Creation of test sequences for different platforms like firmware, validation,

verification, and Automatic Test Equipment (ATE)
• The choice of the bus used to access the IP, such as, AHB, APB, AXI, etc, is abstracted

out, to avoid the design becoming too brittle

Table 1. Comparison of IP generator approach and
parameterizable approach

Figure 1. Block Diagram of IP Generators

NOTE: The mentioned IPs are completely verified and validated. IPs are validated on ZedBoard (ZYNC 7000 series) using Vivado
v2018.3 (64-bit) and Xilinx Software Development Kit (Release Version: 2018.3). Figure 2. TWD Design Using DMA, I2S and GPIO IP

Figure 3. Generated Verilog and UVM for regmap

Figure 4. HTML and Aggregation Logic of TWD

Figure 5. Sample of Configuration APIs of GPIO in C and UVM
Table 2. IP related generated files (RTL) with number of lines

https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
https://www.ti.com/lit/ug/sprufx4b/sprufx4b.pdf?ts=1621515564485&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/nios2/qts_qii55003.pdf
https://www.ti.com/lit/ug/spruem8a/spruem8a.pdf?ts=1628097487990&ref_url=https%253A%252F%252Fwww.google.com%252F

	Slide Number 1

