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Abstract—IP/SoC verification is a fundamental problem in
design cycle which needs support from a suitable and powerful
language which must include the latest findings in computer
science. State-of-the-art verification languages are decade old,
closed source, not software domain, single paradigm, type unsafe,
advocate code boilerplate, single core and not supportive to
generic programming. This forces verification engineer to use
decade old language concepts, using a HW domain language
to build a software called test-bench using a single incomplete
programming paradigm called object orientation. Furthermore,
incomplete support for object orientation added with no support
for generative programming forces the user to write redundancy
which could be avoided. In this article we solve this age
old verification problem by introducing a novel open source
verification language called Vlang [1]. Vlang is built on top of D
Programming Language [2], and consequently it inherits support
for parallel, generic, generative, and functional programming
paradigms in addition to Object Oriented Programming. Vlang
is ABI compatible with C/C++, creates single executable with
SystemC [3], [4] and integrates with System Verilog [5] seamlessly
through VPI/DPI. Currently Vlang supports UVM-1.1d standard
as in built methodology library.

I. INTRODUCTION

Modern System on Chips (SOCs) are complex, heteroge-
neous [6], [7] and heavily programmable which makes the
task of functional verification [8] extremely complex owing
to several domains addressing, register combination and the
effect validation. Furthermore, modern SOCs are verified over
HW/SW co-simulation platforms which escalates the com-
plexity even further. This requires the verification language
used, to be multi-paradigm [9], highly abstracted, generic
programmable software domain language [10]. On the other
hand the availability of multicore computational platforms
requires the verification language to be multicore concurrent
in order to extract maximum efficiency from the available
computational resources and accomplish verification faster.
Compile time features are essential in order to generate lean
code for faster computation and to avoid unnecessary memory
access.

The world of digital verification is dominated by Sys-
tem Verilog (SV) [11] and hence SV has been considered as
the state of art verification language in this article. Credible
peer reviewed literatures on SV as a language is barely
available and SV as a language has not created interest in
serious language experts community in research institutes
and academia. Article [12] believes that the generic part of
the programming language is served reasonably well and

the hardware orientation of the language is beneficial. The
only problem mentioned in the article pertains to support
for various language constructs across different simulators.
Articles [13]–[15] say that the language is weakly typed and
full of gotchas and still the same articles encourage SV as
a test & verification language!. Article [16] expounds upon
standard gotchas subtleties in the SV standard itself which
every engineer must know and yet encourages SV to be a
preferred verification language. Article [17] clearly addresses
macros as not evil by mentioning that they are unavoidable
and integral part of any software. According to authors of this
article, macros are abuse of modern computer science and this
malpractice must not be encouraged in a language which has
been developed over past decade. The article [17] presents a
cost-benefit analysis on favour of using macros! We believe
that modern programming language features like reflections
and generative programming can be used in combination
to avoid macros and the related gotchas altogether. Articles
[18]–[22] and many more encourage SV to be used in RTL
design, which brings monolithicity in testing, a strict negative
in modern testing (see Section I-B). Without availability of
proper research articles, authors of this article had to get into
deeper language and methodological aspects of SV on their
own. Following are the observations:

A. Language Related Issues

As a language, SV is an extremely bulky standard with over
248 keywords [11]. SV encourages boilerplate code gener-
ation using Verilog Pre-Processor (VPP) macro expansions,
a practice that leads to a plethora of hard to discover bugs
[17]. Integral (and numeric) type discipline of Verilog is
weak [23], [24]. Consequently SV allows implicit typecasting
when assigning numeric variables often resulting in unintential
loss of information. Integral type-safety is not guaranteed
and is particularly dangerous for verification in automotive,
medical, aeronautic and other safety critical domains. Integral
overflow has been found to be one of the most common source
of software bugs [25]. Although SV has been projected as
an Object Oriented Programming (OOP) language, serious
flaws are there in OOP capabilities of SV. SV encapsulation
model does not scale. SV provides access specifiers: local,
protected and public. Even though this is very much like
C++ and Java, this encapsulation model is not sufficient since
often it may be desired to provide access to other classes
or functions. C++ allows that via friend specifier [26] and



Java extends the encapsulation to packages, but SV does not
support either (SV does have a package construct, but it does
not provide an access specifier that works across the package
scope). Article [27] notes the absence of a standard library
for SV. [28] notes that lack of data structure compatibilities
comes in the way while using Direct Programming Interface
(DPI) to fill the gap created by absence of a generic library.
SV lacks function overloading. Function overloading is an
essential feature to enable generic programming. Though SV
supports parameterized classes, it lacks support for template
functions. Class parameterization too is incomplete since SV
provides no support for template specialization. Although SV
provides const specifier, it does not provide a way to make
a class value constant [29]. Consequently, SV does not allow
specifying class methods as const. SV does not enable any
multicore support. With the advent of multicore processors,
lack of parallelism may become a bottleneck [30].

B. Methodology Related Issues

SV maintains complete backward compatibility with Verilog
which is essential to support legacy code. But this advantage,
thought to be very important, is lost because of monothicity
thus introduced. Monolithic testbenches have been considered
evil [31]. Following are the problems associated with mono-
lithicity that SV introduces in testbenches:

1) Propagation of Gotchas: When the design and the
reference model are both coded in the same language, there
is a greater probability of having similar gotchas [32] and
pitfalls. This gives rise to situations where the verification
environment fails to catch a bug in the design because both the
verification and the design are effected by the same language
specific gotchas.

2) Exposure to Malpractice: A monolith testbench makes
it easy for the verification engineer to copy code from the
design to the reference model used for verification. How is that
we keep our designer and verification engineers in separate
buildings and yet make it possible for them to reuse code
across design and verification?

3) Limited Reuse: A monolithic test-bench is tightly inte-
grated with the design and hence makes reuse of the verifica-
tion environment more difficult.

4) Compilation and Elaboration: A small incremental
change in the verification environment coded in SV forces
the simulator to elaborate the whole test-bench again. And
in case the Design Under Test (DUT) is big, elaboration of
test-bench takes hours. On the other hand we see that most
contemporary modern languages like Go [33] and D [2] have
set themselves a goal to reduce compile time from minutes to a
few seconds. A long compile (and elaboration) time becomes
an impediment where frequent compile cycles are required.
As a result, developers tend to avoid compilation for long
development periods and loose on the value provided by such
compilation cycle.

The system level features of SV has been described as
oxymoron in article [34]. In fact SV does not enable any aspect
of systems programming [35]. This makes SV to be extremely

unfriendly for it to be used as HW/SW co-verification or
emulation. It may be argued that DPI is an enabler for systems
programming in SV. But SV DPI has its own drawbacks.
Though more efficient compared to Verilog Programming
Language Interface (PLI), DPI still has a runtime overhead
which becomes a performance bottleneck [30].

To conclude, design and verification both are two com-
pletely different tasks. For design, Verilog and VHDL serve
the purpose finely, but SV is an insufficient language for
many aspects of verification. In fact any software domain
language with notion of time and bit-vector support can serve
the purpose. Constraint solving can be easily achieved by using
a Binary Decision Diagram (BDD) [36]. This article addresses
these issues by introducing a novel, open source verification
language called Vlang which is an extension of a software
domain programming language known as D [37], [38].

II. INTRODUCTION TO VLANG

As mentioned above, SV fails to meet the challenging
requirements of System Level verification. In authors view,
any new functional verification language, that must support
system level testing, should fulfil the following criteria:

1) Must be a modern System Programming Language.
This is an obvious criterion given the need of suitable
solutions in the hardware/software co-verification space.

2) Must be Open Source, and available under a license that
allows commercial use.

3) Must allow language extension at library level.
4) Must provide Application Binary Interface (ABI) com-

patibility with C/C++. There is a very vast amount
of C/C++ code in the wild and SV DPI experience
[30] shows that data conversion while passing function
parameters becomes a runtime bottleneck.

Fortunately, the very first of the above mentioned criteria,
brings down the choice to only four contemporary program-
ming languages [35]: C++, D [2], Go [33] and Rust [39]. Of
these, Rust is in nascent state of development and Go does
not meet criteria 3 and 4. Thus our options get limited to only
C++ and D.

While C++ has the obvious advantage of a large user base, it
is difficult to build a Domain Specific Language (DSL) on top
of it without having to overly depend on the C pre-processor.
In Comparison, D, as we shall see in Section II-A, provides
a multitude of features that make extending the language a
lot convenient. Additionally, in that section we shall also see
that D also provides features that make it more suitable for
hardware modelling and verification.

A. Motivation for Selecting D as Base Language

The D Programming Language is an evolution of C++. D
has multiple features that make the language more suitable
for building a Design Specific Language on top of it. These
include:



1) Reflections: D allows a programmer to introspect the
structure of code and make changes to its runtime behaviour.
Vlang uses reflections to generate Universal Verification
Methodology (UVM) util functions (ref section II-D) and
to give out compile time error, when the end-user fails to
provide necessary attributes. Reflections in D are compile-time
and therefore do not have any undesired effect on runtime
performance or memory footprint of the application.

2) User Defined Property (UDP): A D user can add UDPs
to any declaration in the code. These UDPs are then made
visible at compile time. This is a convenient feature that allows
modification in the code behaviour on basis of presence or
absence of certain attributes. Vlang uses this feature to provide
@rand attribute that tags class elements that are required to
exhibit randomization behavior. Note that UDP is a compile-
time feature and does not add to runtime application memory
footprint.

3) Compile Time Function Evaluation (CTFE): Compile
Time Function Evaluation (CTFE) in D is very powerful.
There are very few D constructs that are not allowed to be
evaluated at compile-time. Vlang uses CTFE to implement a
parser for constraint blocks (ref II-B2).

4) Mixins: A mixin enables change in behaviour of a class
by allowing addition of code at compile time. D allows string
as well as template mixins. Vlang’s constraint engine converts
the parsed constraint into BDD equations at compile time and
uses string mixins to insert the BDD equations.

Additionally, the D Programming Language has multiple
features that make it more attractive to hardware verification
engineers:

5) Automatic Garbage Collection: An automatic Garbage
Collector (GC) takes away the pain of memory management
away from the end-user. [40] notes that modern garbage
collectors are not a source of inefficiency. Also, when required,
D allows a user to take control of memory management by
allowing him to shut down the GC on certain portions of the
code.

6) First Class Arrays: Unlike C/C++, a D array object is
a fat pointer that stores both the address and the length of an
array. D also has support for dynamic arrays, slices and array
operators that make vector operations in D very convenient.

7) Associative Arrays: D supports associative arrays as a
language feature. This basically means that the user does not
have to rely on a library and that D enables a convenient/read-
able syntax for associative arrays.

8) Class Objects are References: Like Java, class objects
in D are references by default. The keyword struct is still
available for creating value type objects and plain old data
type objects that are compatible with C/C++.

9) Unittest: The unittest construct in D makes it con-
venient to add localized test blocks to D code. These tests
can be used to verify the test-bench. Unit level test support
is not native to SV and verification engineers have to rely on
non-native library support such as [41].

10) A Pointer-less Programming Experience: Most of D
code (thanks to first class arrays and automatic garbage

collection), is devoid of pointers. Pointers are still available
to enable low level memory and IO access.

11) ABI Compatibility and C/C++ interface: D allows
native calls to any C/C++ global and namespace scoped
functions. D also allows the user to directly call a virtual
member function of a C++ class object. Unlike SV DPI, there
is no runtime overhead while calling C/C++ functions from
inside D or vice versa.

12) Generic Programming: D has extensive support for
generic programming and meta-programming. It ships with a
powerful library of data structures, algorithms and other utility
modules.

B. Introduction to Vlang Features and Semantics
Vlang is a DSL built on top of the D Programming Lan-

guage [38]. D is a mainstream software language and Vlang
adds hardware modelling and verification features to D. This is
in contrast to SV which adds software and verification features
to the Hardware Description Language, Verilog.

RTL

SystemVerilog

UVM

System Level

DPI

RTL

UVM

System Level

DPI/VPI/VHPI

Vlang

Fig. 1. Vlang vs System Verilog approach

1) Multicore Simulations: Vlang allows its users to create
threads that run parallelly on multiple cores of a processor. It
also enables the user to have a fine grained control on how
the thread gets executed. The user is also allowed to disable
parallelism on any module that he deems unfit for concurrent
execution.

Vlang supports both user-level and kernel-level threads.
User-level threads (called Tasks in Vlang) are executed as
a sequence on a pool of threads pre-designated only for
executing tasks. By default, all the tasks in an entity instance
are grouped together and get associated with the same thread
in the pool. This is done to minimize the tasks that share
data – as tasks belonging to the same entity instance normally
would – from having to refresh processor caches. The user is
allowed to fine tune this behavior by associating a given task
with another entity.

Vlang tags an ID to every entity instance. This ID is used
by Vlang to automatically determine the thread in the thread-
pool to associate the entity with. Thus, each server thread in
the thread-pool handles list of entities, and each entity has a
group of tasks that need to be executed. In certain cases, if
the default association of entities with threads in the thread-
pool, is resulting in an unbalanced distribution of tasks on the
threads, Vlang allows the user to tweak the task distribution
by explicitly tagging certain entities with a specified thread.
The user can generate a report on the task load distribution
over various threads in the pool by specifying a UDP tag on
the simulator instance he wishes to generate a report for.



Currently, Vlang does not have an automatic load balancer.
An automatic load balancer could relocate a group of tasks to
another thread which may have already executed all the tasks
assigned to it in the current simulation cycle. But relocating
a task might result in a cache update cycle. Thus, frequent
relocation of tasks could be counter-productive. Any useful
load balancer should observe the prevalent load over a number
of simulation cycles before deciding to move tasks between
the threads.

In certain cases, a user might want to dedicate a kernel
thread for certain tasks. Vlang implement a Worker process
for this purpose. Unlike a user-level thread, a worker thread
is visible to the underlying operating system kernel. Since
Operating System (OS) calls are costly, creating unnecessary
worker threads might have a bearing on the simulation perfor-
mance.

Like SystemC, Vlang simulation engine mainly constitutes
of three distinct phases: schedule phase, execute phase and
update phase. During execute phase, tasks are executed. Once
the simulator has executed all the tasks, it updates the chan-
nels, and then triggers the events that have been notified during
the update phase or during execute phase.

1class Foo: Randomizable {
2mixin(randomization());
3@rand!8 byte[] foo;
4@rand ubyte baz = 12;
5void display();
6}
7class Bar: Foo {
8mixin(randomization());
9@rand ubyte[8] bar;
10override void display() {
11writeln("foo: ", foo);
12writeln("bar: ", bar);
13writeln("baz: ", baz);
14}
15Constraint! q{
16foo.length > 2;
17baz < 16;
18} cstFooLength;
19Constraint! q{
20foreach(i, f; bar) f <= i;
21foreach(i, f; foo) {
22f < 64 && f > 16;
23}
24} cstFoo;
25}
26void main() {
27Foo randObj = new Bar();
28for (size_t i=0; i!=10; ++i) {
29randObj.randomize();
30randObj.display();
31}
32}

Fig. 2. Constrained Randomization in Vlang

2) Constrained Randomization Engine: Like SV, Vlang
constraints and randomisation are based on class semantics.
As illustrated in Figure 2, the method randomize follows

inheritance and has a polymorphic character. The user is
allowed to declare a dynamic array as @rand. When adding
@rand attribute to a dynamic array, the user must provide the
maximum allowed size of the array as an argument. This forces
an upper size constraint on all the randomizable dynamic
array elements to avoid unconstrained sizing of arrays during
randomization. if-else and foreach constraints blocks
are also supported and can be freely nested.

The constraint solver supports enabling and disabling
constraints and overriding them in a derived class. Like
randomize, another method randomizeWith is provided
to allow the user specify external constraints on a randomized
object.

Under the hood, all constraint blocks are parsed at compile
time. The identifiers used in constraint expressions are re-
solved and mapped to class members or other variables visible
in the scope. Since the constraints are parsed at compile time,
any unresolved identifiers and any syntactic errors in constraint
expressions are reported during compilation itself.

Once all the identifiers are resolved, the constraint parser
transforms the constraints into BDD equations that are inserted
into the code via mixin mechanism. Vlang uses Buddy [42]
BDD package for solving BDD equations. For this purpose,
Buddy has been ported to D language. The ported version
of Buddy also has an object wrapper over buddy instance to
enable multiple instantiations of the constraint solver engines.
For every randomized class object, Vlang instantiates an
object specific constraint solver. In a real world verification
platform supporting multicore processing (e.g. the Vlang port
of UVM), there are multiple sequence generators running over
a multitude of processor threads. These sequence generators
each have their own individual constraint solver running
parallelly with other constraint solvers serving other sequence
generators.

C. Discussion of Simulation Kernel and Integration

The core part of Vlang constitutes of a lightweight Discrete
Event Simulator. The Simulator is completely encapsulated
in a class and its instance is automatically attached to a
RootEntity. A RootEntity in Vlang is a base class that may
be extended by the user to create the top level hierarchy of
his simulation model. One or more entity (another base class)
objects may be instantiated inside a RootEntity, to form the
hierarchical structure of the simulation model. Before starting
the simulation, the user has to create an instance of the
RootEntity and elaborate it. Both elaboration and simulation
are handled on a RootThread associated with the simulator.
The elaboration process consists of multiple phases, namely:
build, config and connect. Each simulation cycle too consists
of multiple phases as illustrated in Figure 3.

As already mentioned, Vlang simulation engine is com-
pletely encapsulated inside a class object. This enables the
user to create multiple simulators. Since each simulator has
its own RootThread, the simulations can be run in parallel or
if required in a sequence.
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1) SystemC Co-simulation: Any Co-simulation environ-
ment involving two or more simulators requires synchroniza-
tion of simulation time and efficient exchange of data. On
both these aspects Vlang enables a better interface to SystemC
compared to SV.

There are two aspects of any co-simulation environment
involving two or more simulators. The first aspect deals with
how the simulators synchronize with each other with respect to
simulation time. The second aspect deals with synchronization
of data to be shared/passed between the simulators.

When Vlang is launched in multicore mode, SystemC
can be integrated with it on a parallelly running
thread. It is easy to interface Vlang with SystemC
using sc_time_to_pending_activity and
sc_pending_activity Application Programming
Interface (API) calls provided by SystemC. Just like
SystemC, Vlang provides APIs for incremental execution of
simulation, thus enabling Vlang to interface with SystemC in
both master and slave mode.

SV provides Direct Programming Interface (DPI) to inte-
grate a SV simulation with SystemC. Though DPI is a lot
more efficient compared to traditional Verilog PLI interface,
being non-native, it still has a significant overhead.

Since even the Vlang scheduler runs on a separate thread,
Vlang can execute in parallel with SystemC.
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till next activity
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Fig. 4. Vlang/SysmteC Cosimulation
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Fig. 5. System Verilog vs Vlang Co-simulation

D. UVM Implementation

Vlang has a complete, multicore enabled implementation of
UVM-1.1d release. Reflections and Compile Time Function
Evaluation help Vlang in enabling a more bug free and
productive experience to the end-user, as illustrated by the
code snippet in Figure 2.

1) UVM Utility Methods: SV UVM provides convenient
macros that help automatic generation of utility methods such
as create, pack, unpack, copy, clone, compare,
sprint and record. These macros uvm_object_utils
and uvm_component_utils are also responsible for regis-
tering uvm objects and components with UVM factory. Vlang
implementation uses D reflection and mixin mechanism, thus
completely avoiding all the disadvantages of macros pointed
out in [17]. Additionally, Vlang UVM implementation takes
advantage of function overloading and template mechanism of
D and the utility methods thus created do not incur runtime
inefficiency.

2) Multicore UVM Architecture: Figure 7 illustrates generic
architecture of a UVM based test-bench. The object oriented
architecture of the UVM library and the phasing mecha-
nism provide a handy structure for introducing parallelism
into UVM. From data sharing and encapsulation perspective,
a uvm_agent provides the right abstraction to provide a
parallelism context, and that Vlang does by default. The



1import uvm;
2import esdl;
3enum bus_op_t: int {READ, WRITE, NOP}
4@UVM_DEFAULT // tag all fields
5class bus_trans: uvm_sequence_item {
6@rand bvec!12 addr;
7@rand!32 byte data[];
8@rand bus_op_t op;
9// Look ma no macros
10mixin uvm_object_utils;
11Constraint! q{
12if(op == bus_op_t.NOP)
13data.length == 0;
14else
15data.length != 0;
16foreach(d; data) d < 32;
17}
18// Constructor
19this(string name="") {
20super(name);
21}
22}
23class my_driver(REQ, RSP):
24uvm_driver(REQ, RSP) {
25mixin uvm_component_utils;
26private int data_array[512];
27// Constructor
28this(string name, uvm_component parent) {
29super(name, parent);
30}
31override void run_phase(uvm_phase phase) {
32while(true) {
33assert(seq_item_port !is null);
34seq_item_port.get(req);
35auto rsp = new RSP();
36rsp.set_id_info(req);
37if(req.op == bus_op_t.READ) {
38rsp.addr = req.addr[0..9];
39rsp.data = cast(bvec!8)
40data_array[rsp.addr].toBitVec;
41uvm_info("sending", rsp.to!string,
42UVM_MEDIUM);
43}
44else {
45data_array[req.addr] = req.data;
46uvm_info("sending", req.to!string,
47UVM_MEDIUM);
48}
49seq_item_port.put(rsp);
50}
51}
52}

Fig. 6. UVM code snippet in Vlang

end user has the freedom to move that context to another
UVM component though. Working with multiple parallel
threads, generally involves two concerns: Data Sharing and
Synchronization. For any complex System Level Design Under
Test (DUT), there would be multiple hardware interfaces.
As a thumb rule, there would be a separate uvm_agent
for every hardware interface. Since most hardware interfaces
have an independent character, in general there would be

no data sharing between two uvm_agents, and therefore
it is perfectly safe to run each uvm_agent on a separate
thread. At uvm_env and uvm_root abstraction level, UVM
implements control mechanisms including phases, objections
and configuration. The synchronization required for each of
these mechanisms is handled under the hood as part of the uvm
base class libraries and the end user is not exposed to multicore
synchronization intricacies. Coverage and Scoreboarding do
require sharing of data at uvm_env abstraction level. But
since blocking Transaction Level Modeling (TLM) port fetches
are used for getting transactions for scoreboard as well as
coverage, data synchronization would never be an issue. This
is because under the hood, every transaction exchange via
blocking methods involves locking and unlocking of mutex
locks.
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Fig. 7. UVM Testbench Architecture

3) Support for Multiple UVM Roots: The Vlang port of
UVM provides a completely encapsulated platform, leading
to the possibility of creating multiple UVM root instances,
which can execute in parallel or in sequence. Multiple UVM
root instances open up exciting possibilities in System Level
Verification and bring in new opportunities for better processor
utilization on modern multicore servers.

E. Multicore UVM Performance

As per Amdahl’s Law, the speedup of a program using
multiple processors in parallel computing is limited by the
time needed for the sequential fraction of the program [43].
As illustrated in Figure 3, only the tasks are run in parallel
in a Vlang simulation. The rest of the simulator, consisting of
scheduler steps, is executed sequentially. At TLM abstraction
level, the number events, and consequently, the scheduler part
of the simulation, are both minimalized.

For a UVM testbench in Vlang, only the run phase tasks
are executed parallelly. In any simulation these tasks constitute
almost the whole of the simulation runtime. Further, any
resources used by the parallel tasks in a shared manner,
also result in performance depletion. In UVM these shared



resources could be the objection mechanism and the config-
uration database. Of the two, the configuration database is
generally not accessed so much in the run phase. Additionally
some hardware resources such as the terminal on which the
uvm_report messages are dumped, as well as the level2
and level3 caches are also shared. In case of hyperthreading
processor cores, much of instruction fetch and decode logic is
also shared between the logical processors.

Since Vlang lacks an automatic load balancer, the perfor-
mance of a parallel simulation could also take a hit if the
various CPU cores available are assigned the tasks unevenly.
In such a scenario, some CPU cores would sit idle for the
time when other CPU cores are working hard to finish the
tasks assigned to them. Often, the run phase tasks would be
dominated by the activities pertaining to constrained random-
ization part of stimulus generation.

Table I and Table II tabulate the results of some example
testcases that were run on a multicore processor having 4
cores. While Table I testcases generated transaction packets
of randomly varying sizes, Table II data corresponds to fixed
size transactions.

TABLE I
MULTICORE PERFORMANCE GAIN FOR VARIABLE SIZED TRANSACTIONS

Agents Transaction Multicore Single Core Performance
Count Count Runtime Runtime Gain
64 1250 81 195 2.41
32 2500 78 193 2.47
16 5000 74 186 2.51
8 10000 84 180 2.14
4 20000 91 177 1.95

TABLE II
MULTICORE PERFORMANCE GAIN FOR FIXED SIZED TRANSACTIONS

Agents Transaction Multicore Single Core Performance
Count Count Runtime Runtime Gain
64 1250 56 141 2.52
32 2500 53 135 2.54
16 5000 52 132 2.54
8 10000 51 129 2.53
4 20000 55 124 2.26

The variation in the performance gain can be attributed to:
1) Multicore performance gain is better for fixed size

transaction generation. This is expected since the dy-
namic spread of task activities across the various cores
would be more evenly distributed in case of fixed size
transactions.

2) For small number of UVM agents, the multicore per-
formance gain is less. This variation pertains to larger
percentage of scheduler activity in such scenarios.

3) For very large number of UVM agents too, multicore
performance gain takes a slight hit. This may be due to
requirement of more memory to solve constraints as the
number of transactions to be generated in a simulation

cycle would increase with increase in number of UVM
agents. Since level 2 and level 3 caches are often shared
between multiple cores, requirement of more memory
from multiple active agents (as would be the case with
multicore simulation) would result in more cache misses
and hence the slight dip in performance gain.

It is imperative to note here that the present version of
Vlang is not optimized for multicore performance. Since this
is the first release of a multicore enabled UVM, fixing race
conditions and deadlocks had much more priority compared
to fine tuning the multicore performance. The first release of
SMP Linux Kernel too had similar development priorities [44].

III. CONCLUSION

TABLE III
PERFORMANCE ENABLER COMPARISON TABLE

Feature Vlang SV SystemC
Concurrent Threads Yes No No
Multiple Conc. Simulators Yes No No
Generic Lib Support Yes No Yes

TABLE IV
CODING PRODUCTIVITY COMPARISON TABLE

Feature Vlang SV SystemC
Compile Time Fastest Slow Fast
Incremental Compile Yes Partial Yes
Automatic GC Yes Yes No
User-friendly Containers Yes Yes No

TABLE V
RUN TIME SAFETY COMPARISON TABLE

Feature Vlang SV SystemC
Array Bound Check Yes No No
Support for Unittests Builtin Library Library
Exception Handling Yes No Yes
Contract Programming Yes No No

TABLE VI
SYSTEMS PROGRAMMING FEATURES COMPARISON TABLE

Feature Vlang SV SystemC
HW/device access Yes No Yes
Custom memory allocation Yes No Yes
Efficient File IO Yes No Yes
Parsing tools/libraries Yes No Yes
Embedded Assembly Code Yes No Yes

In this article we have discussed the language issues as-
sociated with state of art verification language namely SV.
To solve the problems we have introduced a novel open
source verification language called Vlang. We discussed the
language overview and internal workings of Vlang in brief. A



TABLE VII
REFLECTIONS AND GENERATIVE PROGRAMMING COMPARISON TABLE

Feature Vlang SV SystemC
Data Introspection and Reflections Yes No No
Generative and Metaprog. Yes No Limited

TABLE VIII
UVM COMPARISON TABLE

Feature Vlang SV SystemC
Base Class Libraries Yes Yes Yes
Support for Sequences Yes Yes Limited

Register Abstraction Layer (RAL)
No* Yes No

TLM1 Support Yes Yes Yes
TLM2 Support Yes Yes Yes

*RAL support for Vlang is being actively ported

TABLE IX
VERIFICATION FEATURE COMPARISON TABLE

Feature Vlang SV SystemC
Transaction Randomization Yes Yes Limited
Sequence Randomization Yes Yes No
Coverage Support No Yes No

comparison of performance among Vlang, SV and SystemC
has been summarized in Table III. As it can be seen that
currently the only language which supports multicore concur-
rency is Vlang. Both Vlang and SystemC (SC) are supported
by a strong generic standard library. Table IV summarizes the
language performance comparison, where Vlang has the fastest
compile time, supports incremental compilation, pointer-less
programming, has automatic garbage collector and has user
friendly containers. The run time safety has been summarised
in Table V where Vlang is at par with SC and also adds
additional feature of contract programming which is extremely
useful for self checking test benches and early capture of
testbench bugs. Systems programming features comparison
has been summarized in Table VI, where it can be seen that
Vlang is at par with SC and hence it is an extremely suitable
language for developing emulation platforms in comparison
to SV. Comparison Table VII shows Vlang is the most
powerful in terms of generic programming which authors of
this article considers most important modelling feature. Vlang-
UVM is multicore concurrent and multiple uvm_root can
be instantiated. Table IX shows that Vlang does not support
functional coverage currently.

From the above discussion, we can see that Vlang excels
on all aspects (except for some features like coverage which
can easily be implemented) making it potentially the most
modern and powerful verification language. Also, by the
virtue of D which is the base language of Vlang, Vlang is
extremely modern and easy to learn especially when the user
wishes to use powerful features. Vlang is fastest (multicore,
compile time for lean code generation), supports heavy generic
programming which allows user to spend less time is repetitive

writing. Developing library on the top of Vlang is very easy
as base language D supports it fundamentally. Hence, we
conclude that Vlang is the most suitable language for modern
functional verification.

IV. FUTURE WORK

The future and future work of Vlang is very interesting and
we want to place a brief update on that.

A. Software Engineering Based Methodology

One of the very important reason for D to be the base
language of Vlang is that D makes Vlang a SW domain
language which provides a clean and extremely pleasurable
coding experience to user. Every methodology in verification
is a direct import of test concepts in SW engineering domain.
Hence, work towards Vlang methodology will be directly
attributed towards exporting SW engineering concepts on
Vlang level directly so that Vlang can be a playground of
verification concepts.

B. Support for Emulation Platform

As a verification language with full and native support for
systems programming language Vlang is the most suitable ini-
tiator in emulation platform development and hence a library
can be developed on the top of Vlang to support emulation.

C. Support for Embedded Systems (HW/SW) Verification

The next big thing is verification/testing of SW is a virtual
prototyped environment and with the virtue of D, Vlang is
utmost suitable to perform the SW verification along with HW.

D. Standard Template Models

In future, Vlang will add a standard template library as a
part of language which will provide a significant power to
user.

Vlang as an open source verification language provides
an immediate working platform to academia and enthusiast
and expects itself to be exploited in academic and industrial
research environment and result of these activities will greatly
decide the future direction vlang development.
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VI. ACRONYMS

ABI Application Binary Interface
API Application Programming Interface
BDD Binary Decision Diagram
CTFE Compile Time Function Evaluation
DPI Direct Programming Interface
DSL Domain Specific Language
DUT Design Under Test
GC Garbage Collector
IP Intellectual Property (Core)



OOP Object Oriented Programming
OS Operating System
PLI Programming Language Interface
RAL Register Abstraction Layer
RTL Register Transfer Language
SC SystemC
SV System Verilog
SOC System on Chip
TLM Transaction Level Modeling
UDP User Defined Property
UVM Universal Verification Methodology
VPI Verilog Procedural Interface
VPP Verilog Pre-Processor
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