
Interface Centric UVM Acceleration for
Rapid SOC Verification

Jiwoong Kim, Yoona Lhim, Hyungjin Park, Hyunsun Ahn, Seonil Brian Choi
Samsung Electronics Co., LTD.

1

Contents
• UVM environment for SOC verification
• HW/SW synchronization
• Interface centric UVM acceleration environment
• Interface implementation for UVMA
• Common Interface Library
• Speed-up for emulation runtime
• Examples
• Experimental results
• Conclusion

2

UVM Environment for SOC Verification
(SBA)

• Same as pure simulation environment
• SOC consists of various subsystems

such as CPUs, peripherals and
multimedia IPs.

• UVM_ENV of each subsystem has their
own interface.

• Interfaces take small role.
– UVM agents to DUT connection

• In emulation, HW_TOP and SW_TOP
communicate at signal level.
– Small acceleration gain

3

• Interface is moved to HW_TOP to remove
signal level connections.

• Communications between HW_TOP and
SW_TOP occur at transaction level.
– Interfaces need additional role for

transaction level communication.

UVM Environment for SOC Verification
(TBA)

4

HW/SW Synchronization

• HW/SW syncs is required to
synchronize for correct functionality
when HW_TOP and SW_TOP
communicate.

• Emulator is stopped to synchronize.
• Frequent HW/SW syncs and large

data transfer cause low performance.
• The worst thing that cause HW/SW

sync is exported clock signal.

5

Interface centric UVM Acceleration
Evironment

• Verification components are implemented in the interface.
- Interfaces play key role in the proposed environment.

• Interfaces can be moved to HW_TOP for emulation and SW_TOP
for simulation.

Simulation Emulation

6

Interface Implementation for UVMA

`ifndef EMULATION
`include intf_inst.sv

`endif

Initial begin
// uvm_config_db::set for

subsystem’s interfaces
end

Subsystem_env can get virtual interface
using uvm_config_db:: get method

`include "subsystem1_intf_inst.sv
`include "subsystem2_intf_inst.sv
`include "subsystem3_intf_inst.sv

intf_inst.sv

`ifdef EMULATION
`include intf_inst.sv

`endif

HW_TOP

Subsystem1_intf subsystem1_intf(
.RESETn(HW_TOP.RESETn),
.CLK(HW_TOP.CLOCK)

);

subsystem1_intf_inst.sv

SW_TOP

7

Common Interface Library - 1

This code cause error when the task
is called concurrently.

• Frequently used parts of the
testbench that cause
unnecessary HW/SW sync are
implemented in a common
interface library.

repeat(cycle_delay) @(posedge aclk);

Previous Test sequence

vintf.aclk_ctrl.wait_posedge(cycle_delay);

Modified Test sequence

//Instantiation of WaitClock for aclk
waitClock aclk_ctrl (aclk);

Interface of subsystem

interface waitClock(input clk);
task wait_posedge (bit[31:0] n = 1);

bit [31:0] i;

for(i=0; i<n; i++) @(posedge clk);
endtask

endinterface

Common interface library

8

Common Interface Library - 2
• Tasks which need concurrent access should be treated carefully when using HW

resources.
1. When concurrent call of wait_posedge

occurs, push the value of target
counter (the end time of the task) into
SW queue.

2. Called tasks compare target and
current counter value when an event
occurs. If current value matches target
value, the task is terminated.

task automatic wait_posedge(input int n);
int target_count, curr_cnt;
set_current_target(n, curr_cnt);
target_count = curr_cnt + n;
sw_queue_push(target_count);
do begin

@(counter_event);
end while(target_count != curr_event_cnt);

endtask
1. In HW part, the minimum value of

target counter is set as the current
target.

2. When counter value matches target
value, event is triggered

9

Speed-up for Emulation Runtime

• Synthesizable verification components
– Scoreboards, checkers and monitors operated in the SW_TOP are

converted synthesizable and moved to the interface.
– Verified RTL and Extended HW synthesizable syntax are used.

• HW/SW communication through FIFO
– Non-synthesizable components communicate through FIFO to send and

receive information in bulk.

10

Examples (simple scoreboard) - 1

fork
forever begin

vintf.get_input(input_data);
input_port.write(input_data);

end
forever begin

vintf.get_output(output_data);
output_port.write(output_data);

end
begin

vintf.wait_test_done();
end

join_any

task get_output(output out_item_t
item);

bit done;
done = 0;

while(!done) begin
@(posedge clk);
if (out_hand_shake)
begin

item.data = out_data;
item.info = out_info;
done = 1;

end
end

endtask

UVM_MONITOR INTERFACE

• TBA Implementation

11

Examples (simple scoreboard) - 2

fork
begin

vintf.sb_output_data(result);
end

join

always @ (posedge clk) begin
if(in_hand_shake)

in_fifo.push(in_data);
end
task sb_outdata(output result);

out_item_t item;
bit result_temp;
result = 0;
while(!test_done) begin

@(posedge clk);
if (out_hand_shake) begin

item.data = out_data;
item.info = info;
check_data(item, result_temp);
result = result | result_temp;

end
end

endtask

• Get data from input data FIFO and
compare with output data

• If checking part is non-synthesizable, use
FIFO to minimize HW/SW sync

UVM_MONITOR

INTERFACE• Proposed Implementation

12

Examples (register access) - 1

• Register access transactions generate
significant amount of HW/SW sync in
emulation.

• Register access commands are
collected in the software queue.

• Commands are loaded in the hardware
FIFO when loading conditions of the
software queue are met.

do begin
regA.read(status, read_data);

end while(read_data != expected_data);

Simulation code example of register access (polling)

13

Examples (register access) - 2

regA.polling(expected_data, mask);

if(trans.tr_type == REG_POLLING)
begin

//make register polling command
//push to sw_queue
//move sw_queue data to HW FIFO
//call vintf.reg_access()

end

task reg_access();
while(hw_fifo.size != 0) begin

hw_fifo.pop(cmd); //Read command
if(cmd.tr_type == REG_POLLING)

reg_polling(cmd);
// The rest of code is not shown.

end
endtask

task reg_polling(input tr_cmd_t cmd);
do begin

drive_read_req(cmd);
wait_read_resp(r_data);

end while(r_data&mask != cmd.data&mask);
endtask

HW_TOP (interface)

UVM DRIVER

SW_TOP

Test sequence

• Example of proposed polling method

14

Examples (PLL modeling)

initial begin
pll_fout = 1'b0;
forever begin

#(h_period) pll_fout = ~pll_fout;
end

end

always @(posedge CLK or negedge RESETN) begin
if (~RESETN) begin

h_period <= 16'hFFFF;
end
else if(PMS_prev != PMS_curr) begin

get_h_period(P, M, S, h_period);
end

end

• Example of PLL modeling

15

Experimental Results

• Experiments are conducted on our mobile SOC environment.
– More than 500 verification scenarios including digital signal processor, image codec,

neural processor unit which takes relatively long simulation time
• 20% improvements in speedup compared to previous work and more than 30x

speedup in the runtime compared to our pure simulation.

Previous Proposed Previous Proposed
Image Codec 170 450 23 14 68 90
Digital Signal Processor 161 570 28 18 69 93
Neural Processor Unit 188 620 31 19 65 91

Runtime (Avg. min.)
Emulation#of scenarios

Simulation
Subsystem

Hardware runtime ratio
in emulation (%)

16

Conclusion
• To increase emulation speedup while reusing the existing UVM simulation

environment, interface centric verification solution is proposed.
• 30x speedup and enables to verify complex scenarios that could not be done in

pure simulation.
• Future work

– Mixing and scheduling verification scenarios for given emulation and simulation
resources

17

	Interface Centric UVM Acceleration for Rapid SOC Verification
	Contents
	UVM Environment for SOC Verification (SBA)
	UVM Environment for SOC Verification (TBA)
	HW/SW Synchronization
	Interface centric UVM Acceleration Evironment
	Interface Implementation for UVMA
	Common Interface Library - 1
	Common Interface Library - 2
	Speed-up for Emulation Runtime
	Examples (simple scoreboard) - 1
	Examples (simple scoreboard) - 2
	Examples (register access) - 1
	Examples (register access) - 2
	Examples (PLL modeling)
	Experimental Results
	Conclusion

