
Integration of HDL Logic inside 
SystemVerilog UVM based 

Verification IP
Aleksandra Panajotu

Elsys Eastern Europe, Belgrade, Serbia
aleksandra.panajotu@elsys-eastern.com



Introduction

As complexity of communication between the DUT and the system rises,
implementation of the VIPs required for verification becomes more demanding.

In some cases, the nature of the DUT requires that the VIP behaves as similarly to
the already implemented Design as possible. If the surrounding Design uses
complex logic that is hard to reproduce in any other way than implementing the same
logic in the VIP, the development of such VIP can require great effort.

The focus of this poster is on the integration of HDL Design Logic inside a VIP
Wrapper which increases the precision with which VIP will model the expected
Design behavior in cases where the randomization of the stimuli that VIP should
provide is not needed and the exact replication of behavior of surrounding logic is
expected.

2



VIP Wrapper overview

VIP Wrapper implementation proposed here contains three distinct parts:
SystemVerilog UVM based VIP, HDL Design logic and the Wrapper Interface. The
idea is to integrate the Design and the interface module of the VIP into the Wrapper.

The VIP will keep all its SystemVerilog and UVM features and will represent a part of
the system that is driving the input signals of the Design that will process them and
use them to stimulate the DUT. This allows the Verification team to develop
randomized sequence items and sequences which introduce randomization to the
VIP’s behavior.

This way the VIP is behaving according to the needs of the DUT and, also, the
verification team has a way to control the behavior of the surrounding system that
includes the Design to achieve exercise of all possible scenarios.

3



Wrapper module

The Wrapper will act as an interface to the rest of the UVM environment where it will
be used. It will also have internal connections between the VIP interface and the
Design.

4



VIP Wrapper development overview

module wrapper_if_module
(
//input and output signals of the VIP Wrapper
);

//internal signals used for connections between the Design and the VIP interface

design_module design_instance
(
//input and output connections of the Design
);

vip_interface vip_interface_instance
(
//input and output connections of the VIP
);

//assignments of the internal signals

endmodule : wrapper_if_module

The Wrapper has the Design instance and the VIP interface instance inside it and
the connections to the DUT in the Testbench. SystemVerilog does not allow
instantiation of a module inside an interface instance, so the Wrapper will be
declared as a module. This does not affect its integration or its behavior.

5



VIP implementation variations

The VIP doesn’t have to be a single component, it can be a UVM environment with a
virtual sequencer and several VIPs instantiated inside the environment that are
working independently (i.e. independent request-acknowledge modules) or in
coordination (simulating some more complex part of the system for which multiple
VIPs can be used instead of using one complex VIP).
Their interfaces will be connected to the Design and the Testbench in the same
manner and their environments or agents will be instantiated inside the environment
of the VIP.

6



Integration overview

The Wrapper is instantiated in the Testbench as a module and is connected to the
signals like any other module or interface.
Signals of the VIP interface should not be connected to the Testbench, only the
Wrapper interface signals. VIP interface that is instantiated in the Wrapper will be
passed through the UVM configuration database from the Testbench and the VIP
environment will be able to acquire it.

7



Integration in Testbench

It is important that the VIP interface instance is passed to the UVM configuration
database instead of the Wrapper instance as the VIP is not aware that is a part of a
wrapper and is expecting the get its own interface through the database.

module testbench; 

//internal testbench signals

dut_top_module dut;
(
//input and output connections of the DUT
);

wrapper_if_module vip_wrapper_instance
(
//input and output connections of the VIP Wrapper
);

initial begin
uvm_config_db#(virtual vip_interface)::set(null, “*.vip_wrapper_instance*”,

“vif”, vip_wrapper_instance.vip_interface_instance);

run_test();
end

endmodule : testbench

8



Use-cases

This method is most applicable in cases where the DUT should be connected to a
part of the system that can be split into two parts:

1) module with complex logic that is difficult to model with high precision but is
available for reuse;

2) the surrounding logic, which is generating inputs to that module.

9



Problems with regular UVM approach

This approach can be used in situations where the exact behavior of a part of the
surrounding logic must be reproduced. On projects where multiple IPs that are
closely connected are being developed at the same time but by different Verification
teams, especially when the IPs are not communicating using a standard protocol it
can be very hard to create VIPs that simulate the behavior of the surrounding
system.

The solution is to integrate the module of the Design that is responsible for all the
calculations and synchronizations and create a VIP that models the feedback the
Design needed from the system. This way every time the Design gets updated, the
Wrapper would also be updated with the new version of the Design.

10



Reused Design

It is highly preferable that the Design that is being used inside the Wrapper is fully
verified. In case the verification is not fully done, cooperation between Verification
teams that are using the Wrapper and the one that is working on the Verification of
the Design that is being used is very important.

In this case, it is also recommended that the same Verification team that is doing the
verification of the Design that is being reused is developing the VIP Wrapper as it
could support eventual changes in the Design implementation.

Positive aspects of this kind of cooperation are that in cases where some corner
case behavior was not accurately defined in the specification or was not even
discovered.

11



Conclusion

Development of a VIP Wrapper can be beneficial when exact replication of the
surrounding logic is needed. The VIP Wrapper developed using this method has the
same core behavior as the design logic that it should model with added possibility of
randomization using UVM VIPs wrapped inside.

On the other hand, it introduces a risk of a bug being present inside the Design that
is being reused, and for that reason, the Design for integration must be verified.

The randomization of the stimuli that Design inside the VIP Wrapper provides is
reduced and comes down to the randomization of the inputs to the Wrapped Design.
This approach is recommended for generating stimuli that should not be greatly
randomized, as it can provide greater precision and efficiency in VIP development.

12


	Integration of HDL Logic inside SystemVerilog UVM based Verification IP
	Introduction
	VIP Wrapper overview
	Wrapper module
	VIP Wrapper development overview
	VIP implementation variations
	Integration overview
	Integration in Testbench
	Use-cases
	Problems with regular UVM approach
	Reused Design
	Conclusion

