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Simics
• Virtual platform framework
• Designed to run large 

software stacks quickly
– Run SW the primary purpose

• Designed to handle large 
targets and scale up

• Streamlined TLM semantics
– “Software lineage” in the 

style of Qemu, IBM Mambo, 
ARM Fastsim, Mame, SPIM, ... 

– Similar to SystemC TLM LT
– Different from SystemC in the 

details 

• History
– First code in early 1990s
– Virtutech founded 1998
– Acquired by Intel in 2010 
– Intel subsidiary Wind River 

sells Simics to general market
– Large user base inside of Intel

• Long history of integrating 
various other simulators
– Cycle-accurate
– Different languages
– Mechanics & physics
– ...
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Use Cases: SystemC Models 
in Simics System Context
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Simics vs SystemC Semantics
Simics SystemC

Model abstraction level TLM TLM + AV + PV + CCA + ... 

TLM transaction phases Single phase synchronous Single phase synchronous, 
Multi-phase asynchronous, Cycle-driven

Memory transaction time Zero time Zero, fixed delay, dynamically computed

Time model Local time with multiple clocks Global time + temporal decoupling

Deltacycles No Yes

Asynchronous events Inside time quantum End of quantum or breaks time quantum

Interfaces Unidirectional, Simics-defined Bidirectional, TLM 2.0 MMB + custom

Threaded device model No (passive reactive run-to-
completion) Yes, available and used

Host multithreading Built-in Not available

System configuration Dynamic, runtime reconfigurable Static after elaboration

Module packaging Dynamic library (.so/.dll) Static (.a), some.dll/.so
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Integration Design Issues
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• Multiple processes (co-
simulation)

• Single process
• Exchange transactions 

at SystemC subsystem 
boundary

Execution 

• Each SystemC module 
as a separate unit

• Top-level system in 
Simics

• SystemC subsystem as 
configuration unit

Configuration 

• Unsynchronized 
execution

• Simics time as basis
• Run control
• Lazy time 

synchronization
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standard across system
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Adapter code

• Rewrite model
• No changes to SystemC 

model code required
• Allow binary-only  
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Model code

• Separate user interface
• Common user interface
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models inside of Simics
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• Fit SystemC subsystem 
into Simics hierarchy
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devices in Simics UI

• Special tools for 
SystemC

Inspection



Adapter
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Gaskets
• Write once for each interface, reuse

– One gasket per direction 
• Outside the Adapter, simulation uses Simics interfaces

– All modules are equivalent from an external view
– Models from different sources use common interfaces 

• Gasket encapsulates the protocol/interface translation
– Data format and encoding, metadata, etc. 
– Timing, including SystemC AT to Simics synchronous

• Notes:
– Real-world connections are handled via Simics
– The gasket concept is not unique to Simics-SystemC. When 

models from different frameworks integrate, you always need a 
translation layer
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Standardized Interfaces
• Gaskets allow reuse of translations

– Efficient if the same interfaces recur
• Requires modeling standards – which are lacking

– TLM2 Base Protocol is really just a memory-mapped bus
• Examples where we need TLM standards:

– Interrupt – sc_signal destroys scheduling
– PCIe – more than just MMB
– Ethernet – example of unidirectional interface
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More interface standards are needed – or at least some shared repository 
where you can find what other people have done for reuse 



Time Management
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Inspection & Hierachy 
• SystemC model hierarchy integrated in 

Simics system hiearchy
– Simics Eclipse GUI inspects SystemC 

seamlessly, with SystemC-specific features
– Simics provides CLI + Python system for 

scripting, including SystemC 
– sc_report to Simics logs

• Command-line tools to break, inspect, 
trace, profile

– On process, socket, event, signal
– Time and memory usage of the SystemC 

subsystem
– VCD output
– TLM protocol checker

• Using specific modeling libraries in the 
SystemC models adds:

– Registers, attributes, properties, back-door 
access

• SystemC editor & debugger
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GUI 
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SystemC models shown in the 
Simics Eclipse GUI, as part of a 
Simics system in the System Editor



Performance 
• Gaskets do not induce noticeable overhead
• Lazy synchronization increases performance

– If a model is not used, it should not be activated
– Well-written SystemC models should not impact speed

• Models in use will cause slower simulation
– They are added to a base system and thus add more work

• Compared to native Simics models?
– Typically slower... Since the SystemC models are more detailed
– ”Apples and Oranges” 
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Performance: Too many Events
• (Observation from real engagements)
• SystemC models often too detailed – even when TLM 
• Models post frequent events to drive themselves 
• Frequent events break Simics processors out of JIT or 

virtualized execution: loss of performance
– Effect of a poorly written model is amplified in a non-linear 

way in a system context
– Putting SystemC models on their own clock isolates the 

noise and can give 10x performance increase
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SystemC TLM modeling needs to move towards a reactive passive 
style, rather than active threads



Wind River* Simics*

Integration Methodology
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Example: Pure SystemC
• Use Simics as a SystemC 

simulator for a SystemC 
model

• Better than using a plain 
Accellera kernel

• Benefits:
– Binary delivery
– Tooling for inspection, 

debug, profiling, …
– Scripting & setup system

• Part of step-by-step 
integration strategy
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Wind River® Simics®

SystemC model



Example: Cross-IP & Heterogeneous
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Example: Multithreading
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Simics provides the System 
context, including the ability to 
boot operating systems and run 
drivers and test code. As well as 
inject network traffic. 

Using Simics multithreading, we 
can run the complex models in 
parallel, improving performance.
Simics makes parallel SystemC 
simulation possible (using 
multiple-kernel model)

Khan et al. “Multi-Threaded 
Simics SystemC Virtual 
Platform”, ICCAD 2015



Questions?

You can always reach us later:
jakob.engblom@intel.com

hakan.zeffer@intel.com
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Thank You!
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BACKUP
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Wind River Simics*
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