
Integrating Different Types of Models
into a Complete Virtual System

Jakob Engblom, Andreas Hedström,
Xiuliang Wang, Håkan Zeffer

Intel, Stockholm, Sweden

© Accellera Systems Initiative 1

Heterogeneous VPs

© Accellera Systems Initiative 2

VP team 1 Architecture
team

External IP
vendor Legacy models VP team 2

Integrated VP

TLM Modeling
library 1

TLM Modeling
library 3

TLM Modeling
library 2

Detailed
models

No modeling
library at all

SystemC C

C++

DSL PVTLM

Groups

Technologies

Goal

BIOS/UEFI

Firmware

DriversOS

By combining many pieces
from several sources into a
single coherent platform

ISS type 1

ISS type 2

Run firmware, boot code,
OS, drivers, software loads

Simics
• Virtual platform framework
• Designed to run large

software stacks quickly
– Run SW the primary purpose

• Designed to handle large
targets and scale up

• Streamlined TLM semantics
– “Software lineage” in the

style of Qemu, IBM Mambo,
ARM Fastsim, Mame, SPIM, ...

– Similar to SystemC TLM LT
– Different from SystemC in the

details

• History
– First code in early 1990s
– Virtutech founded 1998
– Acquired by Intel in 2010
– Intel subsidiary Wind River

sells Simics to general market
– Large user base inside of Intel

• Long history of integrating
various other simulators
– Cycle-accurate
– Different languages
– Mechanics & physics
– ...

© Accellera Systems Initiative 3

Use Cases: SystemC Models
in Simics System Context

© Accellera Systems Initiative 4

Target operating system

Target hardware drivers

User program Middleware

Target boot code

User program

Integrated machine model in Simics

Simics
ISS RAM

Dev

Simics
ISS

Dev Dev Dev Subsystem with
internal ISS

Dev Dev

DiskFlash Dev
Simics model is
sufficient to boot and
run (basic) software
for the platform

SystemC
detailed model

Exchange fast model
for detailed model for
performance studies

SystemC TLM
device

Add additional
hardware
components to the
base platform

SystemC
detailed model

Explore architecture and
performance of new hardware

SystemC TLM
subsystem

Model of part of
base platform,
necessary for boot

Firmware

Firmware

Firmware

Easily gets 1000+ models
from different sources,

Arbitary models:
TLM, CCA,
processor cores, ...

Simics vs SystemC Semantics
Simics SystemC

Model abstraction level TLM TLM + AV + PV + CCA + ...

TLM transaction phases Single phase synchronous Single phase synchronous,
Multi-phase asynchronous, Cycle-driven

Memory transaction time Zero time Zero, fixed delay, dynamically computed

Time model Local time with multiple clocks Global time + temporal decoupling

Deltacycles No Yes

Asynchronous events Inside time quantum End of quantum or breaks time quantum

Interfaces Unidirectional, Simics-defined Bidirectional, TLM 2.0 MMB + custom

Threaded device model No (passive reactive run-to-
completion) Yes, available and used

Host multithreading Built-in Not available

System configuration Dynamic, runtime reconfigurable Static after elaboration

Module packaging Dynamic library (.so/.dll) Static (.a), some.dll/.so

© Accellera Systems Initiative 5

Integration Design Issues

© Accellera Systems Initiative 6

• Multiple processes (co-
simulation)

• Single process
• Exchange transactions

at SystemC subsystem
boundary

Execution

• Each SystemC module
as a separate unit

• Top-level system in
Simics

• SystemC subsystem as
configuration unit

Configuration

• Unsynchronized
execution

• Simics time as basis
• Run control
• Lazy time

synchronization

Synchronization

• Simics interfaces as
standard across system

• TLM transactions
• Synchronous

transactions

Communication

• Code on Simics-side
• User codes the adapter

entirely in SystemC

Adapter code

• Rewrite model
• No changes to SystemC

model code required
• Allow binary-only

models inside adapter

Model code

• Separate user interface
• Common user interface
• Provide UI for SystemC

models inside of Simics

User interface

• Fit SystemC subsystem
into Simics hierarchy

• Expose SystemC
devices in Simics UI

• Special tools for
SystemC

Inspection

Adapter

© Accellera Systems Initiative 7

SystemC adapter with model = Simics module

Wind River* Simics*

Simics scheduler and API

SystemC Library

SystemC Kernel

PCIe gasket

DMA gasket

Intr gasket

Unmodified SystemC
subsystem with
internal structure

Connect SystemC model interfaces
to gaskets, write per model

Write-once standard
gaskets for interfaces

Intel® Architecture
(IA) core

Disk

RAM

PCHM
em

or
y

bu
s

PCIe
tlm

tlm

signalAPIC

IA core

APIC

Adapter code

Simplified example Intel
platform model in Simics

hooks

SystemC model

Gaskets
• Write once for each interface, reuse

– One gasket per direction
• Outside the Adapter, simulation uses Simics interfaces

– All modules are equivalent from an external view
– Models from different sources use common interfaces

• Gasket encapsulates the protocol/interface translation
– Data format and encoding, metadata, etc.
– Timing, including SystemC AT to Simics synchronous

• Notes:
– Real-world connections are handled via Simics
– The gasket concept is not unique to Simics-SystemC. When

models from different frameworks integrate, you always need a
translation layer

© Accellera Systems Initiative 8

Standardized Interfaces
• Gaskets allow reuse of translations

– Efficient if the same interfaces recur
• Requires modeling standards – which are lacking

– TLM2 Base Protocol is really just a memory-mapped bus
• Examples where we need TLM standards:

– Interrupt – sc_signal destroys scheduling
– PCIe – more than just MMB
– Ethernet – example of unidirectional interface

© Accellera Systems Initiative 9

More interface standards are needed – or at least some shared repository
where you can find what other people have done for reuse

Time Management

© Accellera Systems Initiative 10

Wind River* Simics* scheduler

SystemC Kernel

Processor
core

Processor
core

Simics-level clocks are kept
in synch (within time quanta)

SystemC time is usually behind Simics
time. SystemC time is brought up to
Simics time when an interaction or event
happens (Lazy synchronization).

SystemC model
(subsystem)

Clock

Dev Dev

Simics devices typically get
their time from a particular
processor core, and drive
events using that core

SystemC model gets its time
from the SystemC kernel

Each SystemC subsystem (adapter)
is associated with a Simics processor
core or a separate clock – up to user

Each adapter can have its own time

If SystemC needs to process time in
order to compute the result to a
transaction, SystemC time will be
advanced ahead of Simics time

Inspection & Hierachy
• SystemC model hierarchy integrated in

Simics system hiearchy
– Simics Eclipse GUI inspects SystemC

seamlessly, with SystemC-specific features
– Simics provides CLI + Python system for

scripting, including SystemC
– sc_report to Simics logs

• Command-line tools to break, inspect,
trace, profile

– On process, socket, event, signal
– Time and memory usage of the SystemC

subsystem
– VCD output
– TLM protocol checker

• Using specific modeling libraries in the
SystemC models adds:

– Registers, attributes, properties, back-door
access

• SystemC editor & debugger

© Accellera Systems Initiative 11

Simics System

Board

Processor Chipset

Simics ISS

SystemC dev
Simics dev

Ethernet

SystemC dev

SystemC devSystemC dev

SystemC dev

Simics dev

SystemC subsystem loaded
as a single Simics module

GUI

© Accellera Systems Initiative 12

SystemC models shown in the
Simics Eclipse GUI, as part of a
Simics system in the System Editor

Performance
• Gaskets do not induce noticeable overhead
• Lazy synchronization increases performance

– If a model is not used, it should not be activated
– Well-written SystemC models should not impact speed

• Models in use will cause slower simulation
– They are added to a base system and thus add more work

• Compared to native Simics models?
– Typically slower... Since the SystemC models are more detailed
– ”Apples and Oranges”

© Accellera Systems Initiative 13

Performance: Too many Events
• (Observation from real engagements)
• SystemC models often too detailed – even when TLM
• Models post frequent events to drive themselves
• Frequent events break Simics processors out of JIT or

virtualized execution: loss of performance
– Effect of a poorly written model is amplified in a non-linear

way in a system context
– Putting SystemC models on their own clock isolates the

noise and can give 10x performance increase

© Accellera Systems Initiative 14

SystemC TLM modeling needs to move towards a reactive passive
style, rather than active threads

Wind River* Simics*

Integration Methodology

© Accellera Systems Initiative 15

SystemC*
model

SystemC*
test bench

Accellera* kernel
Adapter

SystemC
model

SystemC
test bench

Simics

Adapter

SystemC
model

Simics
unit test

Simics

Adapter

SystemC
model

DevISS

Dev Dev
Full model

Prove the given model can build as a
Simics module and run inside of Simics

Test the interface to the rest of Simics,
support unit-based regression test

We want to integrate the SystemC
device model into Simics

End goal achieved: device model used in Simics

Example: Pure SystemC
• Use Simics as a SystemC

simulator for a SystemC
model

• Better than using a plain
Accellera kernel

• Benefits:
– Binary delivery
– Tooling for inspection,

debug, profiling, …
– Scripting & setup system

• Part of step-by-step
integration strategy

© Accellera Systems Initiative 16

Wind River® Simics®

SystemC model

Example: Cross-IP & Heterogeneous

© Accellera Systems Initiative 17

Wind River® Simics®

ExplorerApp

Simics target system model

Windows OS

SystemC model

Device driver 1

Core

RAM

APIC

Disk
Other sim model

Output

input

Device driver 2

App

Firmware

Simics provides the System context,
including the ability to boot an
operating system like Windows

SystemC model and other models
integrate into Simics – and can thus
communicate with each other

Bus

Complete test passes data from user
application to driver to device, and
then through the other device –
system-level flow

Example: Multithreading

© Accellera Systems Initiative 18

Wind River* Simics*

Target machine

Proc
core

SystemC model

SystemC model

in
te

rc
on

ne
ct

Disk

RAM

Simics API, multithreaded scheduler, and features

PCH

interconnect

Simics simulation cell

Simics model of Intel platform
Multiple SystemC
subsystem models for
complex accelerators

Simics provides the System
context, including the ability to
boot operating systems and run
drivers and test code. As well as
inject network traffic.

Using Simics multithreading, we
can run the complex models in
parallel, improving performance.
Simics makes parallel SystemC
simulation possible (using
multiple-kernel model)

Khan et al. “Multi-Threaded
Simics SystemC Virtual
Platform”, ICCAD 2015

Questions?

You can always reach us later:
jakob.engblom@intel.com

hakan.zeffer@intel.com

© Accellera Systems Initiative 19

mailto:jakob.engblom@intel.com
mailto:Hakan.zeffer@intel.com

Thank You!

© Accellera Systems Initiative 20

BACKUP

© Accellera Systems Initiative 21

Wind River Simics*

Target operating system

Target hardware drivers

User program Middleware

Target boot code

User program

Target machine

Simics
ISS RAM

DML

Other
ISS

C/C++ System
C

System
C

System
C plain

System
C Python

Other
FWDiskFLASH First-

party

	Integrating Different Types of Models into a Complete Virtual System
	Heterogeneous VPs
	Simics
	Use Cases: SystemC Models �in Simics System Context
	Simics vs SystemC Semantics
	Integration Design Issues
	Adapter
	Gaskets
	Standardized Interfaces
	Time Management
	Inspection & Hierachy
	GUI
	Performance
	Performance: Too many Events
	Integration Methodology
	Example: Pure SystemC
	Example: Cross-IP & Heterogeneous
	Example: Multithreading
	Questions?
	Thank You!
	Backup
	Slide Number 22

