Integrating a Virtual Platform Framework for Smart Devices

V. Guarnieri¹, F. Stefanni¹, F.Fummi¹ M. Grosso², D. Lena² A. Ciccazzo³, G. Gangemi³, S. Rinaudo³

Outline

- Introduction
- HIFSuite
- Testcases
- Abstraction results

© Accellera Systems Initiative

• Conclusion

What is a smart system?

- Miniaturized self-sufficient device
 - incorporating functions of sensing, actuation and control
 - able to describe and analyze a situation
 - able to decide according to available data
 - Energy-autonomous and ubiquitously connected

DESIGN AND VERI

Smart system design

- Extremely heterogeneous representations for the various components \rightarrow co-simulation
 - Poor simulation performance
 - Manual translation required

Issues in smart system design (II) Physical/ Device Structural

- Too low design level to provide a global view of the entire system
 - Typical design levels: physical/device, structural
 - Global view should be at least functional or transactional
 - Manual abstraction required

Issues in smart system design (III)

- Analog and mixed-signal components
 - Difficult to integrate into higher-level systems, but ...
 - Absolutely required in smart systems
 - Multi-dimensional circuit sizing and verification problems
 → circuit analysis and automated optimization algorithms required

Possible solutions

- Heterogeneity of smart systems → homogeneous models
- Co-simulation techniques \rightarrow simulation techniques
- Enhancing reuse through abstraction and systems aggregators
- Concurrent simulation of functional and extrafunctional properties

© Accellera Systems Initiative

Proposed solution

- Integration of heterogeneous components into a homogeneous virtual platform
 - Components written in different languages and belonging to different domains
- Optimization of the homogeneous description for simulation
 - Towards a full C++ model
- Design of each component with the most suited tool
 - Homogeneous platform to evaluate functional and extrafunctional properties

HIFSuite

Step 2

DESIGN AND VERIFICATION

Testcases

- Two testcases provided by ST
 - Modular sensor node: monitoring of human gestures or movement
 - Enhanced LED driver engine: implementation of smart lightning modules
- Working prototypes, not marketed products
- Typical EDA challenges in
 - System-level design
 - MEMS-design
 - Analog-mixed signal-design

Modular sensor node (I)

DESIGN AND VERIFICATION

Modular sensor node (II)

- Analog design domain
 - HIFSuite: VerilogA \rightarrow SystemC-AMS
 - SystemC-AMS description to be used in system-level simulation
 - Avoiding co-simulation
- Digital design domain
 - HIFSuite: RTL \rightarrow SystemC TLM or C++
 - Mitigating bottlenecks in system-level simulation due to complexity
- System-level model advantages
 - Performance evaluation under realistic workloads

© Accellera Systems Initiative

Enhanced LED driver engine (I)

DESIGN AND VERIEICATION

Enhanced LED driver engine (II)

- Full-system simulation advantages
 - Better understanding of sub-systems interactions
 - Deep investigation of the microcontroller capabilities and peripherals usage
 - Early addressing performance issues and firmware optimization
 - Optimization of power modes
 - Correct interoperability between sub-systems
 - Anticipation of issues during design phase → reduction of development costs

Abstraction

- Process scheduler
 - − Classical HDL process scheduler → more performing process scheduler
- Data types
 - Original HDL data types \rightarrow C++ built-in data types
- Interface
 - RTL interface \rightarrow TLM or C++ interface

© Accellera Systems Initiative

Abstraction results (I)

Design	SystemC RTL (s)	ModelSim (s)	Abstracted C++ (s)	Speedup vs SystemC RTL (x)	Speedup vs ModelSim (x)
Camellia	26,974.8	1,074.7	3.4	7,933.8	316.1
DES56	7,112.2	790.4	4.3	1654.0	183.8
AES	850.9	67.5	7.1	119.8	9.5
SHA256	4,682.5	152.4	3.4	1,377.2	44.8
SHA512	6,302.1	175.6	5.0	1,260.4	35.1
XTEA	975.2	170.9	3.4	286.8	50.3

DESIGN AND VERIFIC

Abstraction results (II)

DESIGN AND VERIEIC

Abstraction results (III)

DESIGN AND VERIFIC

Conclusions

- HIFSuite assists designers of smart devices
 - Translation of heterogeneous descriptions of components into homogeneous SystemC description
 - No need for co-simulation
 - Abstraction to C++ to enhance simulation performance
 - Reuse of existing IPs and integration into virtual platforms
 - Design space exploration
 - Design validation
 - Performance evaluation
 - Reduction of time to market

Thanks for your attention!

Questions?

