
Integrating a Virtual Platform 
Framework for Smart Devices 

V. Guarnieri1, F. Stefanni1, F.Fummi1 

M. Grosso2, D. Lena2 

A. Ciccazzo3, G. Gangemi3, S. Rinaudo3 

© Accellera Systems Initiative 1 

1 2 3 



Outline 

• Introduction 

• HIFSuite 

• Testcases 

• Abstraction results 

• Conclusion 

 

© Accellera Systems Initiative 2 



What is a smart system? 

• Miniaturized self-sufficient device 

– incorporating functions of sensing, actuation and control 

– able to describe and analyze a situation 

– able to decide according to available data 

– Energy-autonomous and ubiquitously connected 
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Smart system design 
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Issues in smart system design (I) 

• Extremely heterogeneous representations for the 
various components  co-simulation 

– Poor simulation performance 

– Manual translation required 
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Issues in smart system design (II) 

• Too low design level to provide a global view of the 
entire system 

– Typical design levels: physical/device, structural 

– Global view should be at least functional or transactional 

– Manual abstraction required 
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Issues in smart system design (III) 

• Analog and mixed-signal components 

– Difficult to integrate into higher-level systems, but … 

– Absolutely required in smart systems 

– Multi-dimensional circuit sizing and verification problems 
 circuit analysis and automated optimization algorithms 
required 
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Possible solutions 

• Heterogeneity of smart systems  homogeneous 
models 

• Co-simulation techniques  simulation techniques 

• Enhancing reuse through abstraction and systems 
aggregators 

• Concurrent simulation of functional and extra-
functional properties 
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Proposed solution 

• Integration of heterogeneous components into a 
homogeneous virtual platform 

– Components written in different languages and belonging 
to different domains 

• Optimization of the homogeneous description for 
simulation 

– Towards a full C++ model 

• Design of each component with the most suited tool 

– Homogeneous platform to evaluate functional and extra-
functional properties 
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HIFSuite 
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Step 1 
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Step 2 
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Step 3 
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Testcases 

• Two testcases provided by ST 

– Modular sensor node: monitoring of human gestures or 
movement 

– Enhanced LED driver engine: implementation of smart 
lightning modules 

• Working prototypes, not marketed products 

• Typical EDA challenges in 

– System-level design 

– MEMS-design 

– Analog-mixed signal-design 
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Modular sensor node (I) 
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Modular sensor node (II) 

• Analog design domain 

– HIFSuite: VerilogA  SystemC-AMS 
• SystemC-AMS description to be used in system-level simulation 

• Avoiding co-simulation 

• Digital design domain 

– HIFSuite: RTL  SystemC TLM or C++ 
• Mitigating bottlenecks in system-level simulation due to 

complexity 

• System-level model advantages 

– Performance evaluation under realistic workloads 
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Enhanced LED driver engine (I) 
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Enhanced LED driver engine (II) 

• Full-system simulation advantages 

– Better understanding of sub-systems interactions 

– Deep investigation of the microcontroller capabilities and 
peripherals usage 
• Early addressing performance issues and firmware optimization 

– Optimization of power modes 

– Correct interoperability between sub-systems 

– Anticipation of issues during design phase  reduction of 
development costs 
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Abstraction 

• Process scheduler 

– Classical HDL process scheduler  more performing 
process scheduler 

• Data types 

– Original HDL data types  C++ built-in data types 

• Interface 

– RTL interface  TLM or C++ interface 
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Abstraction results (I) 
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Design SystemC 

RTL (s) 

ModelSim 

(s) 

Abstracted 

C++ (s) 

Speedup vs 

SystemC RTL 

(x) 

Speedup vs 

ModelSim (x) 

Camellia 26,974.8 1,074.7 3.4 7,933.8 316.1 

DES56 7,112.2 790.4 4.3 1654.0 183.8 

AES 850.9 67.5 7.1 119.8 9.5 

SHA256 4,682.5 152.4 3.4 1,377.2 44.8 

SHA512 6,302.1 175.6 5.0 1,260.4 35.1 

XTEA 975.2 170.9 3.4 286.8 50.3 



Abstraction results (II) 
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Abstraction results (III) 
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Conclusions 

• HIFSuite assists designers of smart devices 

– Translation of heterogeneous descriptions of components 
into homogeneous SystemC description 
• No need for co-simulation 

– Abstraction to C++ to enhance simulation performance 

– Reuse of existing IPs and integration into virtual platforms 
• Design space exploration 

• Design validation 

• Performance evaluation 

– Reduction of time to market 
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Questions? 

Thanks for your attention! 
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