
Integrating a Virtual Platform
Framework for Smart Devices

V. Guarnieri1, F. Stefanni1, F.Fummi1

M. Grosso2, D. Lena2

A. Ciccazzo3, G. Gangemi3, S. Rinaudo3

© Accellera Systems Initiative 1

1 2 3

Outline

• Introduction

• HIFSuite

• Testcases

• Abstraction results

• Conclusion

© Accellera Systems Initiative 2

What is a smart system?

• Miniaturized self-sufficient device

– incorporating functions of sensing, actuation and control

– able to describe and analyze a situation

– able to decide according to available data

– Energy-autonomous and ubiquitously connected

© Accellera Systems Initiative 3

Energy procurement Power storage and management

Knowledge base

Sensors

Data receivers Data transmitters

Actuators
Interfaces

Cognitive
processing

Smart system design

© Accellera Systems Initiative 4

Issues in smart system design (I)

• Extremely heterogeneous representations for the
various components  co-simulation

– Poor simulation performance

– Manual translation required

© Accellera Systems Initiative 5

VHDL

Verilog

Matlab

MEMS+

SystemC

C++

Issues in smart system design (II)

• Too low design level to provide a global view of the
entire system

– Typical design levels: physical/device, structural

– Global view should be at least functional or transactional

– Manual abstraction required

© Accellera Systems Initiative 6

Physical/
Device

Structural
Transactional/

Functional

Issues in smart system design (III)

• Analog and mixed-signal components

– Difficult to integrate into higher-level systems, but …

– Absolutely required in smart systems

– Multi-dimensional circuit sizing and verification problems
 circuit analysis and automated optimization algorithms
required

© Accellera Systems Initiative 7

MEMS
Sensors &
Actuators

Power
Sources/
Storage

Discrete
& Power
Devices

Analog
& RF

Possible solutions

• Heterogeneity of smart systems  homogeneous
models

• Co-simulation techniques  simulation techniques

• Enhancing reuse through abstraction and systems
aggregators

• Concurrent simulation of functional and extra-
functional properties

© Accellera Systems Initiative 8

Proposed solution

• Integration of heterogeneous components into a
homogeneous virtual platform

– Components written in different languages and belonging
to different domains

• Optimization of the homogeneous description for
simulation

– Towards a full C++ model

• Design of each component with the most suited tool

– Homogeneous platform to evaluate functional and extra-
functional properties

© Accellera Systems Initiative 9

HIFSuite

© Accellera Systems Initiative 10

Step 1

© Accellera Systems Initiative 11

HIFSuite

Communication
Information

hif2sc ipxact2hif

IPs HDL
Descriptions

Parsers

HIFSuite
IPs HIF
Descriptions

IP-XACT IPs
descriptions

hif2ipxact

IP-XACT Visual
editor H

an
d

-m
ad

e

sp
e

ci
fi

ca
ti

o
n

Platform
IP-XACT model

hif2sc

Platform
Top-Level – Bindings

only (SystemC-RTL)

Step 2

© Accellera Systems Initiative 12

HIFSuite

IPs HDL
Descriptions

Parsers

Platform
IP-Xact model

ipxact2hif
Communication

Information

Components
Interfaces

Functionalities

Components Library

Functional
Implementation

hif2sc

Homogeneous
Structural
Implementation
(SystemC-RTL + AMS)

Step 3

© Accellera Systems Initiative 13

HIFSuite

IPs HDL
Descriptions

Parsers

Platform
IP-Xact model

ipxact2hif
Communication

Information

Components
Interfaces

Functionalities

Components Library

Functional
Implementation

hif2sc

Functional
Implementation

(C++)

Optimized
Functionalities

ddt

a2t

Abstracted
Implementation

Testcases

• Two testcases provided by ST

– Modular sensor node: monitoring of human gestures or
movement

– Enhanced LED driver engine: implementation of smart
lightning modules

• Working prototypes, not marketed products

• Typical EDA challenges in

– System-level design

– MEMS-design

– Analog-mixed signal-design

© Accellera Systems Initiative 14

Modular sensor node (I)

© Accellera Systems Initiative 15

MEMS+
(MEMS simulator)

Cadence
(Circuit simulator)

netlist

WiCked
& RSM

VerilogA m file

MATLAB

VHDL

Verilog

IP-XACT

MEMS accelerometer Microcontroller

SystemC-AMS C++

SystemVue
(DF Simulator)

HIFSuite

C
o
m

p
o

n
e
n
t

(d
e

v
ic

e
 l
e
v
e

l)

S
u

b
s
y
s
te

m

(s
tr

u
c
tu

ra
l
le

v
e

l)

S
y
s
te

m

(t
ra

n
s
a

c
ti
o

n
a
l)

electromechanical

SCNSL

digital analog

RF interface

sw

VHDL

Verilog

IP-XACT

SystemC-AMS C++

VerilogA

SystemC-AMS C++ SystemC-AMS C++

Modular sensor node (II)

• Analog design domain

– HIFSuite: VerilogA  SystemC-AMS
• SystemC-AMS description to be used in system-level simulation

• Avoiding co-simulation

• Digital design domain

– HIFSuite: RTL  SystemC TLM or C++
• Mitigating bottlenecks in system-level simulation due to

complexity

• System-level model advantages

– Performance evaluation under realistic workloads

© Accellera Systems Initiative 16

Enhanced LED driver engine (I)

© Accellera Systems Initiative 17

Mentor
(Circuit simulator)

LED driver Microcontroller

SystemVue
(DF Simulator)

C
o
m

p
o

n
e
n
t

(d
e

v
ic

e
 l
e
v
e

l)

S
u

b
s
y
s
te

m

(s
tr

u
c
tu

ra
l
le

v
e

l)

S
y
s
te

m

(t
ra

n
s
a

c
ti
o

n
a
l)

power analog digital + sw

netlist
(BCD)

analog

netlist
(CMOS)

netlist
(BCD)

Cadence
(Circuit simulator)

HIFSuite

data flow

Sensors

m file MATLAB

Network

interface

SystemC-AMS C++ SystemC-AMS C++ SystemC-AMS C++ SystemC-AMS C++ SCNSL

VerilogA

WiCked
& RSM

VerilogA

WiCked
& RSM

VHDL

Verilog

IP-XACT SystemC C++

VerilogA

WiCked
& RSM

Enhanced LED driver engine (II)

• Full-system simulation advantages

– Better understanding of sub-systems interactions

– Deep investigation of the microcontroller capabilities and
peripherals usage
• Early addressing performance issues and firmware optimization

– Optimization of power modes

– Correct interoperability between sub-systems

– Anticipation of issues during design phase  reduction of
development costs

© Accellera Systems Initiative 18

Abstraction

• Process scheduler

– Classical HDL process scheduler  more performing
process scheduler

• Data types

– Original HDL data types  C++ built-in data types

• Interface

– RTL interface  TLM or C++ interface

© Accellera Systems Initiative 19

Abstraction results (I)

© Accellera Systems Initiative 20

Design SystemC

RTL (s)

ModelSim

(s)

Abstracted

C++ (s)

Speedup vs

SystemC RTL

(x)

Speedup vs

ModelSim (x)

Camellia 26,974.8 1,074.7 3.4 7,933.8 316.1

DES56 7,112.2 790.4 4.3 1654.0 183.8

AES 850.9 67.5 7.1 119.8 9.5

SHA256 4,682.5 152.4 3.4 1,377.2 44.8

SHA512 6,302.1 175.6 5.0 1,260.4 35.1

XTEA 975.2 170.9 3.4 286.8 50.3

Abstraction results (II)

© Accellera Systems Initiative 21

Abstraction results (III)

© Accellera Systems Initiative 22

Conclusions

• HIFSuite assists designers of smart devices

– Translation of heterogeneous descriptions of components
into homogeneous SystemC description
• No need for co-simulation

– Abstraction to C++ to enhance simulation performance

– Reuse of existing IPs and integration into virtual platforms
• Design space exploration

• Design validation

• Performance evaluation

– Reduction of time to market

© Accellera Systems Initiative 23

Questions?

Thanks for your attention!

© Accellera Systems Initiative 24

