
Increasing Regression Efficiency with

Portable Stimulus

Niyaz. K. Zubair1 Subba Kota Rao Sajja2

 QUALCOMM India Private Limited, QUALCOMM India Private Limited,

Outer Ring Road, Doddanakundi, Bangalore Outer Ring Road, Doddanakundi, Bangalore

nzubair@qti.qualcomm.com kotas@qti.qualcomm.com

(Contact: +91 - 9902029185) (Contact: +91 - 9448467129)

Abstract: Functional coverage closure using random testing of modern multimedia designs is a tough task.

Closure of last 1% to 2% of the coverage bins require manual effort, which is the most difficult part of the

entire process. This paper explains the experience and results of deploying a portable stimulus-based random

verification methodology to boost regression efficiency for an existing System Verilog testbench, by reducing

manual interventions for coverage closure and enable functional coverage closure in a short and predictable

time.

I. INTRODUCTION

Video codec IP is an integral part of today’s mobile phones, tablets etc. Modern Video cores support multiple

codecs (MP4, H264, H265, VP8/9 etc.) and up to 8K resolutions, with various profiles and features. The video core

has multiple sub blocks supporting various codec tools (estimation, compensation, filtering, (de)coding, data

management etc. [1], which makes the verification a complex task. Random verification is used at the block and sub

block level.

Due to the huge number of codec tools, functionalities and scenarios to be supported across those multiple

codecs, the functional coverage closure using random testing is a challenging task. It takes a huge set of regressions

to reach the target and the last 5% usually necessitate manual interventions to generate directed scenarios.

Fundamentally the number of cover bins and cross cover points that can be hit, which can be added in coverage

plan, are also limited by this effort involved and time consumed. Moreover, there is no clear estimate possible on the

number of random seeds or runs needed to achieve the 100% coverage target. There is a high possibility for various

unalignments between stimuli (valid values, maximas, dependencies between random variable etc.) and

corresponding coverage definitions, which usually get reviewed and corrected only during the last stages of

coverage closure activity. This also affects the efficiency of overall coverage closure activity using regression. This

paper covers the experience and benefits of adopting a portable stimulus-based methodology, which solved all above

issues associated with functional coverage closure in a random verification environment.

The Accellera Portable Test and Stimulus Standard (PSS) language defines a specification to create a single

representation of stimulus and test scenarios usable by a variety of users across many levels of integration under

different configurations. This representation facilitates the generation of diverse implementations of a scenario that

run on a variety of execution platforms [2]. It enables a formal model of both test intent (stimulus) and coverage

goals to be captured. In addition to enabling the same model of test intent to be reused across a range of verification

environments, portable stimulus methodology enables the process of efficient stimulus generation to be approached

in a different way. Instead of generating stimulus open-loop, the declarative portable stimulus models of test intent

and coverage goals can be used to generate efficient stimulus that is focused on the achieving the coverage goals, as

captured by the coverage model.

The formal and declarative nature of a portable stimulus description also supports analysis to detect mismatches

between test-intent and coverage models. This capability was used to identify mistakes in both the constraints and

the coverage models, and to ensure that the reachable size of coverage goals was as expected.

This paper will describe the process and results of deploying portable stimulus on a live project to increase

regression efficiency. It will describe how high-value integration points for portable-stimulus generation are

identified in new and existing testbench environments, what elements of the existing testbench can be leveraged to

create the portable stimulus model and integration, and what elements must be created specifically to support the use

of portable stimulus. It will describe the methodology used to identify and address gaps between the test intent

model and the coverage model and will describe how the test intent model is mapped to coverage models that are

mailto:nzubair@qti.qualcomm.com
mailto:nzubair@qti.qualcomm.com
mailto:kotas@qti.qualcomm.com
mailto:kotas@qti.qualcomm.com

not identical to the test intent model. Finally, it will describe the effort involved, the overall regression efficiency

and overall verification process benefits realized by applying portable stimulus in this manner.

II. PROBLEM STATEMENT

The video bitstream is spread across several units like - frame, tiles, slices, large coding units (LCU), macro

block (MB) or coding units (CU), prediction units (PU), Transform units (TU) etc. There are several parameters

which are inter dependent across these units and the behavior of those parameters also depend on the resolution of

frames, types of inter and intra predictions and directions supported, global motion estimator used, search range area

and estimation search algorithm used, number of parallel engines in the architecture (scalability), fps and

performance requirements for the use cases etc [1]. Video IP has various functionalities like bitstream parsing,

syntax element decoding/encoding, transform, prediction, motion compensation, integer/fractional search, filtering

and memory management.

In Video core Memory buffer takes care about various internal data structures and fetch requirements of

surrounding blocks, data manipulation necessities etc. Memory buffer (DUT) maintains common data memory to

manage shared data and for custom data structure requirements by other processing blocks. Recently, the

architecture updates in the DUT increased complexity and added more use cases which ended up in new multiple

scenarios and corner cases for the random verification environment. This ended up in a complex functional coverage

model around various supported tile combinations, frame resolutions, global motion, types of frames, number of

hardware pipes etc. Out of the total cover point bins, 90% are cross bins. Multiple stimuli classes which are

randomized at different places and cross cover points defined across those classes added to the complexity.

Practically coverage closure process involved fine tuning the stimulus manually to hit some corner scenarios, though

we wanted to target to specific scenarios of interest. So historically coverage closure took a huge set of random

regressions to reach the 100% target on the DUT and the last 5% usually necessitated manual interventions to

generate directed scenarios. The functional coverage closure for the last 2% bins took 4 to 7 weeks of rigorous direct

scenario creation effort on the last architecture. So, it anticipated a much more effort this time, if the problem is

approached in the usual manner.

Figure 1. It took 7 weeks for closing last 2% functional coverage

Fundamentally the number of cover bins and cross cover points that can be added to the coverage model are

challenged by this effort involved and time consumed. Constraint solvers lack the knowledge of how to smartly

generate the stimuli when we wanted to hit cross cover points with more parameters and inefficiently coded

constraints restrict generation of real use case scenarios. Memory buffer block (DUT) has crosses with even eight

parameters. Furthermore, there were no clear estimate possible on the number of random seeds or runs needed to

achieve the 100% functional coverage target with these complexities.

The numerous unalignments between stimuli (valid values, maximas, dependencies between random variable

etc.) and cover point definitions are reviewed and corrected only during the last stages of coverage closure activity.

But this also affected efficiency of overall coverage closure cycle. This paper covers the experience and benefits of

7 weeks

98% 100%

adopting a Portable Test and Stimulus Standard (PSS) based coverage closure methodology, which solved all above

issues associated with functional coverage closure in the random verification environment.

III. EXISTING APPROACH

The verification environment for memory buffer had two stimulus classes (frame_cfg and ref_cfg) which were

randomized at different places in the sequence. But since there is no direct control on the variables between these

classes, there is no control on the stimulus generation and the cross-coverage bins defined across variables from

these classes were hitting very slowly.

Figure 2. Existing approach for randomizing two different stimulus classes

IV. MOTIVATION

Video codec syntax parameters are very highly interlinked and inter dependent for a bitstream. This dependency

needs to be exploited intelligently so that thousands of tests defined in regression (which corresponds to a bunch of

scenarios and that mapped to several cross-cover points) can be generated efficiently without repetitions. The

removal of repetitive stimulus will help to improve regression efficiency.

IV. SOLUTION

The new approach of PSS based coverage closure methodology deals the whole problem in a different way. The

methodology empowers generation of stimuli with coverage targets as the goal and generate non-repeating stimuli

scenarios considering all cross-coverage dependencies in the coverage model. The major steps are as below,

A. Container class is introduced to instantiate frame class (for frame level configuration of parameters) and

reference class (child class) in the random environment, which require minor changes in the sequence (now

need to randomize only one class) but has the advantage of controllability of stimuli generation and hitting

of cross bins defined across those classes.

class memory_buffer_container extends uvm_sequence_item;

 rand memory_buffer_frame_cfg u_ memory_buffer_frame_cfg;

 rand memory_buffer_ref_cfg u_ memory_buffer_ref_cfg;

 constraint c1 {

 u_ memory_buffer_ref_cfg.standard = = u_ memory_buffer_frame_cfg.u_c1.standard;

 u_ memory_buffer_ref_cfg.frame_w = = u_ memory_buffer_frame_cfg.frame_w;

 u_ memory_buffer_ref_cfg.frame_h = = u_ memory_buffer_frame_cfg.frame_h;

 u_ memory_buffer_ref_cfg.data_pitch = = u_ memory_buffer_frame_cfg.u_c2.dp;

 }

endclass

Figure 3. Container class: memory_buffer_frame_cfg and memory_buffer_ref_cfg class dependencies are captured

B. A mapping is introduced between stimuli random variables in the container class and coverage class

variables to enable this. It creates a System Verilog class with a special constraint randomization method,

which takes care about generation of stimuli with coverage target goals.

Type Stimulus Coverage Mapping

Simple var_1 inside {0,1} var_1_s_var {bins val_0 = {0};bins val_1 =1}}; var_1_s_var,var_1

Class memory_buffer_frame_cfg {

 varibles

}

Class memory_buffer_ref_cfg {

 variables

}

Sequence {

.

randomize(memory_buffer_frame)

.

.

loop {

randomize(memory_buffer_ref)

}

.

}

Using expression var_2 inside

{96,192}

var_2_s_var {bins val_96 ={6};bins val_192={12}}; Var_2_s_var,EXPR:(var_2)/16

One stimulus

mapped to multiple

bins

var_3 inside {0,1} var_3_s_var {bins val_0 = {0};bins val_1={1}};

var_4_s_var {bins val_0 = {0};bins val_1={1}};

var_3_s_var,var_3

var_4_s_var,var_3

Table 1. Three examples of coverage to stimuli mapping

C. The generated System Verilog class is analyzed further and report valid scenarios as stimuli possibilities.

The stimuli possibility count characterizes the valid stimuli space for the constraints defined around the

stimuli, their dependencies and coverage defined. This step aid constraint efficiency improvement and

helped to identify,

1. The mismatches between coverage variables and random variables in definition and mapping

2. Detect over constraints which affected masking of any scenario crosses

3. Identify loose constraints which created huge number of stimuli possibilities unnecessarily

The flowchart shown below depicts the over methodology followed,

Figure 2. Flow Chart of the PSS based coverage closure flow

Understand stimulus and coverage dependencies

Introduce stimuli controllability if needed across classes

(E.g. Container class)

Update in sequence flow and/or randomization of classes

Identify number of stimuli - coverage sets needed

Define map file for each stimuli-coverage set

Generate stimuli – coverage set(s)

Calculate count of stimuli possibilities

Stimuli possibility count is

huge or taking too?

Review constraints,

identify loose

constraints, Spot

mapping issues etc. and

correct them

Go for regression

YES

NO

The balancing of total coverage bin count and stimuli possibility count facilitated to create the most efficient

stimuli – constraint set for the targeted coverage. The methodology provides a simulation distribution manager

which manages efficient stimuli generation without repetitions across various seeds and/or tests and ensure that each

test is targeting a new required scenario defined in the coverage plan.

V. RESULTS

The PSS based coverage closure approach helped to improve the overall random regression efficiency by 75%.

The approach ensured that each randomly generated tests/scenario are non-repetitive. The scenario generation was

quick and non-repetitive, could find several design and system model issues in short span of time (five weeks in case

of Memory buffer). It was almost impossible to confidently cover all scenarios around the new architecture in this

time with a good confidence.

The table below summarizes the comparison of coverage closure using the normal approach and the new

approach. The number of tests to be written and seeds are comparatively less which directly improve the

productivity of the regression task.

Items of interest Normal approach Using PSS based approach

Total number of tests 25 1*

Cover points (approximate) 19245 19245

Total seeds (indicates run time) 75,000 20,000

Time taken for coverage closure 16 weeks < 4 weeks (including initial setup time)

Table 2. Comparison of the approaches (* One test is enough with the new approach as the stimuli is coverage

target driven and methodology takes care about scenario generation)

In summary, the new PSS based approach increased efficient and productivity, it produced good results and has

following advantages,

1. Generates distinct stimuli and scenarios from day one of verification. The steepness in coverage

progress in the below graph shows that,

Figure 4. Coverage Progress Comparison

2. Over all time saving of 75% (4 weeks vs 16 weeks in case of Memory buffer block) on DV efforts and

LSF machine usage.

3. Coverage closure time was predictable even with complex functional coverage targets.

4. Improvements in simulation run time after optimization of constraints

Savings

5. Quality of DV is improved – better and efficient of stimuli and constraints, reducing gap in stimuli and

coverage model.

6. The methodology is very helpful when we want to close coverage for incremental projects with the

same random stimuli set from a previous project, but without spending much time and in a predictable

time. All the setup can be reused and even the minor coverage updates can be added quickly and close

the coverage quickly.

VI. CONCLUSION

Overall 75% of savings on regression (testcase writing effort, scenario generation effort, debug efforts, LSF time

etc.) was achieved with the adoption of the new PSS based coverage closure methodology. It gave very competitive

results with promising reduction in run time and reduced user involvement in functional coverage closure. The PSS

based coverage closure methodology is very promising one and can manage complex stimuli and coverage scenarios

and reusable easily for future projects.

The methodology is powerful to manage multiple stimuli-coverage strategy sets in parallel. Many times, the

stimuli are spread across several classes and there are cross cover points defined across those classes. Multiple

stimuli-coverage System Verilog class intends can be built and instantiated in the environment and it has given good

control over stimuli generation. The impact in this case is going to be much higher than the Memory buffer block.

So, this methodology can be potentially used for various other blocks too.

VII. ACKNOWLEDGMENT

Thanks for all the help and support from my team for experimenting and proving this.

VIII. REFERENCES

[1] https://www.vcodex.com/an-overview-of-h264-advanced-video-coding/

[2] https://www.accellera.org/activities/working-groups/portable-stimulus

https://www.vcodex.com/an-overview-of-h264-advanced-video-coding/
https://www.vcodex.com/an-overview-of-h264-advanced-video-coding/
https://www.accellera.org/activities/working-groups/portable-stimulus
https://www.accellera.org/activities/working-groups/portable-stimulus

