2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Increased Regression Efficiency with
Jenkins Continuous Integration

“Time is really the only capital that any human being has,
and the only thing he can’t afford to lose” - Thomas Edison

Thomas Ellis, Mentor Graphics, DVT, Wilsonville, OR, USA (thomas_ellis @ mentor.com)

Abstract—For all the incredible technological advances to date, no one has found a way to generate additional time.
Consequently, there never seems to be enough of it. Since time cannot be created, it is utterly important to ensure that
it is spent as wisely as possible. Applying automation to common tasks and identifying problems earlier are just two
proven ways to best utilize time during the verification process. Continuous Integration a software practice, coupled
with an intelligent regression system, can do precisely that, resulting in a more efficient use of time and resources.

Keywords—jenkins, continuous integration, regression, efficiency, management, functional verification, metrics

I. WHATIS CONTINUOUS INTEGRATION?

The basic principle behind Continuous Integration (CI) is that the longer a branch of code is checked out, the more
it begins to drift away from what is stored in the repository. The more the two diverge, the more complicated it
becomes to eventually merge in changes easily. Ultimately leading to what is commonly referred to as
“integration hell”. To avoid this, and ultimately save engineers time, CI calls for integrating regularly and often
(typically daily).

Regular check-ins are of course, only half the equation, you need to be able

to verify their changes quickly as well, otherwise many small check ins over I'
several days, is no different than one large check in at weeks end.
Commonly, in a Continuous Integration environment, a CI server monitors B

the source control for check in’s, which in turn triggers a CI process (time-
based triggers are also common). This process will then build the necessary

design files, and run the requisite integration tests. Once complete, the results , L kI
of the tests are reported back to the user, and assuming everything passed, — =X o)
can now be safely committed to the repository. OEVELOPMENT BOLD
By following this model, issues can be caught earlier in the development

process, and can be resolved quicker as there is less variance between check L \]

ins. —\4

TESTING

This practice has been used successfully for many years in the software [igure I. Continuous Integration Flow

industry, so much so, that it is fairly common place today. However, the idea

of Continuous Integration is still fairly new in the realm of hardware verification, so it is difficult to find any
published metrics on its usage as it pertains to that space specifically. However, one of the benefits of adopting a
more mature technology, is you can avoid encountering some of the pitfalls which plagued early adopters. Since
Continuous Integration technology has been used by software teams for some time, you can glean a general idea
of both how widespread its usage has become, as well as what technologies have risen to the top.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

ZeroTurnaround is a development company, which amongst other

things, conducts an annual global survey of Java developers, and

produces a report of the tools and technologies being most

commonly used by the industry [1]. In 2014, they received “ “ 0
responses from nearly 2200 developers covering many topics, one

of which was their usage of Continuous Integration

Technologies. In that survey, they found that roughly 80% of (or 4

out of 5) developers, reported using Continuous Integration in their o 0
teams. A number which itself, showed fairly significant growth, up

from 68% the prior year.
¢ p y Figure 2. 4 in 5 developers use Continuous

. . . . Integration
Another interesting aspect of the report, is the breakdown of which

Continuous Integration servers were most commonly used. Far and away the most popular server was Jenkins,
which was reportedly used by 70% of the developers who claimed to use CI. The second place tool, by
comparison, was used by a mere 9% of users. So what is Jenkins, and why is it the favorite CI tool of so many
users?

II. MEETJENKINS

Jenkins is a freely available, open-source continuous integration tool (released under the MIT license).

A quick background, Jenkins was initially developed by Kohsuke Kawaguchi while he was
working at Sun Microsystems in 2004. However, at the time, the project was named Hudson.
After its initial release in 2005, it quickly became a favorite open-source build server. In
2010, issues began to arise between the open source community working on Hudson, and
Oracle (who had since acquired Sun). Eventually requiring a vote to be called, as to whether
to continue development, or to break ties with Oracle and fork the project. Based on an
overwhelmingly supportive community vote, Jenkins’ was born, created as a fork of
Hudson. The majority of those working on, or using Hudson at the time, eventually migrated
to Jenkins. Currently there are at least 127,000 active installations of Jenkins (based on the
Figure 3. Jenkins CI ~ anonymous usage statistics collected by the tool). As for Hudson, remember the
ZeroTurnaround study? They found only 8% of users to still be using Hudson.

Apart from being open-source, Jenkins is easy to install and highly configurable via its web interface. While
Jenkins offers a lot itself, it is also highly extensible via plug-ins to the tool. At present, it boasts 1350+ plugins
from 580+ contributors, to perform a myriad of different tasks, allowing for many third-party tools to leverage the
power of Jenkins.

III. INSTALLING JENKINS

Getting Jenkins up and running is a very straight forward, and simple process. The easiest way to run Jenkins,
and the method which this paper will demonstrate, is to run Jenkins via it’s built in Jetty servlet container. Note,
Jenkins does require Java (1.7 or later) be installed on the system. Details on additional installation methods, such
as using the built-in packages provided by certain OS’s (such as Red Hat and Windows), or running Jenkins
through Tomcat, can all found on the Jenkins Wiki [2].

First, you need to download the war file from the Jenkins website [3]. Once downloaded, to start the Jenkins
server, you simply type the following command (additionally, we will send the log output to a file):

java —-jar jenkins.war > Jenkins.log
Jenkins is now up and running. To access Jenkins, simply open your web browser and navigate to

http://<servername>:8080 (where the <servername> is the name of the machine you are running on). You should
see the following page displayed:

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

€« C' | [} localhost:8080 ES

Jenkins :NABLE AUTO REFRESH

E New ltem (Zadd description
& Feopte Welcome to Jenkins!

% Build History

. Manage Jenkins Please create new jobs to get started

A Credentials

Build Queue =

No builds in the queue

Build Executor Status =

1 Ide
2 Idle

Figure 4. Jenkins Web Interface

As the page says, Welcome to Jenkins! That is all there is to getting Jenkins running. Once running, there are
many ways to customize, and administer your Jenkins environment, to your liking. That customization however,
is beyond the scope of this paper. For now we will simply focus on creating a simple Jenkins project to launch a
regression of verification tests.

IV. RUNNING A REGRESSION IN JENKINS

Let’s take a quick look at setting up a project to run a regression in Jenkins. Below is the project configuration
page in Jenkins when you create a new freestyle project.

Jenkins my project ¥ configuration

Source Code Management

® None

cvs
CVS Projectset
aGit

Subversion

Bulld Triggers

Build after other projects are built ®

Build periodically ®
Poll SCM ®
Bulld

Add buildstep v

Post-bulld Actions

Add post-buildaction ~

Page generated: Jul 14. 2015 12:11:40 PM RESTAPI Jenki

Figure 5. Configuring a Project in Jenkins

Here you can see the basic steps for configuring a project in Jenkins. Tasks in Jenkins are represented by builds. A
build could be a complete regression, it could be the running of unit tests, or any other task you may wish Jenkins
to automate.

First you specify when to run your tests via a build trigger. A build trigger can be a period of time, a specific
time, or you can even have Jenkins monitor your repository for changes, and automatically start a build for you.

Next you tell Jenkins what to do when the trigger occurs. Jenkins is capable of running just about anything you
can think to throw at it, which for this example, will be to launch a set of regression tests. Being able to setup
builds and triggers is really Jenkins’ bread and butter. Additionally, you can manually execute a build anytime
you would like by simply clicking a button.

The final configuration step allows you to tell Jenkins to do something additional with the results of the build. Out
of the box, Jenkins will give you basic pass/fail information, meaning, if you launch a script to run your regression,
it will tell you whether or not your script passed or failed. It will also keep track of the history of your runs,

2016

DESIGN ANHERIﬂZA’TION“
CONFERENCE AND EXHIBITION
including information such as the last stable build and changes made between builds (if you are using some form

of source code management. However, its lack of the metrics verification engineers are most commonly interested
in, makes it feel a bit empty.

@ ThomElis [log out
Jenkins Simple Jenkins s
Backto Dashboard
» Project Simple Jenkins
L) status
> Changes Ethermac design
(Zedit description
& W
d—
) Build Now
) Delete Project E Workspace
2 Configure —
= R it Ch
[] Subversion Poling Log L
Build History trend = Permalinks
= Last build (#2). 36 min ago
+ Last stable build (2) 36 min ago
» Last successful bu 36 min ago
o - Last completed build (#2). 36 min ago
o#
[RSS for all [RSS for failures
E Help us localize this page Page generated: Apr 13, 2016 14121 PMPDT RESTAP| Jenkins ver 1.650

Figure 6. Jenkins Project Page

At a minimum, you would like to see pass/fail results on a per test basis. Additional information on the tests,
additional metrics including coverage, etc., as well as trend of this information would also be very valuable.
Commonly this is where plug-ins come into play, and as mentioned earlier there are a myriad of different ones
available. Most plug-ins rely on the user running simulations using a specific tool, and in turn, it can take those
results, and process them to report more relevant data through Jenkins project pages. The first step then, is to find
a regression management tool, which also has a Jenkins plug-in which can be used to better report on your
regression results. The best option for that, is Questa’s Verification Run Manager (VRM).

V. JENKINS AND VRM

On the surface, one might think that Jenkins and VRM are competitive technologies; after all, both tools can build,
run and report on regressions. However, in actuality, they are truthfully complementary technologies.
Furthermore, by marrying the two technologies together, you can benefit from the strengths of both, and create an
extremely powerful solution for building and testing hardware designs.

Launch Regression Run Regression Display Results

Figure 7. Jenkins and VRM Work Together

While Jenkins is extremely flexible, and can run just about anything, with lots of neat bells and whistles to boot,
nothing within the Jenkins core is knowledgeable about hardware verification. In the same way that VRM does
not natively monitor code repositories for developer check-ins, concepts like merging System Verilog functional
coverage, or recognizing why a UVM testbench failed are not native to Jenkins, in the way that they are at the
core of VRM. What you want to do is leverage Jenkins’ strengths as a build system to monitor your source
repository and allow it to launch builds. Ultimately what it will launch in the build step though, is VRM, which
will handle managing the individual verification tasks by integrating with your grid software, automatically
collecting and merging the coverage and results, etc. Once the regression is completed, Jenkins can then ask VRM
to supply metrics for what was accomplished during the run, and display those results in its web dashboard.

4

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

VI. VRM JENKINS PLUG-IN

Finally, to leverage one of key benefits of Jenkins, its high extensibility through plug-ins. To get Jenkins to
become more useful with respect to running regressions with VRM, you can leverage the Questa VRM Jenkins
plug-in. To do this, you simply install the plug-in through Jenkins plug-in manager by a few simple clicks, and
voila! Jenkins now has the ability to understand code and functional coverage, determine where log files reside,
monitor host utilization, and many other verification centric tasks.

All that is required is to modify the project to leverage the Jenkins VRM plug-in. To display the regression results,
and enable these features, you merely need to add what is called a post-build action (in Jenkins terms), which has
Jenkins call the plug-in to process and bring together of the regression results.

Post-build Actions

Publish Questa VRM Regression Results
VRMDATA |y biiDATA @

¥ Publish VRM HTML Results to Project Page
Publish the vrm html report to the project page.
¥ Publish Coverage Results

Publish the coverage results of the mergefile(s) to jenkins.

Advanced...

Figure 8. VRM Jenkins Plug-In

The setup is very straightforward, all that is required is for you to Jenkins where the regression ran. Additionally,
you can optionally select to enable a few other features such as creating HTML reports and publishing a coverage
graph to the project page. That’s it! Jenkins and VRM will do the rest.

VII. VRM REGRESSION RESULTS IN JENKINS

Another great feature of Jenkins is its web dashboard. Now that it is using the VRM Jenkins Plug-in, you get
access to a lot of great information at a glance. There is far too much to show in this paper, but here are a few of
the highlights.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Project Ethmac

Ethernet MAC Controller
(Zredit description

Disable Project

Coverage Result Trend

@ Questa VRM Report

=

Coverage %

| =2 Recent Changes
==

SRR EINERERRIEANAANTAY
S — S

— Assertions — Branches

Covergroups

Directive

Testplan Coverage

Total Coverage

tatements

m Latest Test Result (2 failures / -4)

enlarge
Attribute Graphs
4 Add
7/ Lates! Regression Resutt (no non-test failures)
Questa Results Summary enlarge

Test Result Trend

Build Duration Passed Failed Skipped Total CPU Time Total Coverage Testplan Coverage

56.4361
24.5018
245013
245018
245013
More

88 2 0 a0
84 6 El
87 2 8
87 3 El
&7 4 9

69 3605
69.4030
69.4021
693597
693588

£210 5 min 46 sec 2 hr 57 min
#209
#208
#207

#206

<}

2 hr 22 min
2 hr 32 min
3 hr 56 min
2 hr 10 min

7 min 26 sec

count

3

6 min 9 sec

s

15 min

oo oo

7 min 37 sec

Permalinks

« Last build (#210). 1 day 19 hr ago
« Last stable build (#151). 1 mo 15 days ago

- Last successful build (#210). 1 day 19 hr ago
« Last failed build (#191). 1 mo 9 days ago |
+ Last unstable build (#210) 1 day 19 hr ago | -

+ Last unsuccessful build (#210). 1 day 19 hr ago

s
el
- Last completed build (#210). 1 day 19 hr ago 4 |
21

mins

ga8dugd

Figure 9. Jenkins Project Dashboard

You will notice big differences on the project page now that the VRM plug-in is in use (compare to figure 5). The
main project page has two graphs which shows you a trend of the test results, as well as the coverage results from
all your past regression runs. Making it easy to see at a glance how you are progressing towards coverage closure,
as well as spot key data points in your regression history.

There is also a summary table which lists the last several regressions (you can expand it by clicking the ‘More...”
link), including information on their duration, pass/fail statistics and coverage. The ‘VRM HTML Report’
provides a quick link to the VRM HTML report, as well as the coverage HTML report.

Additionally, you will notice a link to the ‘Latest Test Result’, which provides you the ability to dive into the
individual test results, something you weren’t able to do before. In addition, it also gives more detailed data on
that particular regression.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Test Result

5 failures (+1

35 tests (£0)
Took 0 ms.
(add description

Pass/Fail Results

et —

aile

Coverage Results
20 30 40 50 60

Passed

[10 80 90 100
Statements
Assertions
Directives
Branches
Covergroups
f
All Failed Tests
Test Name Duration Age
ok regression simulate run~ethmac_req_reset_test 1450879687 ethmac_req_reset_test 1450879687 19sec 1
o regression simulate run~ethmac_rand_rx_test_1910893975 ethmac_rand_rx_test 1910893975 10sec 1
ok regression simulate run~ethmac_tx_pki_test 777096940 ethmac_tx_pkt_test_ 777096340 16sec 1
ok regression simulate run~ethmac_tx_pkt_test 1820213173 ethmac_tx_pkt_test 1820213173 15 A
< regression.simulate.run~ethmac_rand_rxtx_test 1418247096.ethmac_rand_rxtx_test 1418247096 5min57sec 1
All Tests
Package Duration Fail (@iff) Skip (diff) Pass (diff) Total (diff).
regression 27 sec 0 0 1 1
regression simulate 33 min 5 #1 0 29 A1 34

Figure 10. Regression Results

Here, in addition to pass/fail and coverage results, you can also see a list of the specific tests which failed,
providing a means for easy high-level inspection. Expanding a given test, will give us both the reason for the
failure, as well as the standard output for the test in question.

All Failed Tests

Test Name Duration ~ Age
= regression.simulate.run~ethmac_req_reset_test_1450879687.ethmac_reg_reset_test_1450879687
= Stack Trace
Bus Conflict, driven by multiple devices
= Standard Output

Model Technology ModelSim SE vmap DEV-main 2932848 Lib Mapping Utility 2816.61 Jan 17 2016
vmap work /home/darronm/NextGen/ethermacBertrand/sim/scripts/VRHDATA/work

Copying /bata/mamer/main_wv/modeltech/linux/. . /modelsim.ini to modelsim.ini

Modifying modelsim. ini

Reading pref.tcl

DEV-main 2932948

°% Warning: (vsim-12019) Incorrectly (or incompletely) specified option ‘-mvchome': (Argument '-
uvmcontrol=struct® appears to be a simulator switch).

vsim -printsimstats -c -do "run.do” -sv_seed 1450879587 -

/home /darronm/NextGen/ethermacBertrand/sim/scripts/. . /tests/ethmac_reg_reset_test.f -mvchome -uvmcontrol=struct -
msgmode both -displaymsgmode both -coverage cthmac_tb_opt -GfailurcRate=2

% Start time: 16:20:52 on Jan 21,2016

// MedelSim SE DEV-main 2932948 Jan 17 2016 Linux 2.6.18-164.el5

// Warning: This is a non-production build that will expire in 48 days on Wed Mar 2 00:00:80 2016

Copyright 1991-2816 Mentor Graphics Corporation
ALl Rights Reserved.

MedelSim SE and its associated documentation contain trade

secrets and commercial or financial information that are the property of
Mentor Graphics Corporation and are privileged, confidential,

and exempt from disclosure under the Freedom of Information Act,

5 U.S.C. Section 552. Furthermore, this information

is prohibited from disclosure under the Trade Secrets Act,

18 U.5.C. Section 1985.

ocading sv_std.std

Loading work.wishbone_if(fast}

Loading work.cth mii if(fast)

Loading mtiUum.uvm_pkg

Loading work.eth mii agent pkg(fast)

Loading work.eth reg pkg(fast)

Loading work.mem_mgr_pkg(fast)

Loading work.ethmac_host_agent_pkg(fast)
Loading work. ethmac_rxtx_agent_pkg(fast)
Loading work.ethmac_stim_types_pkg(fast)
Loading work.ethmac_cfg_agent_pkg(fast)
Loading work.wb_agent_pkg(fast)

Loading work.ethmac_reg_agent_pkg(fast)
Loading work. cpu_wb_agent_pkg(fast)

Loading work.wb_mem mgr_slave agent pkg(fast)
Loading work.ethmac_env_pkg(fast)

Loading work.cthmac_stim seqs_pkg(fast)

Figure 11. Test Output

You can also dive deeper into the data, and analyze the statistics of a given test, and its individual coverage
numbers, additional metrics, etc.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

EUROPE

The plug-in leverages the vast amount of data VRM collects from the regression runs, allowing for all sorts of
data to be analyzed that would otherwise need to be collected and reported manually. Otherwise difficult questions
become easy to answer. Has this test, with this seed ever failed before? What is the host utilization like during a
nightly regression? When did coverage drop off?

Chart See Build Number =
children Package-Class-Testmethod names U

5} © | regression

simulate/run~ethmac_rand_rx_test_1

simulatefrun~ethmac_rand_r«_test_2

Host Utilization Graph ("] simulate/run~ethmac_rand_rxtx_test_1

simulate/run~ethmac_rand_ntx_test_10

simulate/run~ethmac_rand_xtx_test_100

simulatefrun~ethmac_rand_xtx_test_101

simulate/run~ethmac_rand_ntx_test_102

simulate/run~ethmac_rand_rxtx_test_103

simulate/run~ethmac_rand_xtx_test_104

simulate/run~ethmac_rand_ntx_test_105

simulate/run~ethmac_rand_rxtx_test_106

© 06 0 06 0 0o © 0 © © o o

simulate/run~ethmac_rand_rxtx_test_107

count
=
=

2700
32000
33000
34000
35000
37000
38000
39000
42000
45000
amo0
48000
49000
50000
51000
52000
53000
55000
56000
58000
62000
66000
392000
397000
400000
419000

Figure 12. Regression Data Examples

Thanks to the plug-in, you can now get access to the results and history of every regression and every test ran
through Jenkins, including a mass of other metrics from memory usage and simulation time, to code and functional
coverage, now all available through the Jenkins dashboard.

VIII. SUMMARY

Continuous Integration with Jenkins CI, coupled with Questa Verification Run Manager, provides a powerful
automated solution for build and regression management. In automating the regression process and helping to
identify problem areas earlier, they allow verification engineers to make more efficient use of the time given even
in the tightest of schedules.

REFERENCES

[1]1 RebelLabs, “Java Tools and Technologies Landscape for 2014, 2014
[2] Jenkins Wiki, https://wiki.jenkins-ci.org/display/JTENKINS/Meet+Jenkins
[3]1 Jenkins, https://jenkins.io

