2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Thomas Ellis, Mentor Graphics, DVT, Wilsonville, QBSA ¢homas_ellis@mentor.cgm

Abstract—For all the incredible technological advamres to date, no one has found a way to generate #&duhal time.
Consequently, there never seems to be enough of 8ince time cannot be created, it is utterly impdant to ensure that
it is spent as wisely as possible. Applying autortian to common tasks and identifying problems earér are just two
proven ways to best utilize time during the verifiation process. Continuous Integration a software npactice, coupled
with an intelligent regression system, can do presely that, resulting in a more efficient use of tire and resources.

Keywords—jenkins, continuous integration, regressjefficiency, management, functional verificatiometrics

. WHATISCONTINUOUSINTEGRATION?

The basic principle behind Continuous Integration (Cilpé the longer a branch of code is checked out, the more
it begins to drift away from what is stored in the réfwog. The more the two diverge, the more complicated it
becomes to eventually merge in changes easily. Ultigndéalding to what is commonly referred to as
“integration hell”. To avoid this, and ultimately saaegineers time, Cl calls for integrating regularly anéoft

(typically daily).

Regular check-ins are of course, only half the equayion,need to be able

to verify their changes quickly as well, otherwise manylsameck ins over ||
several days, is no different than one large check in ed¢ksv end.
Commonly, in a Continuous Integration environment, a Cl senggtitors CoNTROL

the source control for check in’s, which in turn triggers K@kess (time-
based triggers are also common). This process will thigohthe necessary

design files, and run the requisite integration testece@omplete, the result: || L ,7
of the tests are reported back to the user, and ass@wémgthing passed, ~a= =
can now be safely committed to the repository. DEVELOEMENT BUKD

By following this model, issues can be caught earlier indineelopment

process, and can be resolved quicker as there is leaasatbetween checl L j

ins. —\

TESTING

This practice has been used successfully for manysyieathe software Figure 1. Continuous Integration Flow

industry, so much so, that it is fairly common place toddgwever, the idea

of Continuous Integration is still fairly new in the reabhhardware verification, so it is difficult to find @n
published metrics on its usage as it pertains to fietesspecifically. However, one of the benefits of adgysi
more mature technology, is you can avoid encountering some pitfiddés which plagued early adopters. Since
Continuous Integration technology has been used by softeanes for some time, you can glean a general idea
of both how widespread its usage has become, as welladedhnologies have risen to the top.

2016

DESIGN AND VERIFICATION™

DVLCCOIN

CONFERENCE AND EXHIBITION

ZeroTurnaround is a development company, which amongst o*~~~

things, conducts an annual global survey of Java developers,

produces a report of the tools and technologies being n

commonly used by the industry [1]. In 2014, they receiv 0 o 0
responses from nearly 2200 developers covering many taypies,

of which was their usage of Continuous Integrati

Technologies. In that survey, they found that roughly 80%rof (:

out of 5) developers, reported using Continuous Integratidmein t 0 0
teams. A number which itself, showed fairly significardvgth, up

from 68% the prior year.
P y Figure 2. 4 in 5 developers use Continuous

. . X . Integration
Another interesting aspect of the report, is the breakdowrhiafhw

Continuous Integration servers were most commonly usedarféaaway the most popular server was Jenkins,
which was reportedly used by 70% of the developers who dhbitmeuse Cl. The second place tool, by

comparison, was used by a mere 9% of users. So whankins, and why is it the favorite Cl tool of so many
users?

II. MEETJENKINS
Jenkins is a freely available, open-source continuous attegrtool (released under the MIT license).

A quick background, Jenkins was initially developed by Kohdt&eaguchi while he was
working at Sun Microsystems in 2004. However, at the tittme project was named Hudson.
After its initial release in 2005, it quickly becamdaaorite open-source build server. In
2010, issues began to arise between the open source commiarityg on Hudson, and
Oracle (who had since acquired Sun). Eventually requiring aedie called, as to whether
to continue development, or to break ties with Oracle ankl the project. Based on an
overwhelmingly supportive community vote, Jenkins’ was boreated as a fork of
Hudson. The majority of those working on, or using Hudsonestiine, eventually migrated
to Jenkins. Currently there are at least 127,000 aictstallations of Jenkins (based on the
Figure 3. Jenkins CI anonymous usage statistics collected by the tool). faks Hudson, remember the
ZeroTurnaround study? They found only 8% of users to stilisieg Hudson.

Apart from being open-source, Jenkins is easy to instdllhéghly configurable via its web interface. While
Jenkins offers a lot itself, it is also highly extensilke plug-ins to the tool. At present, it boasts 135Qgipls
from 580+ contributors, to perform a myriad of differerskis allowing for many third-party tools to leveralge t
power of Jenkins.

Ill. INSTALLING JENKINS

Getting Jenkins up and running is a very straight forward, emples process. The easiest way to run Jenkins,
and the method which this paper will demonstrate, is tdeunkins via it's built in Jetty servlet container. t&lo
Jenkins does require Java (1.7 or later) be installédeosystem. Details on additional installation methsdsh

as using the built-in packages provided by certain OS’sh(ascRed Hat and Windows), or running Jenkins
through Tomcat, can all found on the Jenkins Wiki [2].

First, you need to download the war file from the Jenkiebsite[3]. Once downloaded, to start the Jenkins
server, you simply type the following command (additibnale will send the log output to a file):

java —jar jenkins.war > Jenkins.log
Jenkins is now up and running. To access Jenkins, simply ppen web browser and navigate to

http://<servername>:8080 (where the <servername> is the nhthe machine you are running on). You should
see the following page displayed:

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

<« C' | [localhost:8080 ke

Jenkins ENABLS

-

& New ltem (Hadd description
& Feope Welcome to Jenkins!
= Build History
& Manage Jenkins Please create new jobs to get started
,@ Credentials
Build Queue =

No builds in the queue

Build Executor Status =

1 Ide
2 Idle

Figure 4. Jenkins Web Interface

As the page says, Welcome to Jenkins! That is all tiseie getting Jenkins running. Once running, there are
many ways to customize, and administer your Jenking@mment, to your liking. That customization however,
is beyond the scope of this paper. For now we will sinfigatyis on creating a simple Jenkins project to launch a
regression of verification tests.

IV. RUNNING A REGRESSIONN JENKINS

Let's take a quick look at setting up a project to auregression in Jenkins. Below is the project configuma
page in Jenkins when you create a new freestyle project.

Jenkin: my project v configuration =

Source Code Management

Build after other projects are built 2

Build pericdically ®
Poll SCM ©
Buila

Add buildstep v

Post-bulld Actions

[] Add post-buildaction +

Figure 5. Configuring a Project in Jenkins

Here you can see the basic steps for configuring a pinjé@enkins. Tasks in Jenkins are represented by builds. A
build could be a complete regression, it could be the runiiingibtests, or any other task you may wish Jenkins
to automate.

First you specify when to run your tests via a build trigga build trigger can be a period of time, a specific
time, or you can even have Jenkins monitor your repositorghimnges, and automatically start a build for you.

Next you tell Jenkins what to do when the trigger occurskideis capable of running just about anything you
can think to throw at it, which for this example, will teelaunch a set of regression tests. Being able tgpset
builds and triggers is really Jenkins’ bread and butfdditionally, you can manually execute a build anytime
you would like by simply clicking a button.

The final configuration step allows you to tell Jenkind@cssomething additional with the results of the builiit

of the box, Jenkins will give you basic pass/fail inforimatmeaning, if you launch a script to run your regression,
it will tell you whether or not your script passedfailed. It will also keep track of the history of youms,

3

2016

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

including information such as the last stable build and chamgds between builds (if you are using some form
of source code management. However, its lack of theasetrification engineers are most commonly interested
in, makes it feel a bit empty.

Jenkins

Jenkins

@ Thom Ells llog out

Simple Jenkins

Back to Dashboard

Q, status
= Changes

& workspace

Project Simple Jenkins

Ethermac design
(edit description

Disable Project

£2) Build Now
@ Delete Project

\i 5 Workspace

#, Configure —
—# Recent Changes
=l

[] subversion Poling Log

Build Histary Permalinks

= Last build (#2). 36 min ago
+ Last stable build (#2) 36 min ago
» Last successful build (#2) 36 min ago
o# - Last completed build (#2). 36 min ago
@ s
) RSS for all [RSS for failures
E Help us localize this page Page generated: Apr 13, 2016 14121 PMPDT RESTAP| Jenkins ver 1.650

Figure 6. Jenkins Project Page

At a minimum, you would like to see pass/fail results onratget basis. Additional information on the tests,
additional metrics including coverage, etc., as well asdrof this information would also be very valuable.
Commonly this is where plug-ins come into play, and as mentieadikr there are a myriad of different ones
available. Most plug-ins rely on the user running simutetiosing a specific tool, and in turn, it can take those
results, and process them to report more relevantltatagh Jenkins project pages. The first step then, is to find
a regression management tool, which also has a Jenkinsnpligich can be used to better report on your
regression results. The best option for that, is Qegtxification Run Manager (VRM).

V. JENKINSAND VRM

On the surface, one might think that Jenkins and VRM are caimpatichnologies; after all, both tools can build,
run and report on regressions. However, in actualitgy tare truthfully complementary technologies.
Furthermore, by marrying the two technologies togetymr,can benefit from the strengths of both, and create a
extremely powerful solution for building and testing hardwaesigns.

Launch Regression Run Regression

Display Results

Figure 7. Jenkins and VRM Work Together

While Jenkins is extremely flexible, and can run just alaoything, with lots of neat bells and whistles to boot,
nothing within the Jenkins core is knowledgeable about hardwafeagon. In the same way that VRM does
not natively monitor code repositories for developer checkeimscepts like merging System Verilog functional
coverage, or recognizing why a UVM testbench failed arenative to Jenkins, in the way that they are at the
core of VRM. What you want to do is leverage Jenkingrgjths as a build system to monitor your source
repository and allow it to launch builds. Ultimately witawill launch in the build step though, is VRM, which
will handle managing the individual verification tasks by indééiglg with your grid software, automatically
collecting and merging the coverage and results, atce @e regression is completed, Jenkins can then ask VRM
to supply metrics for what was accomplished during theamd display those results in its web dashboard.

4

2016

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

VI. VRM JENKINSPLUG-IN

Finally, to leverage one of key benefits of Jenkinshit$ extensibility through plug-ins. To get Jenkins to
become more useful with respect to running regressios\WRiM, you can leverage the Questa VRM Jenkins
plug-in. To do this, you simply install the plug-in througimkins plug-in manager by a few simple clicks, and
voila! Jenkins now has the ability to understand code and &nattcoverage, determine where log files reside,
monitor host utilization, and many other verification centaigks.

All that is required is to modify the project to leage the Jenkins VRM plug-in. To display the regressisults
and enable these features, you merely need to add wisdleid & post-build action (in Jenkins terms), which has
Jenkins call the plug-in to process and bring together akthession results.

Post-build Actions

Publish Questa VRM Regression Results
VRMDATA |y oiDATA)

¥ Publish VRM HTML Results to Project Page
Publish the vrm html report to the project page.
¥ Publish Coverage Results

Publish the coverage results of the mergefile(s) to jenkins.

Advanced...

Figure 8. VRM Jenkins Plug-In

The setup is very straightforward, all that is requissibi you to Jenkins where the regression ran. Additignal
you can optionally select to enable a few other featwres as creating HTML reports and publishing a coverage
graph to the project page. That's it! Jenkins and VRMde the rest.

VIl. VRM REGRESSIONRESULTSIN JENKINS

Another great feature of Jenkins is its web dashbobllwlv that it is using the VRM Jenkins Plug-in, you get
access to a lot of great information at a glance.réltsefar too much to show in this paper, but here aesvaf
the highlights.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Project Ethmac
Ethemet MAC Controller
[Zredit description
Coverage Result Trend
@ Questa VRM Report -
= P e —
&
Ewmksgace § PR C -
8
—
| =5 Recent Changes e o = = e
= TSRTETRRREREENYNYERE0aTIRYEREN
— Assertions — Branches — Covergroups Directives — Statements
Latest Test Result (2 failures / -4) Testplan Coverage Total Coverage
enlarge
Attribute Graphs
i‘: Latest Regression Result (no non-test failures) £
Questa Results Summary enlarge
Test Result Trend
Build Duration Passed Failed Skipped Total CPU Time Total Coverage Testplan Coverage
#210 5min d6sec &6 2 0 90 2hr57min 63.3605 56.4361
#209 7 min26sec 84 6 0 90 2hr22min 69.4030 24.5018 =
5
#08 6min9sec &7 2 0 89 2hra2min 69.4021 245018 g
#07 15min 87 3 0 90 3hrs6min 69.3597 245018
#2056 7 min 37 sec &7 4 0 91 2hridmin 633588 24,5018
Vo oy ol b L i ok 2al
e F599 2 [5 g ER
, T TITEFEFEEITIERCELTE
Permalinks ust show failures) enlarge
Build Time Trend
« Last build (#210). 1 day 19 hr aga
« Last stable build (#151). 1 mo 15 days ago
« Last successful build (#210). 1 day 19 hr ago 12
+ Last failed build (#191). 1 ma 9 days ago .
« Last unstable build (#210). 1 day 18 hr ago A (S R R - B A
+ Last unsuccessful build (#210). 1 day 19 hr ago E
« Last completed build (#210). 1 day 19 hr ago o
21
25 BB R
EEEREEE R LR R R LR L R ERRE N
enlarge

Figure 9. Jenkins Project Dashboard

You will notice big differences on the project page now th@MRM plug-in is in use (compare to figure 5). The
main project page has two graphs which shows you a trethe tést results, as well as the coverage results from
all your past regression runs. Making it easy to segitnce how you are progressing towards coverage closure,
as well as spot key data points in your regression history.

There is also a summary table which lists the lagémal regressions (you can expand it by clicking tere...’
link), including information on their duration, pass/fail stits and coverage. The ‘VRM HTML Report’
provides a quick link to the VRM HTML report, as wellthe coverage HTML report.

Additionally, you will notice a link to the ‘Latestebt Result’, which provides you the ability to dive into the
individual test results, something you weren't able to dorbe In addition, it also gives more detailed data
that particular regression.

2016

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Figure 10. Regression Results

Here, in addition to pass/fail and coverage results, youaiso see a list of the specific tests which failed,
providing a means for easy high-level inspection. Expandingem dest, will give us both the reason for the
failure, as well as the standard output for the test istmqre

All Failed Tests

Test Name Dution Age
= regression.simulate. un~ethmac_req_reset_test_1450879687.sthmac_req_reset_test_1450879687

= Stack Trace

Bus Conflict, driven by multiple devices
= Standard Output

Hodel Technology ModelSim SE vmap DEV-main 2932848 Lib Mapping Utility 2016.61 Jan 17 2016
vmap work /home/darronm/NextGen/ethermacBertrand/sim/scripts/VRIDATA/ work

Copying /bata/mamer/main_wv/modeltech/linux/../modelsim. ini to modelsim.ini

Hodifying modelsim.ini

Reading pref.tcl

DEV-main 2932948

°% Warning: (vsim-12019) Incorrectly (or incompletely) specified option ‘-mvchome': (Argument '-
uvmcontrol=struct® appears to be a simulator switch).

vsim -printsimstats -c -do "run.do” seed 1450879687 -f

/home /darronm/NextGen/ethermacBertrand/sim/scripts/. . /tests/ethmac_reg_r
msgmode both -displaymsgmode both -coverage cthmac_tb_opt -GfailurcRate=2
% Start time: 16:20:52 on Jan 21,2016

// ModelSim SE DEV-main 2932948 Jan 17 2016 Linux 2.6.18-164.el5

// Warning: This is a non-production build that will expire in 48 days on Wed Mar 2 00:00:80 2016
/7

/[Copyright 1991-2816 Mentor Graphics Corporation

// ALl Rights Reserved.

/7

// MedelSim SE and its associated documentation contain trade

// secrets and commercial or financial information that are the property of

// Mentor Graphics Corporation and are privileged, confidential,

// and exempt from disclosure under the Freedom of Information Act,

% // 5 U.5.C. Section 552. Furthermore, this information

// is prohibited from disclosure under the Trade Secrets Act,

// 18 U.S.C. Section 1905.

LR

% Loading sv_std.std

% Loading work.wishbone_if(fast)

% Loading work.eth_mii_if(fast)

Loading mtilum.uvm_pkg

4 Loading work.eth mii_agent_pkg(fast)

4 Loading work.eth_reg_pkg(fast)

Loading work.mem_mgr_pkg(fast)

Loading work.ethmac_host_agent_pkg(fast)

Loading work.ethmac_rxtx_agent_pkg(f:
Loading work.ethmac_stim_types_pkg(fast)

Loading work.ethmac_cfg_agent_pkg(fast)

Loading work.wb_agent_pkg(fast)

Loading work.sthmac_reg_agent_pkg(fast)

Loading work.cpu_wb_agent_pkg(fast)

Loading work.wb_mem _mgr_slave_agent pkg(fast)
Loading work.ethmac_env_pkg(fast)

Loading work.ethmac_stim_seqs_pkg(fast)

t_test.f -mvchome -uvmcontrol=struct -

Figure 11. Test Output

You can also dive deeper into the data, and analyze thdistatf a given test, and its individual coverage
numbers, additional metrics, etc.

The plug-in leverages the vast amount of data VRM colleota the regression runs, allowing for all sorts of
data to be analyzed that would otherwise need to be coll@ete@ported manually. Otherwise difficult questions
become easy to answer. Has this test, with tleid sger failed before? What is the host utilization likerdua
nightly regression? When did coverage drop off?

Figure 12. Regression Data Examples

Thanks to the plug-in, you can now get access to the semuidt history of every regression and every test ran
through Jenkins, including a mass of other metrics fromong usage and simulation time, to code and functional
coverage, now all available through the Jenkins dashboard.

VIll. SUMMARY

Continuous Integration with Jenkins ClI, coupled with Qu&&sdfication Run Manager, provides a powerful
automated solution for build and regression managemerautomating the regression process and helping to

identify problem areas earlier, they allow verificatiommeers to make more efficient use of the time givemev
in the tightest of schedules.

REFERENCES

[1] RebelLabs, “Java Tools and Technologies Landsaap20fl4”, 2014
[2] Jenkins Wiki, https://wiki.jenkins-ci.org/displaf@BIKINS/Meet+Jenkins
[3] Jenkins, https://jenkins.io

