
Improving the UVM Register Model: Adding Product Feature

based API for Easier Test Programming

Krishnan Balakrishnan, Courtney Fricano, and Kaushal Modi

Analog Devices, Inc.

3 Technology Way

Norwood, MA 02062

Abstract – It is much easier to program a complex device if the device provides an interface that clearly high-

lights its feature set, be it in a Universal Verification Methodology (UVM) environment during design verifi-

cation, a Graphical User Interface (GUI) during evaluation, or a software Application Programming Interface

(API) for customer use. An interface that allows the user to program features of the device directly, rather

than having to spend the time to figure out how the feature has been implemented in the device is extremely

desirable. To be used effectively, this interface would have to be very simple, so it is preferable that the features

of the device be accessed without traversing multiple layers of hierarchies within the interface.

In this paper, we describe a product feature based API integrated into the UVM register model that allows test

patterns to be written more easily by accessing product features directly rather than traversing the register

layer hierarchy. This API also inherently provides a simpler way of programming product features that span

multiple registers. The API coexists with existing UVM register environment allowing test patterns to use a mix

of feature based or register based API’s. The patterns using the feature based API are easier to code, better

documented and highly portable across projects.

Keywords – UVM, register, programming, sequences

I. NEED FOR PRODUCT FEATURE BASED API:

The current UVM register model specifies product features as fields (uvm_reg_field) contained within registers

(uvm_reg), structured under hierarchy(s) of blocks (uvm_reg_block) within the UVM register model. This is a hard-

ware centric view of the device. The user, programming the device, is manually required to map a product feature into

bit position(s) of field(s) in register(s). If the user needs to configure a product feature that spans multiple registers,

the user is required to manually split the configuration value into multiple register writes. Also, multiple register reads

need to be combined manually to read back the status of a feature.

This programming methodology is cumbersome and prone to errors due to the manual effort involved. Moreover, the

code being written would be quite hard to understand since register names / addresses and bit positions are used in the

code instead of the feature name. The test pattern would be fragile as it becomes susceptible to failures if the number

of bits used to encode the feature changes, if the bit position of the feature within a register changes, or if the feature

is moved to a register with a different address. If a feature is removed, the test pattern may still compile indicating a

‘false pass’ if a register name based API is used in programming.

A user programming the device (through sequences / GUI / software) would prefer a feature-based API where the

features of the product are accessible directly, rather than having to traverse the register hierarchy(s) to figure out the

mapping from feature to fields. A feature based API with an interface that is immune to changes in the implementation

of the feature will allow patterns using this API to be extremely robust. Also, if a feature is removed, using a feature

based API will highlight the pattern (as a compilation error, instead of a ‘false pass’) that the feature was tested in.

II. PRODUCT FEATURE BASED API USING BITFIELD

The API presented in this paper resolves the hurdles and manual overhead in the existing UVM register model through

a simpler usage model that is based on product features (termed ‘BitField’ and ‘adi_bitfield’ in the paper) while co-

existing with the current UVM model. The product feature based API is implemented using the following new classes:

“adi_bitfield” class:

 The feature of the device (BitField) is specified through this class. The feature can be of arbitrary widths, and are

not restricted by the width of a register.

o Example: 11 bit ‘pll_f’

o Example: 1 bit ‘pll_pd’

o Example: 2 bit ‘ch_enable’.

 The class contains methods like set, get, update, write, read and compare similar to the uvm_reg_field class.

 Since product features are finally implemented in silicon using fields in registers (uvm_reg_fields), the mapping

from adi_bitfield to uvm_reg_field within the current UVM environment is implemented in the class.

o An array ‘slice’ in the class allow each adi_bitfield to be mapped to one or more uvm_reg_fields across one

or more uvm_reg objects.

o Each array entry is a structure containing a handle to the uvm_reg_field, a Least Significant Bit (LSB) posi-

tion, and a Most Significant Bit (MSB) position, to maps the feature into multiple uvm_reg_field objects.

o The class also contains a handle back to its parent to allow a non-iterative implementation of the ‘update’

method used in the ‘adi_bitfield_block’ class.

Figure 1: adi_bitfield class

“adi_bitfield_block” class:

 The class is a container for all adi_bitfield objects. The object of this class is created at the root of the UVM

register model hierarchy to be easily accessible to the user.

 This class contains a non-iterative implementation of the ‘update’ method.

o The method causes register writes only for adi_bitfield objects that have been modified using the adi_bit-

field’s ‘set’ method by using an array of adi_bitfield handles. When an adi_bitfield’s set method is invoked

class adi_bitfield extends uvm_object;

 typedef struct { // Structure containing pointers to the position of the bitfield slice

 uvm_reg_field ptr; // Handle to the sub-bitfield slice

 int lsb; // LSB of the slice in the bitfield

 int msb; // MSB of the slice in the bitfield

 } slice_t;

 // Members

 slice_t slices[int]; // Collection of pointers to support bitfields spanning multiple registers

 adi_bitfield_block m_parent; // Pointer to parent fields block

 // Methods

 new(..);

 configure_slice (..); // Configure slice function sets the ptr, MSB, and LSB fields for a single slice

 set(..); // Set the desired value for this field by iterating through the slices

 uvm_reg_data_t get (..); // Get the desired value for this field by iterating through the slices

 bit needs_update(..); // Check if the abstract model contains different desired and mirrored values.

 update (..); // Update the content of the field in the design to match the desired value

 write (..); // Write the specified value in this field

 read (..); // Read the specified value in this field

endclass

it adds itself to this array. When the ‘update’ method is invoked, it will only iterate through this array (instead

of iterating through all adi_bitfield objects).

o This is very efficient compared to the update method in the uvm_reg_block class that iterates through all

registers (and causes a write in registers with ‘volatile’ fields even if the value of the register has not changed).

Figure 2: adi_bitfield_block class

This API maintains flow control at the product feature level. For a product feature that spans multiple registers, a

‘write’ to the feature can cause writes to its related registers to happen in any order. For finer flow control, the existing

UVM register based methodology can be used.

III. BITFIELD BASED ENVIRONMENT:

The BitField based API is quite concise especially for product features that span multiple registers for methods like

set, get, write, read etc. It also requires less effort to code as it obviates the need of knowing register names or how a

feature is split across multiple registers. Figure 3 shows an example where three product features are distributed across

three registers. The feature ‘pll_f[10:0]’ is split across two registers (‘pll_f_config1’ and ‘pll_f_congif2’). The feature

‘pll_pd’ is also packed into the ‘pll_f_config1’ register. These two features are within the ‘pll_settings’ RegisterMap.

The third feature ‘ch_enable[1:0] is in register ‘cfg_channel’ within the ‘dev_settings’ RegisterMap. The existing

UVM environment is marked in gray, and the BitField API in blue.

pll_f[10:0]

adi_bitf ield

pll_f_config1

uvm_reg

mmap (my_mmap -> uvm_reg_block)

Slice

ptr
2

(msb)

0

(lsb)

pll_pd

adi_bitf ield
Slice

ch_enable[1:0]

adi_bitf ield
Slice

fields (my_bitf ields -> adi_bitf ield_block)

pll_f_config2

uvm_reg

pll_settings (uvm_reg_block)

cfg_channel

uvm_reg

dev_settings (uvm_reg_block)

ptr
10

(msb)

3

(lsb)

ptr
0

(msb)

0

(lsb)

ptr
1

(msb)

0

(lsb)

pll_pd
uvm_reg_field

pll_f[2:0]
uvm_reg_field

pll_f[10:3]
uvm_reg_field

ch_enable[1:0]
uvm_reg_field

Figure 3: BitField API environment

class adi_bitfield_block extends uvm_object;

 // Members

 adi_bitfield modified_fields[string]; // Array of fields modified through the 'set' method

 // Methods

 new(..);

 set_modified_field (..); // adi_bitfield’s 'set' calls this to add itself to the modified_fields array

 update (..); // Iterates through modified_fields, and calls 'update' only for adi_bitfield objects in array

endclass

The mappings between the adi_bitfield objects and the uvm_reg_field objects are created as shown in Figure 4 below.

The my_bitfields type is a class extended from adi_bitfield_block containing the adi_bitfield objects for a specific

design, and the ‘configure’ method is used to set the BitField mapping to each register. The my_mmap type is a class

extended from uvm_reg_block that sets up the register and BitField models for the design, as shown in Figure 3.

Figure 4: BitField API environment code

The code snippet in Figure 5 show an example test pattern using the register coding style for the existing UVM meth-

odology. This requires the user to manually map features to fields and are susceptible to errors when the underlying

implementation of the feature changes.

// extend the adi_bitfield_block class to add the BitFields and a function to configure them

class my_bitfields extends adi_bitfield_block;

 // BitFields

 adi_bitfield ch_enable;

 adi_bitfield pll_f;

 adi_bitfield pll_pd;

 // The configure task sets up the mapping between BitField and the uvm_reg_fields

 function void configure (my_mmap blk_parent);

 // map ch_enable

 ch_enable = adi_bitfield::type_id::create("ch_enable");

 ch_enable.configure_slice(this, blk_parent.dev_settings.cfg_channel.ch_enable);

 // map pll_f

 pll_f = adi_bitfield::type_id::create("pll_f");

 pll_f.configure_slice(this, blk_parent.pll_settings.pll_f_config2.pll_f, 10, 3);

 pll_f.configure_slice(this, blk_parent.pll_settings.pll_f_config1.pll_f, 2, 0);

 // map pll_pd

 pll_pd = adi_bitfield::type_id::create("pll_pd");

 pll_pd.configure_slice(this, blk_parent.pll_settings.pll_f_config1.pll_pd);

 endfunction

endclass

// Class for the memorymap

class my_mmap extends uvm_reg_block;

 // The RegsiterMaps

 rand my_dev_settings dev_settings;

 rand my_pll_settings pll_settings;

 // The Bitfields environment

 rand my_bitfields fields;

 virtual function void build();

 // Build the RegisterMaps as in existing UVM environment

 ...

 // Build the BitFields environment

 this.fields = my_bitfields::type_id::create("fields");

 this.fields.configure(this);

 endfunction

endclass

Figure 5: Existing UVM API

The code snippet in Figure 6 below uses the BitField based API. This API presents the user with easy access to product

features, produces better self-documentation of the pattern, and provides extremely robust code that is immune to

changes in implementation of the product feature.

Figure 6: Bitfield based API

IV. AUTOMATING BITFIELD TO UVM_REG_FIELD MAPPING

Analog Devices, Inc. (ADI) primarily uses an internally developed database for register specifications. ADI believes

that the BitField is the principal element as it specifies the feature set of the device, and that the Register Abstraction

Layer (RAL) is only one of several mappings to structure BitFields. Other mappings possible using the internal data-

base include grouping BitFields in a format that can generate a GUI interface, or grouping them in a format that can

generate higher level software API’s, or a format that can generate internal and customer documentation. These other

mappings are equally relevant as the RAL, as they improve the Time-To-Market (TTM) for ADI’s products and pro-

vide great value addition for ADI’s customers.

// pll_f = 11'b10101010101

// pll_pd = 1'b0

// ch_enable = 2'b11

uvm_status_e status;

// Set pll_pd

mmap.pll_settings.pll_f_config1.pll_pd.set (1'b0);

// Set pll_f

// The value of pll_f has to be split manually by user into the two uvm_reg_field set methods.

mmap.pll_settings.pll_f_config1.pll_f.set (3'b101);

mmap.pll_settings.pll_f_config2.pll_f.set (8'b10101010);

// Set ch_enable

mmap.dev_settings.cfg_channel.ch_enable.set (2'b11);

// Update mmap. Not ideal as it iterates through all registers (and writes all registers with volatile fields)

mmap.update(status);

// pll_f = 11'b10101010101

// pll_pd = 1'b0

// ch_enable = 2'b11

uvm_status_e status;

// Set pll_pd

mmap.fields.pll_pd.set (1'b0);

// Set pll_f.

mmap.fields.pll_f.set (11'b10101010101);

// Set ch_enable:

mmap.fields.ch_enable.set (2'b11);

// Update all modified features.

mmap.fields.update(status);

ADI believes that the IP-XACT specification, developed by the SPIRIT consortium, is not easily amenable to be able

to provide the GUI and software API abstractions that benefit ADI’s customers. The IP-XACT specification specifies

a hardware-centric view of the device (Fields within Registers), where the features of the device are hidden under the

RAL, so it does not provide a mapping between product features and fields, especially for product features (BitFields)

that span multiple registers. ADI recommends using vendor extensions within IP-XACT for specifying BitFields to

enable mapping between a BitField and one or more Fields within Registers, as shown in Figure 7 below.

component

MemoryMaps

MemoryMap

AddressBlock

Register (1 ..∞)

Field (1 ..∞)

VendorExtensions

...

...

...

...

...

adi:bitMap

adi:bitMap

bitFieldDefs

bitField (1 .. ∞)

bitSlice (1 ..∞)

...

...

name

bitOffset

bitWidth

bitSliceRef (string)

...

Figure 7: IP-XACT vendor extensions

ADI’s internal tools are based on an Extensible Markup Language (XML) database with a XML Schema Definition

(XSD) that is very similar to ADI’s recommendation for IP-XACT shown above in Figure 7. A major difference from

the IP-XACT specification is that all attributes of the product feature (Access type, Volatile, Enumeration, Datatype

etc.) that are required for the various mappings like RAL, GUI and API reside with the BitField, and not with the field

inside registers. For example, attributes for the RAL include the ‘bitSlice’ that links portions of the BitField to fields

within registers in the Register model of the memory map. An Enumeration attribute can be used by RAL, GUI and

API mappings. A User Interface Type (UItype – Checkbox / Slider / Textbox etc.) can be used by the GUI mapper.

All BitFields in the schema have a global scope in the memory map.

ADI uses an internally developed GUI software overlaying the XML database that allows the user to enter product

features into the database as BitFields. For a RAL mapping, the GUI provides an easy interface to slice the BitField

into multiple registers, and updating the ‘bitSlice’ attribute within the underlying XML database. Linking from Bit-

Field to a register field, rather than the other way around, ensures that the attributes of all register fields that are slices

of a BitField are consistent with the attribute of the BitField.

The software also contains many generator scripts (similar to other tools used in the industry that generate code from

the IP-XACT XML) that parses ADI’s XML database to create Register Transfer Layer (RTL) code for the device,

and the UVM setup for the BitField API environment for the verification test bench. The adi_bitfield to uvm_reg_field

mapping (the my_bitfields and my_mmap classes) are automatically generated by the script during this process. ADI

believes that a similar infrastructure can be developed based on the IP-XACT specification using vendor extensions,

and recommends that all attributes of the product feature reside with the BitField so it can be used effectively by

multiple mappers.

V. CONCLUSIONS

A BitField based programming API provides several advantages over the standard UVM Register based model for

designs with feature-oriented fields. A fully-automated process has been developed to enable BitField API in a UVM

testbench. The BitField API can be fully integrated into the testbench, coexisting with the current UVM environment

and allowing test patterns be written using the BitField API, the legacy Register API, or a mix of the two methodolo-

gies. The test patterns using the BitField API are easier to code, better documented, and immune to the BitField being

moved from one register to another during the course of the project.

