
► Device contains three product features - pll_f[10:0],
pll_pd, and ch_enable[1:0] in three 8-bit registers.

► Programming the device in UVM environment

Improving the UVM Register Model:
Adding Product Feature based API for Easier Test Programming

► Users prefer an API that clearly highlight the feature of
the device being programmed.
 UVM: Design verification
 GUI: lab evaluation
 Software: firmware and customer

► Specifying product features as fields in registers hides
product features under layers of register abstractions
 Features that span multiple registers get split into multiple fields

with no mapping from field(s) back to product features.
 The IP-XACT specification, and the UVM environment present

a hardware centric view of a device

Krishnan Balakrishnan, Courtney Fricano, and Kaushal Modi
Analog Devices, Inc. 3 Technology Way Norwood, MA 02062

Problem Statement

// pll_f = 11'b10101010101 pll_pd = 1'b0 ch_enable = 2'b11
uvm_status_e status;

// Set pll_pd
mmap.pll_settings.pll_f_config1.pll_pd.set (1'b0);

// Set pll_f - The value of pll_f has to be split manually by user into the two uvm_reg_field set methods.
mmap.pll_settings.pll_f_config1.pll_f.set (3'b101);
mmap.pll_settings.pll_f_config2.pll_f.set (8'b10101010);

// Set ch_enable
mmap.dev_settings.cfg_channel.ch_enable.set (2'b11);

// Update mmap. Not ideal as it iterates through all registers (and writes all registers with volatile fields)
mmap.update(status);

pll_f_config1
uvm_reg

mmap (uvm_reg_block)

pll_f_config2
uvm_reg

pll_settings (uvm_reg_block)

cfg_channel
uvm_reg

dev_settings (uvm_reg_block)

pll_pd
uvm_reg_field

pll_f[2:0]
uvm_reg_field

pll_f[10:3]
uvm_reg_field

ch_enable[1:0]
uvm_reg_field

Example of register based environment

► The user needs to have a detailed knowledge of the
implementation details of the product features.
 Complicated coding style: User needs to traverse the register

layer hierarchy of the device to access a feature.
 Manual overhead: Configuration / Read-back of product

features that span multiple registers is a manual process
(splitting feature into multiple fields / merging multiple fields into
a feature) that is very prone to user errors.

 Reduced Portability: Code is not easily portable as it is
susceptible to changes in field width, position, or moving the
field to a different register.

Programming Impediments

► The Class implements a product feature (BitField)
 Can have arbitrary length, not restricted by register widths
 Contains methods similar to uvm_reg_field

 Set, get, update, write, read

 Contains an array of ‘slices’ that maps portions of the product
feature to uvm_reg_field(s) across uvm_reg object(s).
 Each member of the ‘slice’ array is a handle to a uvm_reg_field, a MSB

position, and a LSB position that define the mapping

Solution – Product feature based API

► BitField based API has several advantages over Register
based UVM environment
 Integrated and co-existing with existing UVM environment
 Fully automated process to generate BitField environment
 Test patterns using the BitField API are easy to code, better

documented, and immune to changes in the BitField address,
width or position during the course of the project.

BitField based environment

► ADI uses an internally developed database tool with
scripts to generate the required BitField to uvm_reg_field
mappings
 BitField is the principal element
 Can group BitFields to create mappings other than the register

abstraction, that improve Time-To-Market for ADI’s products
and provide great value addition to the customers

► Vendor extensions in IP-XACT standard can also be
used to define the Bitfield to register mapping.

Automating BitField Model Creation

class adi_bitfield extends uvm_object;

typedef struct { // Structure containing pointers to the position of the bitfield slice
uvm_reg_field ptr; // Handle to the sub-bitfield slice
int lsb; // LSB of the slice in the bitfield
int msb; // MSB of the slice in the bitfield

} slice_t;

// Members
slice_t slices[int]; // Collection of pointers to support bitfields spanning multiple registers
adi_bitfield_block m_parent; // Pointer to parent fields block

// Methods
new(..);
configure_slice (..); // Configure slice function sets the ptr, MSB, and LSB fields for a single slice
set(..); // Set the desired value for this field by iterating through the slices
uvm_reg_data_t get (..); // Get the desired value for this field by iterating through the slices
bit needs_update(..); // Check if the abstract model contains different desired and mirrored values.
update (..); // Update the content of the field in the design to match the desired value
write (..); // Write the specified value in this field
read (..); // Read the specified value in this field

endclass

► The class is a container for all adi_bitfield objects
 Instance of this class is created at the root of the UVM memory

map to be easily accessible to the user API.

► This class contains a non-iterative implementation of the
‘update’ method.
 The method updates only the adi_bitfield objects that have

been modified using the adi_bitfield’s ‘set’ method.
 When an adi_bitfield’s set method is invoked it adds itself to the

‘modified_fields’ array. The ‘update’ method in this class only
iterates through this array, and not through all BitFields.

class adi_bitfield_block extends uvm_object;

// Members
adi_bitfield modified_fields[string]; // Array of fields modified through the 'set' method

// Methods
new(..);
set_modified_field (..); // adi_bitfield’s 'set' calls this to add itself to the modified_fields array
update (..); // Iterates through modified_fields, and calls 'update' only for adi_bitfield objects in array

endclass

‘adi_bitfield’ class

► API is independent of the implementation of product
features as field(s) within register(s)
 Obviates user errors and improves readability and portability.
 The API coexists with the existing UVM model.
 Product features are implemented as BitFields (‘adi_bitfield’

objects).
 All BitFields are held in a container class (‘adi_bitfield_block’)

 The object for this class is created at the root of the UVM memory
map for easy access to product features

‘adi_bitfield_block’ class

pll_f[10:0]
adi_bitf ield

pll_f_config1
uvm_reg

mmap (my_mmap -> uvm_reg_block)

Slice

ptr2
(msb)

0
(lsb)

pll_pd
adi_bitf ield

Slice

ch_enable[1:0]
adi_bitf ield

Slice

fields (my_bitf ields -> adi_bitf ield_block)

pll_f_config2
uvm_reg

pll_settings (uvm_reg_block)

cfg_channel
uvm_reg

dev_settings (uvm_reg_block)

ptr10
(msb)

3
(lsb)

ptr0
(msb)

0
(lsb)

ptr1
(msb)

0
(lsb)

pll_pd
uvm_reg_field

pll_f[2:0]
uvm_reg_field

pll_f[10:3]
uvm_reg_field

ch_enable[1:0]
uvm_reg_field

// extend adi_bitfield_block class to add the BitFields and a function to configure them
class my_bitfields extends adi_bitfield_block;

// BitFields
adi_bitfield ch_enable;
adi_bitfield pll_f;
adi_bitfield pll_pd;

// The configure task sets up the mapping between BitField and the uvm_reg_fields
function void configure (my_mmap blk_parent);

// map ch_enable
ch_enable = adi_bitfield::type_id::create("ch_enable");
ch_enable.configure_slice(this, blk_parent.dev_settings.cfg_channel.ch_enable);

// map pll_f pll_f = adi_bitfield::type_id::create("pll_f");
pll_f.configure_slice(this, blk_parent.pll_settings.pll_f_config2.pll_f, 10, 3);
pll_f.configure_slice(this, blk_parent.pll_settings.pll_f_config1.pll_f, 2, 0);

// map pll_pd pll_pd = adi_bitfield::type_id::create("pll_pd");
pll_pd.configure_slice(this, blk_parent.pll_settings.pll_f_config1.pll_pd);

endfunction
endclass

// Class for the memorymap
class my_mmap extends uvm_reg_block;
// The RegsiterMaps
rand my_dev_settings dev_settings;
rand my_pll_settings pll_settings;

// The Bitfields environment
rand my_bitfields fields;

virtual function void build();
// Build the RegisterMaps as in the existing UVM environment
...
// Build the BitFields environment
this.fields = my_bitfields::type_id::create("fields");
this.fields.configure(this);

endfunction
endclass

Configuring Bitfield based API

Conclusion

Programming using the BitField API

// pll_f = 11'b10101010101 pll_pd = 1'b0 ch_enable = 2'b11
uvm_status_e status;

// Set pll_pd
mmap.fields.pll_pd.set (1'b0);

// Set pll_f.
mmap.fields.pll_f.set (11'b10101010101);

// Set ch_enable:
mmap.fields.ch_enable.set (2'b11);

// Update all modified features.
mmap.fields.update(status);

► API accesses product features directly
 Code is independent of implementation.
 No manual overhead splitting/merging features to fields.
 Portable and understandable code

XML database

Product
features

(BitFields)

Register Abstraction
Mapping

Function map

 (Function = Group of
BitFields)

List of all BitFields Generators

RTL
Read / Write logic for Registers
Module ports for Product features
BitField enumerations

Datasheet
Register map
Product feature descriptions

UVM
Memory map model
BitField API

GUI
BitFields grouped together in a tab
Multiple tabs

Software API
Include files for register addresses
Get/set macros or functions for BitFields

component

MemoryMaps

MemoryMap

AddressBlock

Register (1 ..∞)

Field (1 ..∞)

VendorExtensions

...

...

...

...

...

adi:bitMap

adi:bitMap

bitFieldDefs

bitField (1 .. ∞)

bitSlice (1 ..∞)

...

...

name
bitOffset
bitWidth
bitSliceRef (string)

...

	Improving the UVM Register Model: �Adding Product Feature based API for Easier Test Programming

