ANALOG Improving the UVM Register Model:
DEVICES Adding Product Feature based API for Easier Test Programming

AHEAD OF WHAT'S POSSIBLE™ Krishnan Balakrishnan, Courtney Fricano, and Kaushal Modi
Analog Devices, Inc. 3 Technology Way Norwood, MA 02062

Problem Statement Solution — Product feature based API BitField based environment

- Users prefer an API that clearly highlight the feature of - APl is mde_pendent_ of the_lmplementauon of product mmap (my_mmap -> uvm_reg_block)
the device being programmed. features as field(s) within register(s) rf' q 1 o N
: e s : : - - leldS bitfields -> adi_bitfield block N block
= UVM: Design verification = Obviates user errors and improves readability and portability. (my_bitflelds -> adi_bitfleld_block) ’J—(* pli_se€ 9S (uvm_reg_block)
f p 4 p
= i . = 4 I N\ .
GUI: lab evaluation The API coexists with the existing UVM model. > . | pll_f config1 oll f[2:0] oll pd
= Software: firmware and customer = Product features are implemented as BitFields (‘adi_bitfield’ oll f[10:0] (msb)| (Isb) ptr uvm_reg uvm_reg_field uvm_reg_field
- . . : : objects). — ' i \ J
~ Specifying product features as fields in registers hides jects) odi bitfield Slice 0 1 3 - A
_ : : . : : = The object for this class is created at the root of the UVM memory \- / I f confia? _
Features that span multiple registers get split into multiple fields map for easy access to product features N J pll_T_ 9 pll_f[10:3]
with no mapping from field(s) back to product features. 4 z - uvm_reg uvm_reg_field
= The IP-XACT specification, and the UVM environment present pll_pd Slice | 0 otr |- - <)
a hardware centric view of a device cmll ItE: y adi bitfield (msb)[(Isb)
adi_bitfield’ class = L) N
> < dev_setlings (uwm_reg_block)
- e of <ter based . t ~ The Class implements a product feature (BitField) fh ble[1 O]r N e D
Xampie Ot register nased environmen Ch_enaplej 1. : :
P J = Can have arbitrary length, not restricted by register widths — Slice |, O | ptr I cfg_channel 3| ch_enable[1:0]
adi_bitfield (msb)) (Isb) uvm_reg_field
: : : = Contai thods similar t field - \ / uvm_reg —
- Device contains three product features - pll f[10:0], ontains metnods similar to uvm_reg_Te N b N y
. . . : _ J . J
pll_pd, and ch_enable[1:0] in three 8-bit registers. = Set, get, update, write, read
= Contains an array of ‘slices’ that maps portions of the product
mmap (uwm_reg_block) feature to uvm_reg_field(s) across uvm_reg object(s). Configuring Bitfield based API Automating BitField Model Creation
I ock * Each member of the ‘slice’ array is a handle to a uvm_reg_field, a MSB /I extend adi_bitfield_block class to add the BitFields and a function to configure them _ _
pPl_ S (uvm_reg_block) position, and a LSB position that define the mapping class my._bitfields extends adi_bitfield_block: = ADI uses an internally developed database tool with
C | f o1 R — . I/ BitFields scripts to generate the required BitField to uvm_reg_field
pPll_T _contig p||_f[2()] p||_pd class adi_bitfield extends uvm_object; adi_bitfield ch_enable: m appin gs
uvm_reg uvm_reg_field uvm_reg_field S - o adi_bitfield pll_f; N o
— typedef struct { /| Structure containing pointers to the position of the bitfield slice adi_bitfield pll_pd: = BitField is the principal element
uvm_reg_field ptr; /I Handle to the sub-bitfield slice o _ _
int Isb: /] LSB of the slice in the bitfield Il The.conflglure tas.k sets up the mapping between BitField and the uvm_reg_fields = Can group BitFields to create mappings other than the reg|Ster
int msb: /| MSB of the slice in the bitfield f”/'/‘cr::pnc‘r’ffngz?;'g“re (my_mmap blk_parent), abstraction, that improve Time-To-Market for ADI's products
pll_f config2 oll f[10:3] } slice_t ch_enable = adi_bitfeld:type_id: create("ch_enable’) and provide great value addition to the customers
uvm_reg uvm_reg_field 1/ Members ch_enable.configure_slice(this, blk_parent.dev_settings.cfg_channel.ch_enable); 4 XML database N (O N T uvM
slice_t slices|int]; /I Collection of pointers to support bitfields spanning multiple registers JImappll_f pll_f=adi_bitfield: type_id:create("pll): Regiter Abstacton [ﬁfﬂiﬁrf?:tﬁre descriptions J [Efif;?;m?p model J
adi_bitfield_block m_parent; // Pointer to parent fields block pll_f configure_slice(this, blk_parent.pll_settings.pll_f_config2.pll_f, 10, 3): PPN p N
pll_f.configure_slice(this, blk_parent.pll_settings.pll_f_config1.pll_f, 2, 0); Read / Write log%r Registers
- Il Methods o . Module ports for Product features
dev settings (uvm_reg_block) . /Imappll_pd pll_pd = adi_bitfield::type_id::create("pll_pd"); Product i BitField enumerations
- new(..), - : : : - features - List of all BitFields Generators ~ J
r configure_slice (..); /I Configure slice function sets the ptr, MSB, and LSB fields for a single slice Pé'f_pd-:Pnflgure_sllce(thls, blk_parent.pll_settings.pll_f_config1.pll_pd); (BitFields) L - o 2
_ set(..); /I Set the desired value for this field by iterating through the slices endrunction BitFields grouped together in a tab
cfg_channel Ch—enable[1 :0] uvm_reg_data_tget(..); // Get the desired value for this field by iterating through the slices endclass [Function map (Multiple tabs y
uvm_reg uvm_reg_field bit needs_update..); /I Check if the abstract model contains different desired and mirrored values. R
- _ update (..): /| Update the content of the field in the design to match the desired value I Class for the memorymap BitFields) N forsf;%messes
write (..); /I Write the specified value in this field class my_mmap extends uvm_reg_block; L) Get/set macros or functions for BitFields
read (..); /| Read the specified value in this field I The RegsiterMaps |
endclass rand my_dev_settings dev_settings; _ _
- Programming the device in UVM environment rand my_pll_settings pll_settings; - Vendor ext_ensmns in IP-XACT standard_ can also be
/I The Bitfields environment used to define the Bitfield to register mapping.
I/ pll_f = 11'510101010101 oll pd=1b0 ch_enable = 2'b11 o rand my_bitfields fields "
uvm_status_e status; ‘adi bitfield block’ class component adi:bitMap
— — virtual function void build();
II'Setpll_pd | _ _ S _ /I Build the RegisterMaps as in the existing UVM environment o
mmap.pll_settings. pll_f_config1.pll_pd.set (1'b0); ~ The class is a container for all adi_bitfield objects MemoryMaps bitFieldDefs
: : - : : /| Build the BitFields environment
/I Set pll_f - The value of pll_f has to be split manually by user into the two uvm_reg_field set methods. = Instance of this class is created at the root of the UVM memory " “:c, o I " IdVI"t o crentel"felde") k k -
mmap.pll_settings.pll_f_config1.pll_f.set (3'0101); o0 b | ble to th AP IS TIelas = my_DItlelds. type_ld:.crea e("fields"); MemoryMap bitField (1 .. =)
mmap.pll_settings.pll_f_config2.pll_f.set (8'610101010); map 1o be easlly accessibie 10 the user ' this fields.configure(this); t t
B o B : : : : : : endfunction
/I Set ch_enable = This class contains a non-iterative implementation of the endclass AddressBlock bitSlice (1 ..«)
mmap.dev_settings.cfg_channel.ch_enable.set (2'b11); ‘update’ method
: — " — Nname
Il Update mmap. Not ideal as it iterates through all registers (and writes all registers with volatile fields) Th . L . — Register (1 ..) __ bitOffset
- e method updates only the adi bitfield objects that have - - Pt 9
mmap.update(status); o . L Programming using the BitField API bitWi
P-update(siass) been modified using the adi_bitfield’s ‘set’ method. 9 g g t B E::\gil:;hRef string)
: hitfield’ o - - : Field (1 ..e) drereee
. Wherl_an a-dl_bltfleld s set method is invoked IJI.: add.S itself to the = API| accesses product features d”'eCtly |
Programming Impediments ‘modified_fields’ array. The ‘update’ method in this class only o | | — Vendorkxtensions
iterates through this array, and not through all BitFields. = Code is independent of implementation. Ladi;bitMap

~ The user needs to have a detailed knowledge of the = No manual overhead splitting/merging features to fields.

: - - class adi_bitfield_block extends uvm_object; = -
implementation details of the product features. Portable and understandable code Conclusion
/| Members

= Complicated coding style: User needs to traverse the register I pll_f=11b10101010101 pll_pd = 1'b0 ch_enable = 2'b11
adi_bitfield modified_fields[string]; // Array of fields modified through the 'set' method

layer hierarchy of the device to access a feature. uvm_status_e status, ~ BitField based API has several advantages over Register
* Manual overhead: Configuration / Read-back of product /r< Methods Z} iztp?]!i'gﬁ’j‘ilp” e 150 based UVM environment

Izpa);[il:tl}iz f’[ehaa}[’tJ r:pispo rrr1]1ltjjlltti|F[))|Iee ﬁ;elgés;cer;se rS|;Sin ;\ mTjﬁi?)LljslfiepI;c;Cieniz s:t\i’ iﬁ'c)),difigd_field (.); Il'adi_bitfield’s 'set calls this to add tself to the modified_fields array /1 Set pl_f, _ = Integrated and co-existing with existing UVM environment

a feature) that is very prone to user errors. e:z(i?;ié) ' lterates through modified_fields, and calls update” only for ad!_bitfield objects In array mmap.fields.pll_t.set (1110101010101); = Fully automated process to generate BitField environment

Il Set ch ble: : i
= Reduced Portability: Code is not easily portable as it is mmZp?fi(;IZZ?chienable.set 2b11) = Test patterns using the BitField API are easy to code, better

susceptible to changes in field width, position, or moving the documented, and immune to changes in the BitField address,

' ' ' /I' Update all modified features. width or position during the course of the project.
field to a different register. mmap fields.update(status) P g proj

	Improving the UVM Register Model: �Adding Product Feature based API for Easier Test Programming

