
Improving Constrained Random Testing
by Achieving Simulation Verification Goals
through Objective Functions, Rewinding

and Dynamic Seed Manipulation

Eldon Nelson M.S. P.E. (eldon_nelson@ieee.org)
Intel Corporation

®

Outline

• Inspiration from Nintendo Playing AI Paper
– Objective Function

• Application to Simulation
– Seeds and Dynamic Re-Seeding
– Objective Function in Verification
– Checkpointing Feedback Loop

• Scaling
• Results

02/28/2016 Eldon Nelson - Intel Corporation 2

Full Code Implementation

02/28/2016 Eldon Nelson - Intel Corporation 3

https://github.com/tenthousandfailures/
improving-constrained-random

Tom Murphy VII

02/28/2016 Eldon Nelson - Intel Corporation 4

02/28/2016 Eldon Nelson - Intel Corporation 5

The First Level of Super Mario Bros. is Easy with Lexicographic

Orderings and Time Travel . . . after that it gets a little tricky.

Dr. Tom Murphy VII Ph.D.

⇤

1 April 2013

Abstract

This paper presents a simple, generic method for au-
tomating the play of Nintendo Entertainment System
games.

Keywords: computational super mario brothers, mem-

ory inspection, lexicographic induction, networked enter-

tainment systems, pit-jumping, ...

1 Introduction

The Nintendo Entertainment System is probably the
best video game console, citation not needed. Like
many, I have spent thousands of hours of my life playing
NES games, including several complete playthroughs
of classics like Super Mario Bros., Bionic Commando,
Bubble Bobble, and other favorites. By the year 2013,
home computers have become many orders of magni-
tude faster and more capacious than the NES hardware.
This suggested to me that it may be time to automate
the playing of NES games, in order to save time.1 In
this paper I present a generic technique for automating
the playing of NES games. The approach is practical
on a single computer, and succeeds on several games,
such as Super Mario Bros.. The approach is amusingly
elegant and surprisingly e↵ective, requires no detailed
knowledge of the game being played, and is capable of
novel and impressive gameplay (for example, bug ex-
ploitation). Disclaimer for SIGBOVIK audience:
This work is 100% real.

On a scale from “the title starts with Toward” to
“Donald Knuth has finally finished the 8th volume on
the subject,” this work is a 3. The purpose of this

⇤Copyright 2013 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2013 with the reluctant sigh of the Associ-
ation for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. CHF 0.00

1Rather, to replace it with time spent programming.

paper is mainly as a careful record of the current sta-
tus for repeatability and further development on this
important research subject. A short video version of
this paper is available for those that hate reading, at
http://tom7.org/mario, and is the more fun way to
consume the results. This page also contains audiovi-
sual material that makes this work more entertaining
(for example, its output) and source code.

The basic idea is to deduce an objective function from
a short recording of a player’s inputs to the game. The
objective function is then used to guide search over pos-
sible inputs, using an emulator. This allows the player’s
notion of progress to be generalized in order to pro-
duce novel gameplay. A design goal is that the objective
function be amusingly elegant (not at all smart, fancy,
or customized to the game) in order to demonstrate
that the game is reducible to such a simple objective.
The search needs to be game-agnostic and practical, but
since the space is exponential (256n)[7], we need to be
smart here.

The objective function, the algorithm to deduce it,
the search strategy, and its implementation are all in-
teresting and will be discussed in that order. I then
discuss the results of using the approach to automate
several NES games. To set the stage, I begin with a
description of the NES hardware and emulation of it.

1.1 The NES hardware and emulation

The NES is based around an 8-bit processor running
at 1.79 MHz, the Ricoh 2A03. 8 bits is really small.
You can see them all right here: 00001111. It’s no co-
incidence that each controller also has 8 buttons: Up,
Down, Left, Right, Select, Start, B and A. It has only
2048 bytes of general purpose RAM. (There is also some
special purpose RAM for graphics, which we ignore in
this work.) 2048 bytes is really small. You can see them
all in Figure 1. As a result, NES programs are written
to use memory e�ciently and straightforwardly; usu-
ally there are fixed memory locations used for all the

1

Novel Alternative Solution

02/28/2016 Eldon Nelson - Intel Corporation 6

RAM Locations

0x01 0x35 0x21 0xff

0x53 0x41 0x42 0x00

0x5e 0x32 0x20 0x00

0x32 0xee 0xfe 0x00

02/28/2016 Eldon Nelson - Intel Corporation 7

10 Objective Functions
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100

02/28/2016 Eldon Nelson - Intel Corporation 8

Proposal

• Faster Automated Coverage Closure
• Efficient Final Stimulus Solution
• Proposed Higher Quality of Coverage

02/28/2016 Eldon Nelson - Intel Corporation 9

Outline

• Inspiration from Nintendo Playing AI Paper
– Objective Function

• Application to Simulation
– Seeds and Dynamic Re-Seeding
– Objective Function in Verification
– Checkpointing Feedback Loop

• Scaling
• Results

02/28/2016 Eldon Nelson - Intel Corporation 10

11

0%

7

1%

7

1%

7

2%

9

3%

9

4%

9

Obj Fcn%

seed

Obj Fcn%

seed

Rewind to last Interval
and try new seed

Interval seed did not
increase the Objective
Function

Interval seed did
increase the Objective
Function

6%

9

22%

9

22%

9

1%

6

1%

3

0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns 70 ns10 ns

Simulation Time Intervals

Ite
ra

tio
ns

Start

12

0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns 70 ns 80 ns 90 ns10 ns 100 ns 110 ns 120 ns 130 ns

Simulation Time Intervals

Va
lu

es
 o

f T
w

o
Bi

t V
ec

to
r i

n
Se

qu
en

ce

0

2

3

11

2

3

2

0

11

Dynamic Re-Seeds

• SystemVerilog RNG (Random Number Generator)
– .randomize()

02/28/2016 Eldon Nelson - Intel Corporation 13

Dynamic Re-Seeds

• SystemVerilog RNG (Random Number Generator)
– .randomize()
– .srandom(int) or UVM reseed()

02/28/2016 Eldon Nelson - Intel Corporation 14

Objective Function

• Measure of progress
• Covergroup as a simple “Objective Function”

– Convenient covergroup percentage never decreases
during simulation

02/28/2016 Eldon Nelson - Intel Corporation 15

Objective Function

• Measure of progress
• Covergroup as a simple “Objective Function”

– Convenient covergroup percentage never decreases
during simulation

02/28/2016 Eldon Nelson - Intel Corporation 16

real coverage_value = 0;
coverage_value = dut.objective.match.get_coverage();

Checkpointing

• Saving a simulation point in time with all state
– performance penalty
– disabling some optimizations
– vendor specific, but universal capability

02/28/2016 Eldon Nelson - Intel Corporation 17

Murphy VII / Nelson
Translations

Murphy	VII Nelson

Objective Function Objective	Function

Steps /	Iterations Interval

Motifs Constrained Sequences

Backtracking Rewinding

02/28/2016 Eldon Nelson - Intel Corporation 18

Outline

• Inspiration from Nintendo Playing AI Paper
– Objective Function

• Application to Simulation
– Seeds and Dynamic Re-Seeding
– Objective Function in Verification
– Checkpointing Feedback Loop

• Scaling
• Results

02/28/2016 Eldon Nelson - Intel Corporation 19

Design Under Test

dut #(parameter width)
width-1:0

width-1:0

c

b

a

clk

clk

02/28/2016 Eldon Nelson - Intel Corporation 20

Design Under Test

dut #(parameter width)
width-1:0

width-1:0

c

b

a

clk

clk

assign c = (a == b);

02/28/2016 Eldon Nelson - Intel Corporation 21

Digital Comparator

Design Under Test

dut #(parameter width)

width-1:0

width-1:0

c

b

a

clk

clk

 covergroup objective_cg
 coverpoint match;
 endgroup

02/28/2016 Eldon Nelson - Intel Corporation 22

Digital Comparator

Getting the Optimal Solution

• width = 2; about 4% chance of all seeds

!!
#$ $ =

!!
&'$

• width = 5; probable no seed would solve optimally

32!
(2&+)-# =

32!
1024-#

02/28/2016 Eldon Nelson - Intel Corporation 23

dut #(parameter width)
width-1:0

width-1:0

c

b

a

clk

clk

assign c = (a == b);

Sim Log Example
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL REJECTED seed: 3552075441 at time: 17 ns
INFO STATUS : TCL : 27 ns : NO PROGRESS : false: 0.000000 > 0.000000
REWINDING TO CHECKPOINT {2} at 17 ns
All the Checkpoints created after checkpoint 2 are removed...
------------------------- END eval_loop

02/28/2016 Eldon Nelson - Intel Corporation 24

Sim Log Example
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL REJECTED seed: 3552075441 at time: 17 ns
INFO STATUS : TCL : 27 ns : NO PROGRESS : false: 0.000000 > 0.000000
REWINDING TO CHECKPOINT {2} at 17 ns
All the Checkpoints created after checkpoint 2 are removed...
------------------------- END eval_loop

02/28/2016 Eldon Nelson - Intel Corporation 25

Sim Log Example
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL REJECTED seed: 3552075441 at time: 17 ns
INFO STATUS : TCL : 27 ns : NO PROGRESS : false: 0.000000 > 0.000000
REWINDING TO CHECKPOINT {2} at 17 ns
All the Checkpoints created after checkpoint 2 are removed...
------------------------- END eval_loop

02/28/2016 Eldon Nelson - Intel Corporation 26

Sim Log Example
UVM_INFO sv/dut.sv(14) @ 20: reporter [dut_if] AFTER drive regs a: 0 b: 3
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL REJECTED seed: 3552075441 at time: 17 ns
INFO STATUS : TCL : 27 ns : NO PROGRESS : false: 0.000000 > 0.000000 REWINDING TO CHECKPOINT {2} at 17 ns
All the Checkpoints created after checkpoint 2 are removed...
------------------------- END eval_loop
UVM_INFO sv/dut.sv(14) @ 20: reporter [dut_if] AFTER drive regs a: 1 b: 3
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL REJECTED seed: 3981500775 at time: 17 ns
INFO STATUS : TCL : 27 ns : NO PROGRESS : false: 0.000000 > 0.000000 REWINDING TO CHECKPOINT {2} at 17 ns
All the Checkpoints created after checkpoint 2 are removed...
------------------------- END eval_loop
UVM_INFO sv/dut.sv(14) @ 20: reporter [dut_if] AFTER drive regs a: 0 b: 0
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 1493068099 at time: 17 ns
INFO STATUS : TCL : 27 ns : GOOD : 25.000000 > 0.000000
------------------------- END eval_loop
UVM_INFO sv/dut.sv(14) @ 30: reporter [dut_if] AFTER drive regs a: 1 b: 3

02/28/2016 Eldon Nelson - Intel Corporation 27

Sim Log Example
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 1493068099 at time: 17 ns
INFO STATUS : TCL : 27 ns : GOOD : 25.000000 > 0.000000
------------------------- END eval_loop

02/28/2016 Eldon Nelson - Intel Corporation 28

Sim Log Example
------------------------- START eval_loop
DEBUG current simulation time is ctime : 27 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 1493068099 at time: 17 ns
INFO STATUS : TCL : 27 ns : GOOD : 25.000000 > 0.000000
------------------------- END eval_loop

02/28/2016 Eldon Nelson - Intel Corporation 29

replicate file
0 ns : -1 -> 0.000000 : seed 2
17 ns : 0.000000 -> 25.000000 : seed 1493068099
27 ns : 25.000000 -> 50.000000 : seed 765542315
37 ns : 50.000000 -> 75.000000 : seed 1532361113
47 ns : 75.000000 -> 100.000000 : seed 893445949

02/28/2016 Eldon Nelson - Intel Corporation 30

Normalized Probability
Histogram width=5

02/28/2016 Eldon Nelson - Intel Corporation 31

dut #(parameter width)
width-1:0

width-1:0

c

b

a

clk

clk

assign c = (a == b);

Cumulative Distribution
width=5

02/28/2016 Eldon Nelson - Intel Corporation 32

Outline

• Inspiration from Nintendo Playing AI Paper
– Objective Function

• Application to Simulation
– Seeds and Dynamic Re-Seeding
– Objective Function in Verification
– Checkpointing Feedback Loop

• Scaling
• Results

02/28/2016 Eldon Nelson - Intel Corporation 33

Scaling

• Imagine many simulations each trying seeds
independently
– all results sent to a central Server

02/28/2016 Eldon Nelson - Intel Corporation 34

Scaling

• Imagine many simulations each trying seeds
independently
– all results sent to a central Server

02/28/2016 Eldon Nelson - Intel Corporation 35

TCL Server x20 and beyond
simulators

36

TCL Server

37

TCL Server
REJECT

1%

7
20ns

38

TCL Server

1%

6
20ns

REJECT

REJECT

1%

7
20ns

39

TCL Server

1%

3

REJECT

20ns

1%

6
20ns

REJECT

REJECT

1%

7
20ns

40

TCL Server

2%

9
ACCEPT20ns

1%

3

REJECT

20ns

1%

6
20ns

REJECT

REJECT

1%

7
20ns

41

TCL Server

2%

9
ACCEPT20ns

1%

3

REJECT

20ns

1%

5
20ns

EXISTING

1%

6
20ns

REJECT

REJECT

1%

7
20ns

Outline

• Inspiration from Nintendo Playing AI Paper
– Objective Function

• Application to Simulation
– Seeds and Dynamic Re-Seeding
– Objective Function in Verification
– Checkpointing Feedback Loop

• Scaling
• Results

02/28/2016 Eldon Nelson - Intel Corporation 42

Iterations Required
width=5

02/28/2016 Eldon Nelson - Intel Corporation 43

Linear

Iterations to Reach Objective Function

Iterations Required
width=5

02/28/2016 Eldon Nelson - Intel Corporation 44

Linear

5 Parallel

20 Parallel

Iterations to Reach Objective Function

Parallel Potential
M
ed
ia
n
A
tte
m
pt
s
pe
rU

ni
tT
im
e
C
om

pl
et
ed

Number of Parallel SystemVerilog Simulations
02/28/2016 Eldon Nelson - Intel Corporation 45

• Bernard Lowe: It's the code you added, sir. It
has some, uh...

02/28/2016 Eldon Nelson - Intel Corporation 46

47

Robert Ford: "Mistakes" is the word
you're too embarrassed to use. You
ought not to be. You're a product of a
trillion of them. Evolution forged the
entirety of sentient life on this planet
using only one tool: the mistake.

- Westworld,	Season	1	ep.	3,	HBO,	2016

Results

• ✅ Faster Automated Coverage Closure
• ✅ Efficient Final Stimulus Solution
• TBD Proposed Higher Quality of Coverage

02/28/2016 Eldon Nelson - Intel Corporation 48

Compare to Formal

• Formal can’t use classes
– No UVM
– No concept of seed
– Verification IP and Environments Restricted to

Synthesizable

02/28/2016 Eldon Nelson - Intel Corporation 49

Compare to Graph

• Graph Based Stimulus

• Objective Function versus Graph
– Defined Stimulus (Graph)
– Defined Objective (Proposal)

• Different approaches to generating desired stimulus
– Both can be complementary

02/28/2016 Eldon Nelson - Intel Corporation 50

make

> make help
clean Cleans up work area
help Help Text
server Starts up a TCL branching server
shutdown shutdown the the TCL server
status Status from the TCL server
synopsys Runs a Synopsys Build and does ...
synopsys_reload Builds and Reloads a simulation from file
...

Examples
> make synopsys WIDTH=3
> make -j5 sim_synopsys_parallel SERVER=127.0.0.1 PARALLEL_SIMS=5
> make status
> make sim_synopsys_reload

02/28/2016 Eldon Nelson - Intel Corporation 51

Limitations

• Improve Probability not Solve Probability

• Simulator Checkpointing Must Be Comprehensive
– DPI Calls, external C Programs

• Log File is Jumbled on First Run
– Fixed by running resultant “replicate” file

02/28/2016 Eldon Nelson - Intel Corporation 52

Limitations
Choice of Interval +interval_time=x
Choice of Start Time +start_time=x
Objective Max Target +max_objective=x
Max Attempts +max_attempts=x

02/28/2016 Eldon Nelson - Intel Corporation 53

Future Work

• Porting the TCL to other Simulators

• Dynamic Intervals
– Simulated Annealing
– Murphy VII has ideas beyond the simple set Interval

time used here

• Configuration Space Problem

02/28/2016 Eldon Nelson - Intel Corporation 54

Conclusion

• Inspiration from Tom Murphy VII paper
– Nintendo AI

• Goals
– ✅ Faster Automated Coverage Closure
– ✅ Efficient Final Stimulus Solution
– TBD Proposed Higher Quality of Coverage

02/28/2016 Eldon Nelson - Intel Corporation 55

Questions

02/28/2016 Eldon Nelson - Intel Corporation 56

Shy Audience Questions

• Compare this method with the current method of
gathering coverage.

• How can you gather configuration coverage with this
method?

• Is you paper better than this presentation because ...
well, you know.

02/28/2016 Eldon Nelson - Intel Corporation 57

Backup Slides

Dynamic Re-Seeds

• SystemVerilog RNG (Random Number Generator)
– .randomize()
– .srandom(int)

02/28/2016 Eldon Nelson - Intel Corporation 59

static function void set_seed(int unsigned s);
this.srandom(s);

endfunction

Dynamic Re-Seeds

02/28/2016 Eldon Nelson - Intel Corporation 60

function void pre_randomize();

if (ms_enable) begin
ms_run();

end

endfunction

UVM Dynamic Re-Seeds

02/28/2016 Eldon Nelson - Intel Corporation 61

function void ms_run();

...

type_id = get_type_name();
type_id2 = {uvm_instance_scope(), type_id};

if (uvm_pkg::uvm_random_seed_table_lookup.exists(inst_id))

...

reseed();

endfunction

62

Start

Request:
Seed
Simulation Time
Objective Function Value

Adopt Seed at Simulation
Time

Response:
ACCEPTED

Does Seed at
Simulation Time

Improve
Objective
Function?

Response:
EXISTING

Does a Solution
for this

Simulation Time
Exist?

Response:
REJECTED

Yes

No

No

Yes

UVM reseed

02/28/2016 Eldon Nelson - Intel Corporation 63

reseed

Calls srandom on the object to reseed the object using the
UVM seeding mechanism, which sets the seed based on
type name and instance name instead of based on instance
position in a thread.

function void reseed ()

