
I’m Still In Love With My X!
(but, do I want my X to be an optimist, a pessimist, or eliminated?)

Stuart Sutherland
SystemVerilog Trainer and Consultant

Sutherland HDL, Inc.
Portland, Oregon

stuart@sutherland-hdl.com
Abstract—This paper explores the advantages and hazards of 
X-optimism and X-pessimism, and of 2-state versus 4-state 
simulation. A number of papers have been written over the 
years on the problems of optimistic versus pessimistic X 
propagation in simulation. Some papers argue that Verilog/
SystemVerilog is overly optimistic, while other papers argue 
that SystemVerilog can be overly pessimistic. Which 
viewpoint is correct? Just a few years ago, some simulator 
companies were promising that 2-state simulations would 
deliver substantially faster, more efficient simulation run-
times, compared to 4-state simulation. Now it seems the tables 
have turned, and Verilog/SystemVerilog simulators are 
providing modes that pessimistically propagate logic X 
values, with the promise that 4-state simulation will more 
accurately and efficiently detect obscure design bugs. Which 
promise is true? This paper answers these questions.

Keywords—Verilog, SystemVerilog, RTL simulation, 2-state, 4-
state, X propagation, X optimism, X pessimism, register 
initialization, randomization, UVM

1.   INTRODUCING MY X

SystemVerilog uses a four-value logic system to represent 
digital logic behavior: 0, 1, Z (high-impedance) and X 
(unknown, uninitialized, or don’t care). Values 0, 1 and Z 
are abstractions of the values that exist in actual silicon 
(abstract, because these values do not reflect voltage, 
current, slope, or other characteristics of physical silicon). 
The fourth value, X, is not an abstraction of actual silicon 
values. Simulators can use X to indicate a degree of 
uncertainty in how physical hardware would behave under 
specific circumstances, i.e., when simulation cannot 
predict whether an actual silicon value would be a 0, 1 or 
Z. For synthesis, logic X provides design engineers a way 
to specify “don’t care” conditions, where the engineer is 
not concerned about whether actual hardware will have a 0 
or a 1 value for a specific condition.

X values are useful, but can also be a challenge for design 
verification. Of particular concern is how X values 
propagate through digital logic in RTL and gate-level 

simulation models. A number of conference papers have 
been written on this topic. The title of this paper is inspired 
by two earlier papers on X propagation, “The Dangers of 
Living with an X” by Turpin [1] and “Being Assertive with 
Your X” by Mills [2], presented in 2003 and 2004, 
respectively. Both the SystemVerilog standard and 
SystemVerilog simulators have added many new features 
since those papers were written. This paper reiterates 
concepts and good advice from earlier papers, and adds 
coding guidelines that reflect the latest in the 
SystemVerilog language and software tool features.

Terminology: For the purposes of this paper, X-optimism is 
defined as any time simulation converts an X value on an 
expression or logic gate input into a 0 or a 1 on the result. 
X-pessimism is defined as any time simulation passes an X 
on an input to an expression or logic gate through to the 
result. As will be shown in this paper, sometimes X-
optimism is desirable, and sometimes it is not. Conversely, 
in different circumstances, X-pessimism can be the right 
thing or the wrong thing.

Note: In this paper, the term “value sets” is used to refer to 
2-state values (0 and 1) and 4-state values (0, 1, Z, X). The 
term “data types” is used as a general term for all net types, 
variable types, and user-defined types. The terms value sets
and data types are not used in the same way in the official 
IEEE SystemVerilog standard [3], which is written 
primarily for companies that implement software tools 
such as simulators and synthesis compilers. The 
SystemVerilog standard uses terms such as “types”, 
“objects” and “kinds”, which have specific meaning for 
those that implement tools, but which this author feels are 
neither common place nor intuitive for engineers that use 
the SystemVerilog language.

2.   HOW DID MY ONE (OR ZERO) BECOME MY X?

Logic X is a simulator’s way of saying that it cannot 
predict whether the value in actual silicon would be 0 or 1. 
1



There are several conditions where simulation will 
generate a logic X:

• Uninitialized 4-state variables

• Uninitialized registers and latches

• Low power logic shutdown or power-up

• Unconnected module input ports

• Multi-driver Conflicts (Bus Contention)

• Operations with an unknown result

• Out-of-range bit-selects and array indices

• Logic gates with unknown output values

• Setup or hold timing violations

• User-assigned X values in hardware models

• Testbench X injection

2.1. Uninitialized 4-state variables

The SystemVerilog keywords that will declare or infer a 4-
state variable are: var, reg, integer, time, and, 
depending on context, logic. 

The var keyword explicitly declares a variable. It can be 
used by itself, or in conjunction with other keywords. In 
most contexts, the var keyword is optional, and is seldom 
used.

var integer i1; // same as "integer i1"
var i2;         // same as "var reg i2"

Example 1: The var variable type

The logic keyword is not a variable type or a net type. 
Nor is the bit keyword. logic and bit define the digital 
value set that a net or variable models; logic indicates a 
4-state value set (0, 1, Z, X) and bit indicates a 2-state 
value set (0, 1). The reg, integer, time and var. 
variable types infer a 4-state logic value set.

The logic keyword can be used in conjunction with the 
var, reg, integer or time keyword or a net type 
keyword (such as wire) to explicitly indicate the value set 
of the variable or net. For example:

var  logic [31:0] v; // 4-state 32-bit variable
wire logic [31:0] w; // 4-state 32-bit net

Example 2: 4-state variable and net declarations

The logic (or bit) keyword can be used without the var
or a net type keyword. In this case, either a variable or net 
is inferred, based on context. If logic or bit is used in 
conjunction with an output port, an assign keyword, or 
as a local declaration, then a variable is inferred. If logic
is used in conjunction with an input or inout port 
declaration, then a net of the default net type is inferred 
(typically wire). An input port can also be declared with 
a 4-state variable type, using either the keyword triplet 
input var logic or the keyword pair input var. 

module m1 (
input  logic [7:0] i; // 4-state wire inferred
output logic [7:0] o; // 4-state var inferred

);
logic [7:0] t; // 4-state var inferred
...

endmodule

Example 3: Default port data types

The SystemVerilog standard [3] defines that 4-state 
variables begin simulation with an uninitialized value of X. 
This rule is one of the biggest causes of X values at the 
start of simulation. 

2.2. Uninitialized registers and latches

“Register” and “latch” refer to models that store logic 
values over time. This storage behavior can be represented 
as either abstract RTL procedural code or as low-level 
User-defined primitives (UDPs). Most often, the storage of 
registers and latches is modeled with 4-state variables, 
such as the reg data type.

Note: The reg keyword does not, in and of itself, indicate 
a hardware register. The reg data type is simply a general 
purpose 4-state variable with a user-defined vector size. A 
reg variable can be used to model pure combinational 
logic, as well as hardware registers and latches. 

In SystemVerilog, 4-state variables begin simulation with 
an uninitialized value of X. This means that register and 
latch outputs will have a logic X at the start of simulation. 
Register outputs will remain an X until the register is either 
reset or a known input value is clocked into the register. 
Latch outputs will remain an X until the latch is both 
enabled and the latch input is a known value. This is true 
for both abstract RTL simulations and gate-level 
simulations.

There are ways to handle uninitialized registers and 
latches. Section 5 discusses using 2-state simulation, 
Section 7 discuses using proprietary simulation options, 
and Section 10.2 discusses using the SystemVerilog UVM 
standard.

2.3. Low power logic shutdown or power-up

Simulation of low-power models can result in registers and 
latches that had been initialized changing back to logic X 
during simulation. The effect is similar to uninitialized 
registers and latches at the beginning of simulation, except 
that the X storage occurs sometime during simulation, 
instead of at the beginning of simulation. Once a register 
has gone back to storing an X, the outputs will remain at X 
until the register is either reset or a known input value is 
clocked into the register. A latch that has stored an X will 
remain an X until the latch is both enabled and the latch 
input is a known value. 

This X lock-up when a design block is powered back up 
2



from a low-power mode is especially problematic when 
registers are only set by loading a value, instead of being 
reset or preset. This behavior is a 4-state simulation 
anomaly. Actual silicon registers or latches would power 
up from a low power mode with a 0 or a 1. 

2.4. Unconnected module input ports

Unconnected module inputs generally represent a floating 
input, and result in a simulation value of Z on that input 
(assuming the input data type is wire, which is the default 
in SystemVerilog). When an input floats at high-
impedance, it will often result in a logic X elsewhere 
within the model.

2.5. Multi-driver Conflicts (Bus Contention)

SystemVerilog net types allow multiple outputs to drive the 
same net. Each net type (wire, tri, tri0, tri1, wor, 
wand and trireg) has a built-in resolution function to 
resolve the combined value of the multiple drivers. If the 
final value that would occur in silicon cannot be predicted, 
the simulation value will be an X. (The SystemVerilog-
2012 standard also allows engineers to specify user-
defined net types and resolution functions, which might 
also resolve to a logic X under specific conditions).

2.6. Operations with an unknown result

All SystemVerilog RTL operators are defined to work with 
4-state values for the operands. Some operators have 
optimistic rules and others have pessimistic rules. Section 
3 (page 4) and Section 4 (page 9) discus when X values can 
result from optimistic operations and pessimistic 
operations, respectively.

2.7. Out-of-range bit-selects and array indices

A bit-select is used to read or write individual bits out of a 
vector. A part-select reads or writes a group of contiguous 
bits from a vector. An array index is used to access specific 
members or slices of an array. 

When reading bits from a vector, if the index is outside the 
range of bits in the vector, a logic X is returned for each bit 
position that is out-of-range. When reading members of an 
array, if the index is outside the range of addresses in the 
array, a logic X is returned for the entire word being read. 
Of course, even in-range bit-selects, part-selects and array 
selects can result in an X value being returned, if the vector 
or array being selected contains X values.

Section 4.8, on X-pessimism, discusses reading vector bits 
and array members with unknown indices. Section 3.7, on 
X-optimism, discusses writing to vector bits and array 
members with unknown or out-of-range indices. 

2.8. Logic gates with unknown output values

SystemVerilog built-in primitives and User-defined 

primitives (UDPs) are used to model design functionality 
at a detailed level of abstraction. These primitives operate 
on 4-state values for the gate inputs. An input with a logic 
X or Z value can result in a logic X output value.

2.9. Setup or hold timing violations

SystemVerilog provides timing violation checks, such as 
$setup, $hold, and a few more. Typically, these 
constructs are used by model library developers for models 
of flip-flops, RAMs, and other devices that have specific 
timing requirements. These timing checks can be modeled 
to be either optimistic or pessimistic, should a timing 
violation occur. An optimistic timing check will generate a 
run-time violation report when a violation occurs, but leave 
the values of the model a known value. A pessimistic 
timing check will generate the run-time violation report 
and set one or more of the model outputs to X. 

2.10. User-assigned X values in hardware models

A common source of X values in RTL simulation is user 
code that intentionally assigns logic X to a variable. There 
are two reasons for doing this: to trap error situations in a 
design such as a state condition that should never occur, 
and to indicate a “don’t care” situation for synthesis. A 
common example of a user-assigned X is a case

statement, such as this 3-to-1 multiplexor:

always_comb begin
case (select)
2’b01:   y = a;
2’b10:   y = b;
2’b11:   y = c;
default: y = 'x;  // don’t care about any

endcase             // other values of select
end

Example 4: User-assigned X values

In this example, a select value of 2’b00 is not used by the 
design, and should never occur. The default assignment of 
a logic X serves as a simulation flag, should select ever 
have a value of 2’b00. The same default assignment of X 
serves as a don’t care flag for synthesis. Synthesis tools see 
this X-assignment as an indication that logic minimization 
can be performed for any values of the case expression 
(select, in this example) that were not explicitly 
decoded.

2.11. Testbench X injection

A testbench will often send logic X values into the design 
being tested. One way this can occur is when a testbench 
uses 4-state variables to calculate and store stimulus 
values. These stimulus variables will begin simulation with 
a logic X, and will retain that X until the testbench assigns 
a known value to the variable. Often, a test might not make 
the first assignment to a stimulus variable until many 
hundreds of clock cycles into a simulation. 
3



Some verification engineers will write a test to deliberately 
drive certain design inputs to an X value when the design 
should not be reading those specific inputs. This deliberate 
X injection can bring out errors in a design, should the 
design read that input at an incorrect time. For example, a 
design specification might be that the data input is only 
stored when load_enable is high. To verify this 
functionality was correctly implemented, the testbench 
could deliberately set the data input to an X while 
data_enable is low. If that X value propagates into the 
design, it can indicate the design has a bug.

3.   AN OPTIMISTIC X — IS THAT GOOD OR BAD?

Optimism: an inclination to put the most favorable 
construction upon actions and events or to anticipate the 
best possible outcome. [4]

In simulation, X-optimism is when there is some 
uncertainty on an input to an expression or gate (the silicon 
value might be either 0 or 1), but simulation comes up with 
a known result instead of an X. SystemVerilog is, in 
general, an optimistic language. There are many conditions 
where an ambiguous condition exists in a model, but 
SystemVerilog propagates a 0 or 1 instead of a logic X. A 
simple example of X-optimism is an AND gate. In 
SystemVerilog, an X ANDed with 0 will result in 0, not X.

An optimistic X can be a good thing! X-optimism can 
more accurately represents silicon behavior when an 
ambiguous condition occurs in silicon. Consider the 
following example, shown in Figure 1. 
 

Figure 1: Flip-flop with synchronous reset

This circuit shows a flip-flop with synchronous, active-low 
reset. In actual silicon, the d input might be ambiguous at 
power-up, powering up as either a 0 or 1. If the rstN input 
of the AND gate is 0, however, the output of the AND gate 
will be 0, despite the ambiguous power-up value of d. This 
correctly resets the flip-flop at the next positive edge of 
clk.

In simulation, the ambiguous power-up value of d is 
represented as an X. If this X were to pessimistically 
propagate to the AND gate output, even when rstN is 0, 
the design would not correctly reset, which could cause all 
sorts of problems. Fortunately, SystemVerilog AND 
operators and AND gates are X-optimistic. If any input is 
0, the result is 0. Because of X-optimism, simulation 
accurately models silicon behavior, and the simulated 
models function correctly.

An optimistic X can also be a bad thing! X-optimism can, 
and will, hide design problems, especially at the abstract 
RTL level of verification. At best, these design bugs are not 
caught until late in the design cycle during gate-level 
simulations or when other low-level analysis tools are 
used. At worst, design ambiguities that were hidden by X-
optimistic simulation might not be discovered until the 
design has been implemented in actual silicon.

Several X-optimistic SystemVerilog constructs are 
discussed in more detail in this section. 

3.1. If...else statements

SystemVerilog has an optimistic behavior when the control 
condition of an if...else statement is unknown. The rule 
is simple: should the control condition evaluate to 
unknown, the else branch is executed.

always_comb begin
if (sel) y = a;   // if sel is 1
else     y = b;   // if sel is 0, X or Z

end

Example 5: if...else statement X-optimism

This optimistic behavior can hide a problem with sel, the 
control condition. In actual silicon, the ambiguous value of 
sel will be 0 or 1, and y will be set to a known result. How 
accurately does SystemVerilog’s X-optimistic behavior 
match the behavior in actual silicon? The answer depends 
in part on how the if...else is implemented in silicon.

The behavior of this simple if...else statement might be 
implemented a number of ways in silicon. Figure 3 and 
Figure 2 illustrate two possibilities, using a Multiplexor or 
NAND gates, respectively.
 

Figure 2: 2-to-1 selection — MUX gate implementation

 

Figure 3: 2-to-1 selection — NAND gate implementation

Table 1 shows the simulation results for an X-optimistic 
if...else when the control expression (sel) is unknown, 

d

rstN

clk

q

a

sel

b

y

a

sel

b

y

4



compared to the simulation behavior of MUX and NAND 
implementations and actual silicon behavior.

Some important things to note from this table are:

• For all rows, the if...else statement propagates a 
known value instead of the X value of sel. This X-
optimistic behavior could hide error conditions in the 
design.

• For rows 2 and 3, the X-optimistic if...else behavior 
only matches one of the possible values that could occur 
in actual silicon. The other possible value is not 
propagated and therefore the design is not verified with 
that other possible value. 

• The MUX implementation of an if...else is the most 
accurate, and propagates an X when there is a potential of 
actual silicon having either a 0 or a 1.

• The NAND-gate implementation is overly pessimistic for 
when a and b are both 1 (row 4), and propagates an X 
value, even though the actual silicon would have a 
known value of 1.

Following is a more detailed example that illustrates how 
optimistic if...else X propagation can hide a design 
problem. The example is a program counter that: can be 
reset, can be loaded with a new count, or can increment the 
current count. The program counter is instantiated within a 
larger design, cpu, that does not need the ability to load the 
program counter, and leaves the loadN and new_count
inputs unconnected.

module program_counter (
input  logic        clock, resetN, loadN,
input  logic [15:0] new_count,
output logic [15:0] count

);
always_ff @(posedge clock or negedge resetN)
if (!resetN)     count <= 0;
else if (!loadN) count <= new_count;
else             count <= count + 1;

endmodule: program_counter

module cpu (...);
...
program_counter pc (.clock(m_clk),

                      .resetN(m_rstN),
                      .loadN(/* not used */),
                      .new_count(/* not used */),
                      .count(next_addr) );
...

endmodule: cpu

Example 6: Program counter with unused inputs, 
X-optimistic rules

In actual silicon, each bit of these unconnected inputs will 
have ambiguous values — they will be sensed as either 0 or 
1, depending on factors such as transistor technology and 
interconnect capacitance. If actual silicon senses loadN as 
1, the counter will increment on each clock, which is the 
desired functionality. If silicon senses loadN as 0, the 
counter will load an ambiguous new_count value on each 
clock, and the program counter will not work correctly.

X-optimism hides this design bug! The loadN and 
new_count inputs will float at high-impedance (assuming 
the default net type of wire). Instead of seeing loadN as 
being either 0 or 1, the way silicon would, RTL simulation 
always takes the else branch, which increments the 
counter. This X-optimistic behavior happens to be the 
desired behavior for this design, but it is a dangerous 
simulation hazard! In RTL simulation, the design appears 
to work correctly, and a serious design bug could go 
undetected. 

Later sections of this paper show several ways to detect 
problems with if conditions, so that design bugs of this 
nature do not remain hidden by an optimistic X.

3.2. Case statements without a default-X assignment

The control value of a case statement is referred to as the 
case expression. The values to which the control value is 
compared are referred to as case items. 

always_comb begin
case (sel)       // sel is the case expression
1'b1: y = a;   // 1'b1 is a case item 
1'b0: y = b;   // 1'b0 is a case item value

endcase
end

Example 7: case statement X-optimism

Functionally, case and if...else represent similar logic. 
However, SystemVerilog’s X-optimistic behavior for a 
case statement without a default branch is very 
different than an if...else decision when the select 
control is unknown, as is shown in Table 2. 

inputs output (y)

sel a b

simulation behavior actual 
silicon 

behavior
if...else

RTL
MUX 
gate

NAND 
gates

X 0 0 0 0 0 0

X 0 1 1 X X 0 or 1

X 1 0 0 X X 0 or 1

X 1 1 1 1 X 1

Table 1: if...else versus gate-level X propagation  
5



Observe in this table that a case statement without a 
default branch retains its previous value whenever the case 
expression is unknown. 

A case statement with a default assignment of a known 
value is also optimistic, but in a different way. Consider the 
following example:

always_comb begin
case (sel)
1'b1:    y = a;
default: y = b;

endcase
end

Example 8: case statement with default assignment of a 
known value X-optimism

If any bit in the case expression is an X or Z, the value of 
the default case item is assigned to y, instead of keeping 
the previous value. Table 3 show this difference.

As can be seen in this table, case statements with or 
without a default assignment are X-optimistic, and will 

hide problems in the case expression. With either coding 
style, the X-optimism does not accurately reflect the 
ambiguity that exists on the results in actual silicon, should 
a selection control be ambiguous.

Section 3.2 on pessimistic modeling styles will discuss 
what happens when a case statement default branch 
assigns an X as the decoded result. Sections 7 and 9 present 
other ways to reduce or eliminate this X-optimism problem 
with case statements.

3.3. Casex, casez and case...inside statements

SystemVerilog’s casex, casez and casez...inside
statements allow specific bits to be masked out — i.e., 
ignored — from being compared for each case branch. 
Collectively, these three constructs are sometimes referred 
to as wildcard case statements.

With casez, any bit in the case expression or case item
that is set to Z will be ignored. With casex, any bit in the 
case expression or case item that is either X or Z will be 
ignored. (In literal numbers, a ? can be used in place of the 
letter Z.)

always_comb begin
casex (sel)     // sel is 3 bits wide
3'b1??: y = a;  // matches 100, 101, 110, 111
3'b00?: y = b;  // matches 000, 001
3'b01?: y = c;  // matches 010, 011
default: $error("sel had unexpected value");

endcase
end

Example 9: casex statement X-optimism

By using “don’t care” values, the 3 case items above 
decode all 8 possible 2-state values of sel. Less obvious is 
that these case items also decode all possible unknown 
values of sel, because the don’t care bits in case items
ignore all values in those bit positions, including X and Z 
values. Furthermore, any X or Z bits in the case expression
are also considered to be don’t care bits, and are ignored in 
any comparisons. The values of sel will decode as:

• 3'b1?? matches sel values of: 
   100, 101, 110, 111,  
   10X, 11X, 1X0, 1X1, 1XX,  
   10Z, 11Z, 1Z0, 1Z1, 1ZZ,  
   1XZ, 1ZX, 
   X00, X01, X10, X11,  
   XXX, XZZ, XZX, XXZ,  
   ZZZ, ZZX, ZXZ, ZXX 

• 3'b00? matches sel values of:  
   000, 001, 00X, 00Z,  
   0X0, 0X1, 0XX, 0XZ,  
   0Z0, 0Z1, 0ZZ, 0ZX 

• 3'b01? matches sel values of:  
   010, 011, 01X, 01Z 

inputs previous
value
of y

output (y)

sel a b
case
RTL

if...else
RTL

MUX 
gate

silicon

X 0 0 0 0 0 0 0

X 0 1 0 0 1 X 0 or 1

X 1 0 0 0 0 X 0 or 1

X 1 1 0 0 1 1 1

X 0 0 1 1 0 0 0

X 0 1 1 1 1 X 0 or 1

X 1 0 1 1 0 X 0 or 1

X 1 1 1 1 1 1 1

Table 2: case versus if...else versus MUX X propagation  

inputs
previous

value
of y

output (y)

sel a b
case

without
default

case
with

default
silicon

X 0 0 0 0 0 0

X 0 1 0 0 1 0 or 1

X 1 0 0 0 0 0 or 1

X 1 1 0 0 1 1

X 0 0 1 1 0 0

X 0 1 1 1 1 0 or 1

X 1 0 1 1 0 0 or 1

X 1 1 1 1 1 1

Table 3: case with default versus case without default 
6



• default does not match any values, because all possible 
4-state values have already been decoded by the previous 
case items.

Using casez instead of casex changes the X-optimism. 
With casez, only Z values (also represented with a ?) in 
the case expression or case items are treated as don’t care 
values.

always_comb begin
casez (sel)     // sel is 3 bits wide
3'b1??: y = a;  // matches 100, 101, 110, 111
3'b00?: y = b;  // matches 000, 001
3'b01?: y = c;  // matches 010, 011
default: $error("sel had unexpected value");

endcase
end

Example 10: casez statement X-optimism

With casez, the values each case item represents are:

• 3'b1?? matches sel values of: 
   100, 101, 110, 111,  
   10X, 11X, 1X0, 1X1, 1XX,  
   10Z, 11Z, 1Z0, 1Z1, 1ZZ,  
   1XZ, 1ZX, 
   ZZZ, ZZX, ZXZ, ZXX 

• 3'b00? matches sel values of:  
   000, 001, 00X, 00Z,  
   0Z0, 0Z1, 0ZZ, 0ZX 

• 3'b01? matches sel values of:  
   010, 011, 01X, 01Z 

• default matches sel values of: 
   X00, X01, X10, X11,  
   XXX, XZZ, XZX, XXZ,  
   0X0, 0X1, 0XX, 0XZ, 

Using casez, some, but not all, of the possibilities of sel
having a bit with an X or Z value fall through to the 
default statement. Since y is not assigned a value in the 
default branch, the value of y would not be changed, and 
would retain its previous value. 

The case...inside statement is also X-optimistic, but less 
so than casex or casez. With case...inside, only the 
bits in case items can have mask (don’t care) bits. Any X or 
Z bits in the case expression are treated as literal values. 

always_comb begin
case (sel) inside
3'b1??: y = a;
3'b00?: y = b;
3'b01?: y = c;
default: $error("sel had unexpected value");

endcase
end

Example 11: case...inside statement X-optimism

Using case...inside, the values each case item represents 
are:

• 3'b1?? matches sel values of: 
   100, 101, 110, 111,  
   10X, 11X, 1X0, 1X1, 1XX,  
   10Z, 11Z, 1Z0, 1Z1, 1ZZ,  
   1XZ, 1ZX 

• 3'b00? matches sel values of:  
   000, 001, 00X, 00Z 

• 3'b01? matches sel values of:  
   010, 011, 01X, 01Z 

• default matches sel values of: 
   0X0, 0X1, 0XX, 0XZ,  
   0Z0, 0Z1, 0ZZ, 0ZX,  
   X00, X01, X10, X11,  
   XXX, XZZ, XZX, XXZ,  
   ZZZ, ZZX, ZXZ, ZXX 

All forms of wildcard case statements are X-optimistic, but 
in different ways. The case...inside does the best job of 
modeling actual silicon optimism, but can still differ from 
true silicon behavior, and can hide problems with a case 
expression. Sections 3.3, 7 and 9 discuss ways to reduce or 
eliminate this X-optimism problem with wildcard case 
statements.

3.4. Bitwise, unary reduction, and logical operators

Many, but not all, of SystemVerilog’s RTL programming 
operators are X-optimistic. An X or Z bit in an operand 
might not propagate to an unknown result. For example, 0 
ANDed with any value, including an X or Z, will result in 
0, and 1 ORed with any value will result in 1. This 
optimistic behavior can accurately represent the silicon 
behavior of an actual AND or OR gate, but it can also hide 
the fact that there was a problem on the inputs to the RTL 
operation.

The optimistic operators are:

• Bitwise: AND ( & ), OR ( | )

• Unary: AND ( & ), NAND ( ~& ), OR ( | ), NOR ( ~| )

• Logical: AND (&&), OR (||), Implication (->), and 
Equivalence (<->)

The logical AND and OR operators evaluate each operand 
to determine if the operand is true or false. These operators 
have two levels of X-optimism that can hide X or Z values:

• An operand is considered to be true if any bit is a 1, and 
false if all bits are 0. For example, the value 4'b010x
will evaluate as true, hiding the X in the least-significant 
bit.. 

• Logical operators “short circuit”, meaning that if the 
result of the operation can be determined after evaluating 
the first operand, the second operand is not evaluated.

The following example illustrates a few ways in which X-
optimistic RTL operators could hide a problem in a design.
7



logic [3:0] a = 4'b0010;
logic [3:0] b = 4'b000x;
logic [1:0] opcode;

always_comb begin
case (opcode) inside
2'b00: y = a & b;
2'b01: y = a | b;
2'b10: y = &b;
2'b10: y = a || b;

endcase
end

Example 12: Bitwise, unary and logical operator X-optimism

For the values of a and b shown above:

• a & b results in 4'b0000 — the X in b is hidden, but the 
operation result accurately represents silicon behavior.

• a | b results in 4'b001x — the X in b is propagated, 
accurately indicating there will be ambiguity in silicon 
behavior.

• &b results in 1'b0 — the X in b is hidden, but the 
operation result accurately represents silicon behavior.

• a || b results in 1'b1 — the X in b is hidden, but the 
operation result accurately represents silicon behavior.

Note that the X-optimism of these operators accurately 
models silicon behavior. As noted at the beginning of 
Section 3, there are times that this optimism is desirable 
and necessary, in order for RTL simulation to work 
correctly, but the optimism can also obscure design 
problems. 

Not all SystemVerilog operators are optimistic. Sections 
4.5 and 4.6 list several operators that are X-pessimistic.

3.5. And, nand, or, nor, logic primitives

SystemVerilog’s and, nand, or and nor gate-level 
primitives are used for low-level, timing-detailed 
modeling. These constructs are often used in ASIC, FPGA 
and custom model libraries. These primitives follow the 
same truth tables as their RTL operator counterparts, and 
have the same X-optimistic behavior.

3.6. User-defined primitives

SystemVerilog provides ASIC, FPGA and custom library 
developers a means to create custom user-defined 
primitives (UDPs). UDPs are defined using a 4-state truth 
table, allowing library developers to define specific 
behavior for X and Z input values. It is common for 
developers to “reduce pessimism” by defining known 
output values for when an input is X or Z, or when there is 
a transition to or from an X or Z. As with other X-
optimistic constructs, UDPs with reduced pessimism might 
accurately model actual silicon behavior, but can hide 
inputs that have an X or Z value.

3.7. Array index with X or Z bits for write operations

SystemVerilog is X-optimistic when making an assignment 
to an array with an ambiguous array index. If the index has 
any bits that are X or Z, the write operation is ignored, and 
no location in the array is modified. 

logic [7:0] RAM [0:255];
logic [7:0] data = 8'b01010101
logic [7:0] addr = 4'b0000000x;

always_latch
if (write && enable) RAM[addr] = data;

Example 13: Array index ambiguity X-optimism

In this example, only the least-significant bit of addr is 
unknown. A pessimistic approach would have been to 
write an unknown value into the RAM locations that might 
have been affected by this unknown address bit (addresses 
0 and 1 in this example). SystemVerilog’s X-optimistic 
rule, however, acts as if no write operation had occurred. 
This completely hides the fact that the address has a 
problem, and does not accurately model silicon behavior.

3.8. Net data types

Net types are used to connect design blocks together. In the 
original Verilog language, net data types were also required 
to be used internally within a module for all input ports. In 
SystemVerilog, module input ports can be either a net or a 
variable, but the default is still a net type.

Net types have driver resolution functions, which control 
how simulation resolves multiple drivers on the same net. 
Multi-driver resolution is important for specific design 
situations, such as shared data and address busses that can 
be controlled by more than one device output. When 
single-source logic is intended, however, the resolution 
function of a net can optimistically hide design problems 
by propagating a resolved value instead of an X. 

The most commonly used net type in SystemVerilog is the 
wire type. The multi-driver resolution for wire is that 
driven values of a stronger strength take precedence over 
driven values of a weaker strength (logic 0 and logic 1 each 
have 8 strength levels). If, for example, two sources drive 
the same wire net, and one value is a weak-0 and the other 
a strong-1, the wire resolves to the strong-1 value. If two 
values of equal strength but opposing logic values are 
driven, the wire to resolves to a logic X. 

Consider the following module port declarations:

module program_counter (
input               clock, resetN, loadN,
input  logic [15:0] new_count,
output logic [15:0] count

);
...

endmodule: program_counter

Example 14: Program counter with default wire net types
8



In Example 14, clock, resetN and loadN are input ports, 
but no data type has been defined. These signals will all 
default to wire nets. The signal new_count is declared as 
input logic, and will also default to wire (logic only 
defines that new_count can have 4-state values, but does 
not define the data type of new_count). Conversely, 
count is declared as output logic. Module output ports 
default to a variable of type reg, unless explicitly declared 
a different data type. (Note: The default data type rules 
changed between the SystemVerilog-2005 and 
SystemVerilog-2009 standards for when logic is used as 
part of port declaration.)

Design bugs can easily occur when a mistake is made and a 
wire net, that was intended to only have one driver, is 
unintentionally driven by two sources. Since wire types 
support and resolve multiple drivers, simulation will only 
propagate an X if the two values are of the same strength 
and opposing values. Any other combination will resolve 
to a known value, and hide the fact that there were 
unintentional multiple drivers. 

3.9. Posedge and negedge edge sensitivity

In SystemVerilog, the posedge keyword represents any 
transition that might be sensed as a positive going change 
in silicon. Value changes of 0->1, 0->Z, Z->1, 0->X, and 
X->1 are all positive edge transitions. A negedge
transition includes the value changes of 1->0, 1->Z, Z->0, 
1->X, and X->0.

The following example illustrates a simple RTL register 
with an asynchronous active-low reset. 

always_ff @(posedge clk or negedge rstN)
if (!rstN) q <= 0;
else       q <= d;

Example 15: Edge sensitivity X-optimism

Table 4 shows SystemVerilog’s X-optimistic RTL behavior 
and actual silicon behavior if clk transitions from 0 to X 
(indicating that in silicon, the new value of clk might be 
either 0 or 1, but simulation is not certain which one). This 
table assumes rstN is high (inactive), and only shows the 
effects of a transition on the clock input. For this table, all 
signals are 1-bit wide.

As shown in this table, SystemVerilog’s X-optimism rules 

for transitions will behave as if a clock edge occurred every 
time there is an ambiguous possibility of a positive edge on 
the clock. The ambiguous clock is hidden, instead of 
propagating the ambiguity onto the q output in the form of 
an X value.

The behavior of an ambiguous asynchronous reset is more 
subtle. Actual silicon would either reset or hold its 
currently stored value. SystemVerilog RTL semantics 
behave quite differently. If the asynchronous rstN

transitions from 1->Z, Z->0, 1->X, or X->0, the 
following results will occur:

This table shows that the ambiguous transition from 1 to X 
on the reset acts as if a positive edge of the clock occurred. 
This X-optimism not only hides that there was a problem 
with the reset, it does not at all behave like actual silicon!

4.   A PESSIMISTIC X — IS THAT ANY BETTER?

Pessimism: an inclination to emphasize adverse aspects, 
conditions, and possibilities or to expect the worst possible 
outcome. [4]

In simulation, X-pessimism occurs when simulation yields 
an X where there is no uncertainty in actual silicon 
behavior. A common misconception is that SystemVerilog 
RTL code is always X-optimistic, and gate-level code is 
always X-pessimistic. This is not true. Some RTL 
operators and programming statements are optimistic, but 
others are pessimistic. Likewise, some gate-level 
primitives and UDPs are optimistic and some are 
pessimistic.

While X-optimism often accurately represents actual 
silicon behavior, the optimism can hide X values by 
propagating a known result. X-pessimism, on the other 
hand, guarantees that all ambiguities (one or more bits that 
are X or Z) will propagate to downstream code, helping to 
ensure that the problem will be detected, so that it can be 
debugged and corrected. X-pessimism will not hide design 
bugs, but there are at least three difficulties that can arise 
from X-pessimism. 

One difficulty of X-pessimism is the point where 
verification first observes the X might be far downstream 

inputs old q output (q)

clk d q RTL silicon

0->X 0 0 0 0

0->X 0 1 0 0 or 1

0->X 1 0 1 0 or 1

0->X 1 1 1 1

Table 4: Ambiguous clock edge X-optimism  

inputs old q output (q)

rstN d q RTL silicon

1->X 0 0 0 0

1->X 0 1 0 0 or 1

1->X 1 0 1 0

1->X 1 1 1 0 or 1

Table 5: Ambiguous reset edge X optimism  
9



from the original source of the problem. An engineer might 
have to tediously trace an X value back through many lines 
of code, and over many clock cycles, to find where and 
when the X originated. 

Another difficulty is that X-pessimism can propagate X 
results, where actual silicon would work without a 
problem. This section will show several examples where 
an X value should not have been propagated, but X-
pessimism does so anyway. A great deal of engineering 
time can be lost debugging the cause of a pessimistic X, 
only to find out that there is no actual design problem.

A third difficulty with X-pessimism is the potential of 
simulation locking up in an unknown condition, where 
actual silicon, though perhaps ambiguous about having 0 
or 1 values, will function correctly and not lock up. 
Figure 4 illustrates a common X lock-up situation, a clock 
divider (divide-by-two, in this example).

Figure 4: Clock divider with pessimistic X lock-up

In actual silicon, the internal storage of this flip-flop might 
power up as either a 0 or a 1. Whichever value it is, clk2
will change value every second positive edge of clk1, and 
give the desired behavior of a divide-by-two. In simulation, 
however, the ambiguity of starting as either a 0 or 1 is 
represented as an X. The pessimistic inverter will 
propagate this X to the D input. Each positive edge of clk1
will propagate this X onto Q, which once again feeds back 
to the input of the inverter. The result is that clk2 is stuck 
at an X. 

The failure of clk2 to toggle between 0 and 1 will likely 
lock up downstream registers that are controlled by clk2. 
The X-pessimistic simulation will be locked up in an X 
state, where actual silicon would not have a problem. This 
X-pessimism exists at both the RTL level and at the gate 
level. The invert operator and the not inverter primitive 
are both X-pessimistic. An RTL assignment statement, 
such as Q <= D, and the typical gate-level flip-flop will 
both propagate an X when D is an X.

Several overly pessimistic SystemVerilog constructs that 
can cause simulation problems are discussed in this 
section.

4.1. If...else statements with X assignments

Section 3.1 showed how SystemVerilog if...else
statements are, by default, X-optimistic, and can propagate 
known values, even though a decision condition has 
ambiguity (one or more bits at X or Z). It was also shown 
that this X-optimistic behavior did not always accurately 
represent silicon behavior.

It is possible to code decision statements to be more X-
pessimistic. Consider the following example:

always_comb begin
if (sel)        y = a;
else 
// synthesis translate_off
if (!sel)

// synthesis translate_on
y = b;

// synthesis translate_off
else            y = 'x;
// synthesis translate_on

end

Example 16: if...else statement with X-pessimism and 
synthesis pragmas

Assuming that sel is only 1-bit wide, the if (sel) will 
evaluate as true if, and only if, sel is 1. The first else
branch is taken if sel is 0, X or Z (X-optimistic). This first 
else branch then tests for if (!sel), which will 
evaluate as true if, and only if, sel is 0. If sel is X or Z, 
the last else branch will be taken. This last branch assigns 
y to X, thus propagating the ambiguity of sel. This 
if...else statement is now X-pessimistic, propagating X 
values rather than known values when there is a problem 
with the select condition.

Note that the additional code to make the if...else
decision be X-pessimistic might not yield optimal 
synthesis results. Therefore, the additional checking must 
be hidden from synthesis, using either conditional 
compilation (`ifdef commands) or synthesis “pragmas”. 
A pragma is a tool-specific command hidden within a 
comment or attribute. The synthesis pragma is ignored by 
simulation, but tells synthesis compilers to skip over any 
code that should not be synthesized.

4.2. Conditional operator

Coding an X-pessimistic if...else statement might not be 
the best choice for all circumstances. The X-pessimism 
will not hide a problem with the select condition the way 
an X-optimistic statement would, as described in 3.1. 
However, the pessimistic model will also propagate X 
values at times where there is no ambiguity in hardware. 
This can occur when the select condition is unknown, but 
the values assigned in both branches are the same. The 
value propagated in hardware would be that value, with no 
ambiguity.

D

CLK

Q

clk1

clk2
XX X
10



Turpin, in his paper “The Dangers of Living with an X”[1], 
recommends using the conditional operator ( ? : ) instead 
of if...else statements in combinational logic. The 
conditional operator is a mix of X-optimistic and X-
pessimistic behavior. The syntax is:

condition ? expression1 : expression2 

• If the condition evaluates as true (any bit is a 1), the 
operator returns the value of expression1. 

• If the condition evaluates as false (all bits are 0), the 
operator returns the value of expression2. 

• If the condition evaluates to unknown, the operator does 
a bit-by-bit comparison of the values of expression1 and 
expression2. For each bit position, if that bit is 0 in both 
expressions, then a 0 is returned for that bit. If both bits 
are 1, a 1 is returned. If the corresponding bits in each 
expression are different, or Z, or X, then an X is returned 
for that bit.

The following example and table compare the X-optimistic 
behavior of if...else, with a pessimistic if...else, the 
mixed-optimism conditional operator, and actual silicon. 
The table is based on all signals being 1-bit wide.

always_comb begin     // X-optimistic if...else
if (sel) y1 = a;
else     y1 = b;

end

always_comb begin     // X-pessimistic if...else
if (sel)        y2 = a;
else if (!sel)  y2 = b;
else            y2 = 'x;

end

always_comb begin     // mixed pessimism ?:
y3 = sel? a: b;

end

As can be seen in this table, the conditional operator 
represents a mix of X-optimism and X-pessimism, and 
more accurately represents the ambiguities of actual silicon 
behavior, given an uncertain selection condition. For this 
reason, Turpin [1] recommends using the conditional 
operator instead if...else in combinational logic.

This author does not agree with Turpin’s coding guideline 
for two reasons. First, complex decode logic often involves 
multiple levels of decisions. Coding with if...else and 
case statements can help make complex logic more 
readable, easier to debug, and easier to reuse. Coding the 
same logic with nested levels of conditional operators 
obfuscates code and adds a risk of coding errors. 
Furthermore, synthesis compilers might not permit or 
properly translate nested conditional operators. 

A second reason the conditional operator should not 
always be used in place of if...else is when the condition 
is based on a signal or expression that is more than one bit 
wide. The condition is evaluated as a true/false expression. 
In a multi-bit value, if any bit is 1, the condition is 
considered to be true, even if some other bits are X or Z. 
The conditional operator will optimistically return the 
value of expression 1, rather than propagate an X.

Sections 7 and 9 show ways to keep the benefits of 
if...else and case statements, and also have the benefit 
of the conditional operator’s balance of X-optimism and X-
pessimism.

4.3. Case statements with X assignments

A case statement can also be coded to be X-pessimistic, as 
shown in the next example:

always_comb begin
case (sel)
2’b00:   y = a;
2’b01:   y = b;
2’b10:   y = c;
2’b11:   y = d;
default: y = 'x;

endcase
end

Example 17: case statement with X-pessimism

If sel (the case expression) should have any bit at X or Z, 
none of the explicit case item values will match. Without a 
default case item, no branch of the case statement 
would be executed, and y would retain its old value (X-
optimistic, but not accurate silicon behavior). By adding a 
default case item that assigns y to X, this case
statement becomes X-pessimistic. If sel should have any 
bit at X or Z, y will be assigned X, propagating the 
ambiguity of the case expression.

This coding style is supported by synthesis, and so 
synthesis pragmas are needed, as was the case with an X-
pessimistic if...else. Engineers should be aware, 
however, that this coding style can result in synthesis 
performing logic minimizations that might or might not be 
desirable in a design. It should also be noted that this 
coding style can reduce the risk of unintentional latches 
during synthesis, but it does not guarantee latches will not 
be inferred.

inputs output (y1, y2, y3)

sel a b
optimistic

if...else
pessimistic

if...else
?: silicon

X 0 0 0 X 0 0

X 0 1 1 X X 0 or 1

X 1 0 0 X X 0 or 1

X 1 1 1 X 1 1

Table 6: Conditional operator X propagation compared to 
optimistic if...else and pessimistic if...else  
11



This pessimistic coding technique does not work as well 
with casex, casez and case...inside wildcard case 
statements. As already shown in 3.3, any don’t care bits 
specified in case items, and possibly in the case expression, 
will mask out X or Z values. This masking will always 
make wildcard case statements at least partially X-
optimistic, which can hide design problems, and not 
accurately represent silicon behavior.

4.4. Edge-sensitive X pessimism

Edge transitions can also be coded in an X-pessimistic 
style. As described in 3.9, value changes to and from X or 
Z are treated as transitions, which results in X-optimistic 
behavior that does not accurately represent possible 
ambiguities in silicon behavior. The following example 
shows how this optimism can be removed:

always_ff @(posedge clk or negedge rstN)
// synthesis translate off
if ($isunknown(rstN) )
q = 'x;

// synthesis translate on
if (!rstN) q <= 0;
else 
// synthesis translate off
if (rstN & clk)

// synthesis translate on
q <= d;

// synthesis translate off
else            q = 'x;
// synthesis translate on

Example 18: Edge sensitivity X-optimism

Note that the extra checking to eliminate the X-optimism is 
not synthesizable, and needs to be hidden from synthesis 
compilers. This coding style does prevent the problems of 
X-optimism for edge sensitivity, but the coding style is 
awkward and non-intuitive. Section 9 shows another 
approach to this problem that is preferred by the author.

4.5. Bitwise, unary reduction, and logical operators

While many SystemVerilog operators are X-optimistic (see 
3.4), several operators are X-pessimistic. An X or Z bit in 
an operand will always propagate to an unknown result, 
even when there would be no ambiguity in the actual 
silicon result. The pessimistic operators are:

• Bitwise: INVERT ( ~ ), XOR ( ^ ), and XNOR ( ~^ )

• Unary: XOR ( ^ ), and XNOR ( ~^ )

• Logical: NOT ( ! )

Example 19 illustrates a 5-bit linear-feedback shift register 
that uses the logical exclusive-OR operator for the 
feedback taps. The initial value of the LFSR is seeded 
using a synchronous (multiplexed) active-low reset. In this 
example, the most-significant bit of the seed value is 
shown as Z (perhaps due to an interconnect error or some 
other design bug). 

logic [4:0] lfsr;
logic [4:0] seed = 5'bz1010; // problem with seed!

always @(posedge clk)
if (!rstN
lfsr <= seed;  // seed has a bug with msb

else begin
lfsr    <= {lfsr[0], lfsr[4:1]};  // rotate
lfsr[2] <= lfsr[3] ^ lfsr[0];     // xor tap
lfsr[3] <= lfsr[4] ^ lfsr[0];     // xor tap

end

Example 19: Bitwise operator with X-pessimism

Simulation cannot predict which value would be seen in 
silicon for the MSB of seed, but does it really matter? In 
actual silicon, this floating input would be seen as either a 
0 or 1, and the LFSR would work without a problem, 
though perhaps with a different seed value than intended. 
A fully X-optimistic model would propagate known values 
through the LFSR, and hide the ambiguity that exists in 
silicon. The logical XOR, however, is pessimistic, and the 
problem with the seed value will show up as X values on 
the outputs of the LFSR. This X-pessimism does not 
accurately represent silicon behavior, and can result in X 
values propagating to downstream logic that can be 
difficult and time consuming to debug.

Example 20 shows a place where an X-pessimistic 
operator is desirable. The example is a verification code 
snippet that takes advantage of — and relies on — the X-
pessimism of the exclusive-or operator:

logic [3:0] d = 4'b001x;

if (^d === 1'bx)    // check for any unknown bit
$display("d has one or more X or Z bits");

Example 20: Unary-reduction operator with X-pessimism

In this example, if any bit of d has a value of X or Z, the 
unary exclusive-OR operator will return an X, allowing the 
verification code to detect a problem with d.

4.6. Equality, relational, and arithmetic operators

SystemVerilog’s equality, relational and arithmetic 
operators are X-pessimistic. An ambiguity (any bit with X 
or Z) in an operand will propagate as a result of X. 
SystemVerilog’s X-pessimism for equality, relational, and 
arithmetic operators sometimes propagates an X where no 
hardware ambiguity exists. A simple example of this 
pessimism is a greater-than or less-than comparator. 

logic [3:0] a = 4'b1100;
logic [3:0] b = 4'b001x;
logic       gt;

always_comb begin
gt = (a > b);     // compare a to b

end

Example 21: Logical operators with X-pessimism
12



The return from the expression (a > b) for the values 
shown in this example will be 1'bx. In this simple code 
snippet, it is obvious that the value of a is greater than the 
value of b, regardless of the actual value of the least-
significant bit of b. Actual silicon would not have an 
ambiguous result. 

Arithmetic operations are also X-pessimistic, and will 
propagate an X if there is any ambiguity of the input 
values.

logic [3:0] a = 4'b0000;
logic [3:0] b = 4'b001z;
logic [3:0] sum;

always_comb begin
sum = a + b;

end

Example 22: Arithmetic operator with X-pessimism

With arithmetic operators, all bits of the operation result 
are X, which can be overly pessimistic. In this example, 
sum will have a value of 4’bxxxx. In silicon, only the 
least-significant bit is affected by the ambiguous bit in b. 
The silicon result would be either 4’b0010 or 4’b0011. A 
more accurate representation of the silicon ambiguity 
would be: 4’b001x.

Arithmetic operations are X-pessimistic, even when the 
result in silicon would not have any ambiguity at all.

logic [3:0] b = 4'b001x;
logic [4:0] product;

always_comb begin
product = b * 0;  // multiply b with 0

end

Example 23: Overly pessimistic arithmetic operation

In this example, product will have an overly pessimistic 
value of 4’bxxxx, but in silicon (and in normal arithmetic) 
zero times anything, even an ambiguous value, would 
result in 0.

4.7. User-defined primitives

ASIC, FPGA and custom library developers can create 
custom primitives (UDPs) to represent library-specific 
components. UDPs are defined using a 4-state truth table, 
allowing library developers to define specific behavior for 
X and Z input values. In addition to specifying an output 
value for each combination of 4-state logic values, the truth 
tables can also define an output value for transitions 
between logic values (e.g. what happens on a posedge of 
clock).

Since each input can have 4 values and 12 transitions to 
and from those values, these truth tables can be quite large. 
By default, UDPs are pessimistic — any undefined input 
value combination that is not explicitly defined in the table 
will default to a result of X. Library developers often take 

advantage of this default to reduce the number of lines that 
need to be defined in the truth table. It is not uncommon for 
a UDP to only define output values for all possible 2-state 
combinations and transitions. Any X or Z values on an 
input, or transitions to and from X or Z, will default to 
propagating an X on the UDP output.

An inadvertent omission from the UDP truth table will also 
propagate an X value. This pessimism might be great for 
finding bugs in the library, but is often a source of 
frustration for engineers using a library from a 3rd party 
vendor.

4.8. Bit-select, part-select, array index on right-hand 
side of assignments

SystemVerilog defines that if the index value of a bit-
select, part-select or array index is unknown (any bit is X 
or Z), the return from the operation will be X. If this X 
occurs on the right-hand side of an assignment statement, it 
will propagate to the left-hand side, even if there would be 
no ambiguity in actual silicon behavior. Consider the 
following:

logic [7:0] data = 8'b10001000;
logic [2:0] i = 4'b00x0;
logic       out;

always_comb begin
out = data[i];  // variable bit select of data

end

Example 24: Ambiguous bit select with X-pessimism

The ambiguity of the value of i means that out will be X. 
This pessimistic rule means that problems with an index 
will propagate to the result of the operation. Since the 
values of data and i could change during simulation, this 
pessimism will be sure to propagate an X whenever an 
ambiguous value of i might occur.

This X-pessimistic rule does not accurately represent 
silicon behavior, however. There are times when an 
ambiguity in the index can still result in a known value. 
With the values shown in Example 24, the ambiguous 
value of i would either select bit 0 or 2. In either case, out
would receive the deterministic value of 0 in actual silicon.

4.9. Shift operations

SystemVerilog has several shift operators, all of which are 
X-pessimistic if the shift factor is ambiguous (any bit is X 
or Z). 

logic [7:0] data = 8'b10001000;
logic [2:0] i = 4'b00x0;
logic [7:0] out ;

always_comb begin
out = data << i;  // shift of data

end

Example 25: Ambiguous shift operation with X-pessimism
13



The result of this shift operation is 8'bxxxxxxxx. As with 
other pessimistic operations, this will be sure to propagate 
an X result whenever the exact number of times to shift is 
uncertain. Setting all bits of the result to X, however, can 
be overly pessimistic, and not represent actual silicon 
behavior, where only some bits of the result might be 
ambiguous, instead of all bits. Given the values in 
Example 25, data is either shifted 0 times or 2 times. The 
two possible results are 8'b10001000 and 8'b00100000. 
If only the ambiguous bits of these two results were set to 
X, the X-optimistic value of out would be 8'bX0X0X000
instead of an overly pessimistic 8'bxxxxxxxx.

4.10. X-pessimism summary

Sections 3 and 4 have shown that, while there are times X-
optimism and X-pessimism can be desirable in specific 
situations, neither is ideal for every situation. Subsequent 
sections in this paper will explore solving this problem by:

• Eliminating X values using 2-state simulation or 2-state 
data types.

• Breaking SystemVerilog rules in order to find a 
compromise between X-optimism and X-pessimism.

• Trapping X values rather than propagating Xs.

5.   ELIMINATING MY X BY USING 2-STATE SIMULATION 

There have been arguments made that it is better to just 
eliminate logic X rather than to deal with the hazards and 
difficulties of X-optimism and X-pessimism (see [1], [5], 
[6]). Some SystemVerilog simulators offer a 2-state 
simulation mode, typically enabled using an invocation 
option such as -2state or +2state. 

Using 2-state simulation can offer several advantages:

• Eliminates uninitialized register and X propagation 
problems (the clock divider X lock-up problem shown in 
Section 4 would not occur in a 2-state simulation).

• Eliminates certain potential mismatches between RTL 
simulation and how synthesis interprets that code, 
because synthesis only considers 2-state values in most 
RTL modeling constructs.

• RTL and gate-level simulation behaves more like actual 
silicon, since silicon always has a 0 or 1, and never an X.

• Reduces the simulation virtual memory footprint; 
Encoding 4-date values for each bit, along with strength 
values for net types, requires much more memory than 
just storing simple 2-state values.

• Improves simulation run-time performance, since 4-state 
encoding, decoding, and operations do not need to be 
performed.

On the other hand, there are several hazards to consider 
when only 2-state values are simulated. 

First, a functional bug in the RTL or gate-level code might 
go undetected. Logic X is a simulator’s way of indicating 
that it cannot accurately predict what actual silicon would 
do under certain conditions. When X values occur in 
simulation, it is an indication that there might be a design 
problem. Without X values, verification and detection of 
possible design ambiguities can be more difficult.

A second hazard of 2-state simulation values is that, since 
there is no X value, simulators must choose either a 0 or a 1 
when situations occur where the simulator cannot 
accurately predict actual silicon behavior. The value that is 
chosen only represents one of the conditions that might 
occur in silicon. This means the design is verified for that 
one value, and leaves any other possible values untested. 
That is dangerous! Some simulators handle this hazard by 
simulating both values in parallel and merging the results 
of the parallel threads. This concept is discussed in more 
detail in section 7.

A third hazard is that all design registers, clock dividers, 
and input ports begin simulation with a value of 0 or 1 
instead of X. Silicon would also power up with values of 0 
or 1, but are they the same values that were simulated? 
Cummings and Bening [6] suggest that the most effective 
2-state verification is performed by running hundreds of 
simulations with each register bit beginning with a random 
2-state value. Cummings and Bening [6] also note that, at 
the time the paper was written, a preferred way for 
handling seeding and repeatability of randomized 2-state 
register initialization was patented by Hewlett-Packard, 
and might not be available for public use.

A fourth hazard is that verification cannot check for design 
problems using a logic X or Z. The following two 
verification snippets will not work with 2-state 
simulations:

assert (ena == 0 && data === 'Z)
else $error("Data bus failed to tri-state");

assert (^data !== 'X)
else $error("Detected contention on data bus");

Example 26: Verification hazard with 2-state simulation

A fifth hazard of 2-state simulation to consider is the use of 
X assignments within RTL code. The following example 
illustrates a common modeling style used in combinational 
logic case statements:

case ( {sel1,sel2} )
2'b01:   result = a + b;
2'b10:   result = a - b;
2'b11:   result = a * b;
default: result = 'X;

endcase

Example 27: Assigning 4-state values in 2-state simulation
14



Synthesis compilers treat assignment of a logic X value as 
a don’t care assignment, meaning the design engineer does 
not care if silicon sees a logic 0 or a logic 1 for each bit of 
the assignment. In a 2-state simulation, the simulator must 
convert each bit of the X assignment value to either a 0 or a 
1. The specific value would be determined by the 
simulator, since 2-state simulation is a feature of the 
simulator and not the language. There is a high probability 
that the values used in simulation and the values that occur 
in actual silicon will not be the same. In theory, this should 
not matter, since by assigning a logic X, the engineer has 
indicated that the actual value is a “don’t care”. The hazard 
is that, without X propagation, this theory is left unproven 
in 2-state simulation.

6.   ELIMINATING SOME OF MY X WITH 2-STATE DATA 
TYPES

The original Verilog language only provided 4-state data 
types. The only way to achieve the benefits of 2-state 
simulation was to use proprietary options provided by 
simulators, as discussed in the previous section. These 
proprietary 2-state algorithms do not work the same way 
with each simulator. 2-state simulation modes also make it 
difficult to mix 2-state simulation in one part of a design 
and 4-state simulation in other parts of the design.

SystemVerilog improves on the original Verilog language 
by providing a standard way to handle 2-state simulations. 
Several SystemVerilog variable types only store 2-state 
values: bit, byte, shortint, int, and longint. 
SystemVerilog-2012 adds the ability to have user-defined 
2-state net types, as well.

Using these 2-state data types has two important 
advantages of simulator-specific 2-state simulation modes:

• All simulators follow the same semantic rules for what 
value to use in ambiguous conditions (such as power-up).

• It is easy to mix 2-state and 4-state within a design, 
which allows engineers to select the appropriate type for 
each design or verification block.

The uninitialized value of 2-state variables is 0. This can 
help prevent blocks of design logic from getting stuck in a 
logic X state at the start of simulation, as discussed in 2.2 
earlier in this paper. The clock-divider circuit that was 
described at the beginning of Section 4 will work fine if the 
flip-flop storage is modeled as a 2-state type.

Having all variables begin with a logic 0 does not 
accurately mimic silicon behavior, however, where each bit 
of each register can power-up to either 0 or 1. When all 
variables start with a value of 0, only one extreme and 
unlikely hardware condition is verified. Bening [5] 
suggests that simulation should begin with random values 
for all bits in all registers, and that hundreds of simulations 

with different seed values should be run, in order to ensure 
that silicon will function correctly at power-up under many 
different conditions.

The ability to declare nets and variables that use either 2-
state or 4-state value sets makes it possible to freely mix 2-
state and 4-state within a simulation. Engineers can choose 
the benefits of 2-state performance in appropriate places 
within a design or testbench, and choose the benefits of 4-
state simulation where greater accuracy is required.

SystemVerilog defines a standard rule for mapping 4-state 
values to 2-state values. The rule is simple. When a 4-state 
value is assigned to a 2-state net or variable, any bits that 
are X or Z are converted to 0. This simplistic rule 
eliminates X values, but does not accurately mimic silicon 
behavior where each ambiguous bit might be either a 0 or a 
1, rather than always 0.

Your X just might be your best friend! 

Section 5 of this paper discussed several hazards with 
using 2-state simulation modes. All of those hazards also 
apply to using 2-state data types. X is the simulator’s way 
of saying there is some sort of ambiguity in a design. As 
much as all engineers hate to see an X show up during 
simulation, an X indicates there is a potential design 
problem that needs to be investigated. The following 
example illustrates how 2-state types can hide a serious 
design error.

module program_counter (       // 2-state types
input  bit        clock, resetN, loadN,
input  bit [15:0] new_count,
output bit [15:0] count

);
always_ff @(posedge clock or negedge resetN)
if (!resetN)     count <= 0;
else if (!loadN) count <= new_count;
else             count <= count + 1;

endmodule: program_counter

module cpu (                   // 4-state types
wire        m_clk, m_rstN,
wire [15:0] next_addr

);
...
program_counter pc (.clock(m_clk),

                      .resetN(m_rstN),
                      .loadN(/* not used */),
                      .new_count(/* not used */),
                      .count(next_addr) );
...

endmodule: cpu

Example 28: Program counter with unused inputs, 
2-state data types

The program counter in this example is loadable, using an 
active-low loadN control. The CPU model has an instance 
of the program counter, but does not use the loadable 
new_count input or loadN control. Since they are not 
15



used, these inputs are left unconnected, which is probably 
an inadvertent design bug! With 2-state data types, 
however, the unconnected inputs will have a constant value 
of 0, which means the statement

if (!loadN) count <= new_count;

will always evaluate as true, and the program counter will 
be locked in the load state, rather than incrementing on 
each clock edge. 

In this small example, this bug would be easy to find. 
Imagine, though, a similar bug in a huge ASIC or FPGA 
design. Simple mistakes that are hidden by not having a 
logic X show up in simulation can become very difficult to 
find. Worse, the symptom of having a logic 0, instead of a 
logic X, might make a design bug appear to be working at 
the RTL level, and not show up until gate-level simulations 
are run. (And what if your team doesn’t do gate-level 
simulations?)

After having a 2-state data type hide a design error or cause 
bizarre simulation results in a large, complex design, you 
too might feel, as the author does, that “I’m still in love 
with my X!” 

7.   BREAKING THE RULES — SIMULATOR-SPECIFIC X-
PROPAGATION OPTIONS

The previous sections in this paper have shown that 
SystemVerilog can sometimes be overly optimistic, and at 
other times overly pessimistic in how logic X is 
propagated, and that 2-state simulations and data types can 
hide design problems by completely eliminating Xs. Can a 
balance between these two extremes be found by breaking 
the IEEE 1800 SystemVerilog standard X propagation 
rules and simulating with a different algorithm?

Some simulators provide proprietary invocation options to 
begin simulation with random variable values, instead of 
with X values. Using simulator-specific options can 
accomplish Bening’s [5] recommended approach of 
randomly initializing all registers using a different seed. 
Since these options are not part of the SystemVerilog 
language, however, the capability is not available on every 
simulator and does not work the same way on simulators 
that have the feature.

Some SystemVerilog simulators offer a way to reduce X-
optimism in RTL simulation by using a more pessimistic, 
non-standard algorithm. For example, the Synopsys VCS 
“-xprop” [11] simulation option causes VCS to use 
simulator-specific X propagation rules for if...else and 
case decision statements and posedge or negedge edge 
sensitivity. This non-standard approach tries to find a 
balance between X-optimism and X-pessimism. 

See Evans, Yam and Forward [12] and Greene, Salz and 

Booth [13] for more information on—and experience 
with—using proprietary X-propagation rules to change 
SystemVerilog’s X-optimism and X-pessimism behavior.

One concern with proprietary X propagation rules is that 
their purpose is to ensure that design bugs will propagate 
downstream from the cause of the problem, so that the bug 
will be detected instead of hidden. This then requires 
tracing the cause of an X back through many lines of code, 
branching statements, and clock cycles to find the original 
cause of the problem. Though most simulators provide 
powerful debug tools for tracing back X values, the process 
can still be tedious and time consuming. 

Another concern is the risk of false failures, by making 
simulation more X-pessimistic. Finding a balance between 
X-optimism and being overly pessimistic can be good, but, 
like the ? : conditional operator, will not always perfectly 
match silicon behavior (see 4.2). There might still be times 
when this balance of X-optimism and X-pessimism can 
result in false failures. At best, these false failures can 
consume significant project man-hours to determine that 
there is no actual design problem. Worse — and very 
possible — these false failures could potentially cause 
problems with simulation locking up in X states, as 
described in 2.2.

8.   CHANGING THE RULES — A SYSTEMVERILOG 
ENHANCEMENT WISH LIST

There have been proposals to modify SystemVerilog’s X-
optimism and X-pessimism rules in some future version of 
SystemVerilog. If readers of this paper feel these proposed 
enhancements would be important for their projects, they 
should put pressure on their EDA vendors to push these 
enhancements through in the next version of 
SystemVerilog.

One of the X-optimism issues presented in this paper is that 
wildcard “don’t care” bits in casex, casez and 
case...inside statements mask out all 4 possible 4-state 
values, causing unknown bits in case expressions to be 
treated as don’t care values.

Turpin [1] proposed adding the ability to specify 2-state 
wildcard “don’t care” values using an asterisk (instead of 
X, Z or ?), as follows:

always_comb begin
case (sel) inside
3'b1**: y = a;  // matches 100, 101, 110, 111
3'b00*: y = b;  // matches 000, 001
3'b01*: y = c;  // matches 010, 011
default: y = 'x;

endcase
end

Example 29: Proposed case...inside with 2-state don’t cares
16



In normal SystemVerilog X-optimistic semantics, if either 
of the lower 2 bits of sel were X or Z, those bits could 
potentially be masked out by the 4-state don’t cares in the 
case items, causing y to be assigned a known value instead 
of propagating an X. The proposed 2-state don’t care bits 
(represented by an asterisk) would not mask out X or Z 
values, and result in the default branch propagating an X 
whenever there is a problem with the case expression.

Cummings [15] proposed adding new procedural blocks 
that are X-pessimistic instead of X-optimistic. The 
proposed keywords are initialx, alwaysx, 
always_combx, always_latchx and always_ffx. 
Cummings proposes that any time a decision control 
expression or loop control expression evaluates to X or Z, 
simulation should do three things:

• Assign X values to all variables assigned within the 
scope of the decision statement or loop.

• Ignore all system tasks and functions within the scope of 
the decision statement or loop.

• Optionally report a warning or error message that the 
tested expression evaluated to an X or Z.

An example usage is:

always_ffx @(posedge clk or negedge rstN)
if (!rstN) q <= 0;
else       q <= d;

Example 30: Proposed procedural block with X-pessimism

Under SystemVerilog’s normal X-optimistic rules, if rstN
evaluated as X or Z, then q would be set to the value of d, 
hiding the ambiguous reset problem. Using the proposed 
X-pessimistic rules for always_ffx, if rstN evaluated as 
X or Z, then q would be set to X, propagating the 
ambiguous reset problem. 

The author of this paper does not fully concur with the 
semantics Cummings has proposed. The author likes the 
concept of special RTL procedures with more accurate X-
propagation behavior, but feels the proposed semantics are 
overly pessimistic, and could result in causing false X 
values or X-lockup problems — the same issues noted 
earlier in this paper regarding excessive X pessimism. The 
author would prefer to see semantics that are similar to the 
T-merge algorithm used by the proprietary VCS -xprop 
simulation option.

9.   DETECTING AND STOPPING MY X AT THE DOOR

Let’s face it, when an X shows up, trouble is sure to 
follow! Rather than having X problems propagate through 
countless lines of code, decision branches, and clock 
cycles, it would be much better to detect an X the moment 
it occurs. Detecting when an X first appears solves the 
problems of both X-optimism and X-pessimism! 

X-optimism results in X values propagating as 0 or 1 
values to downstream logic, potentially hiding design 
problems. X-pessimism results in all X values propagating 
to downstream logic, potentially causing simulation 
problems such as X-lockup, that would not exist in actual 
silicon. In either case, design problems might not be 
detected until far down stream in both logic and clock 
cycles from the original cause of the bug. Engineers must 
then spend a great deal of valuable engineering time 
debugging the cause of the problem. 

SystemVerilog immediate assertions can be used to detect 
X values at the point the value occurs, rather than detecting 
the X value after it has (maybe) propagated downstream to 
other logic in the design. The way to do this is to use 
assertions to monitor all input ports of a module, as well as 
selection control values on conditional operations. 

An additional advantage of using assertions to monitor for 
X values is that assertions can be disabled when X values 
are expected, such as before and during reset or during a 
low power shut down mode. Disabling and re-enabling of 
assertions can be done at any time during simulation, and 
can be on a global scale, on specific design blocks, or on 
specific assertions.

The syntax for an immediate assertion is:

assert ( expression ) [ pass_statement ]  
[ else fail_statement ] ; 

An immediate assert statement is similar to an if
statement, except that both the pass_statement and the 
else clause are optional. 

The pass or fail statements can be any procedural 
statements, such as printing messages or incrementing 
counters. Typically, the pass statement is not used, and the 
fail statement is used to indicate that an X value has been 
detected, as shown in the following code example for a 
simple combinational if...else statement:

always_comb begin
assert (!$isknown(sel)) 
else $error("%m, sel = X");

if (sel) y = a;
else     y = b;

end

Example 31: if...else with X-trap assertion

This is the same if...else example that has presented in 
previous sections, but with an added assertion to validate 
the value of sel each time it is evaluated.

Without the assertion, this simple if...else decision has 
several potential X hazards, as was discussed in 3.1 and 
4.1. Adding an immediate assertion to verify if conditions 
is simple to do, and avoids all of these hazards. A problem 
with the if condition is detected when and where the 
17



problem occurs, rather than hoping that propagating an X 
will make it visible sometime, somewhere. Assert 
statements are ignored by synthesis, so no code has to be 
hidden from synthesis compilers. 

The author recommends that if statements that are 
conditioned on a module input port have an immediate 
assertion to validate the if condition. A text-substitution 
macro could be defined to simplify using this assertion in 
many places.

`define assert_condition (cond) \
assert (^cond === 1’bx) \
else $error("%m, ifcond = X")

always_comb begin
`assert_condition(sel)
if (sel) y = a;
else     y = b;

end

always_comb begin
`assert_condition({a,b,c,d})
`assert_condition(sel)
case (sel)
2'b00 : out = a;
2'b01 : out = b;
2'b01 : out = c;
2'b01 : out = d;

endcase
end

Example 32: Using an X-trap assertion macro

SystemVerilog assertions are ignored by synthesis 
compilers, and therefore can be placed directly in RTL 
code without having to hide them from synthesis using 
conditional compilation or pragmas. It is also possible to 
place the assertions in a separate file and bind them to the 
design module using SystemVerilog’s binding mechanism. 

10.   MINIMIZING PROBLEMS WITH MY X

This section presents a few coding guidelines that help to 
appropriately use and benefit from SystemVerilog’s X-
optimism and X-pessimism, and minimize the potential 
hazards associated with hiding or propagating an X.

10.1. 2-state versus 4-state guidelines

Your X can be your best friend. X values indicate that there 
is some sort of ambiguity in the design. Eliminating X 
values using 2-state data types does not eliminate the 
design ambiguity. Sutherland HDL recommends using 4-
state data types in all places, with two exceptions:

• The iterator variable in for-loops is declared as an int
2-state variable.

• Verification stimulus variables that will (or might) have 
randomly generated values are declared as 2-state types.

This coding guideline uses 2-state types only for variables 
that will never be built in silicon, and therefore do not need 
to reflect an ambiguous condition that might exist in 
silicon.

There is one other place where 2-state types might be 
appropriate, which is the storage of large memory arrays. 
Using 2-state types for large RAM models can 
substantially reduce the virtual memory needed to simulate 
the memory. This savings comes at a risk, however. Should 
the design fail to correctly write or read from a memory 
location, there will be no X values to indicate there was a 
problem. To help minimize that risk, it is simple to model 
RAM storage, so that it can be configured to simulate as 
either 2-state storage (using the bit type) or 4-state 
storage (using the logic type).

10.2. Register initialization guidelines

Section 2.2 discussed the problems associated with design 
variables, especially those used to model hardware 
registers, beginning simulation with X values. Section 5 
discussed using proprietary simulation options to initialize 
register variables with random values. If that feature is 
available, it should be used!

Another way to randomly initialize registers is using the 
UVM Register Abstraction Layer (RAL). UVM is a 
standard, and is well supported in major SystemVerilog 
simulators. A UVM testbench and RAL are not trivial to 
set up, but can provide a consistent way to randomly 
initialize registers. The advantage of using UVM to 
initialize registers is that it will work with all major 
simulators.

10.3. X-assignment guidelines

Using X assignments to make if...else and case
statements more pessimistic should not be used. They add 
overhead to simulation, and can simulate differently than 
the logic that is generated from synthesis. The pessimistic 
X propagation can lead to false failures that can take time 
to debug and determine that there not be a problem in 
actual silicon. In lieu of using pessimistic coding styles to 
propagate X values, problems should be trapped at the 
select condition, as shown in Section 9, and discussed in 
the following guideline.

10.4. Trapping X guidelines

All RTL models intended for synthesis should have 
SystemVerilog assertions detect X values on if...else and 
case select conditions. Other critical signals can also have 
X-detect assertions on them. Design engineers should be 
responsible for adding these assertions. Section 9 showed 
how easy it is to add X-detecting assertions.
18



11.   CONCLUSIONS

This paper has discussed the benefits and hazards of X 
values in simulation. Sometimes SystemVerilog is 
optimistic about how X values affect design functionality, 
and sometimes SystemVerilog is pessimistic.

X-optimism has been defined in this paper as any time 
simulation converts an X value on the input to an operation 
or logic gate into a 0 or 1 on the output. Some key points 
that have been discussed include:

• X-optimism can accurately represent real silicon 
behavior when an ambiguous condition occurs. For 
example, if one input to an AND gate is uncertain, but the 
other input is 0, the output of the gate will be 0. 
SystemVerilog X-optimistic AND operator and AND 
primitive behave the same way.

• X-optimism is essential for some simulation conditions, 
such as the synchronous reset circuit shown in Section 3.

• SystemVerilog can be overly optimistic, meaning an X 
propagates as a 0 or 1 in simulation when actual silicon is 
still ambiguous. Over optimism can lead to only one of 
the possible silicon values being verified.

• In all circumstances, X-optimism has the risk of hiding 
design bugs. A ambiguous condition that causes an X 
deep in the design might not propagate as an X to a point 
in the design that is being observed by verification. The 
value that does propagate might appear to be a good 
value.

X-pessimism is defined in this paper as any time simulation 
passes an X on an input through to the output. X-
pessimism can be desirable or undesirable.

• X-pessimism will not hide design bugs the way X-
optimism might. An ambiguous condition deep within a 
design will propagate as an X value to points that 
verification is observing.

• X-pessimism can lead to false failures, where actual 
silicon will function correctly, such as if one input to an 
AND gate is an X, but the other input is 0. A false X 
might need to be traced back through many levels of 
logic and clock cycles before determining that there is 
not an actual problem.

• X-pessimism can lead to simulation locking up with X 
values, where actual simulation will function correctly, 
even if the logic values in silicon are ambiguous. The 
clock divider shown in Section 4 is an example of this.

It might be tempting to use 2-state data types or 2-state 
simulation modes to eliminate the hazards of an X. 
Although there are some advantages to 2-state simulation, 
those advantages do not outweigh the benefits of 4-state 
simulation. 2-state simulation will hide all design 
ambiguities, and often not simulate with the same values 

that actual silicon would have. 2-state data types should 
only be used for generating random stimulus values. 
Design code should use 4-state types. 

The best way to handle X problems is to detect the X as 
close to its original source as possible. This paper has 
shown how SystemVerilog assertions can be used to easily 
detect and isolate design bugs that result in an X. With 
early detection, it is not necessary to rely on X propagation 
to detect design problems.

All engineers should be in love with their X! X values 
indicate that there might be some ambiguity in an actual 
silicon implementation of intended functionality. 

12.   ABOUT THE AUTHOR

Stuart Sutherland is a well-known Verilog and 
SystemVerilog expert, with more than 24 years of 
experience using these languages for design and 
verification. His company, Sutherland HDL, specializes in 
training engineers to become true wizards using 
SystemVerilog. Stuart is active in the IEEE SystemVerilog 
standards process, and has been a technical editor for every 
version of the IEEE Verilog and SystemVerilog Language 
Reference Manuals since the IEEE standards work began 
in 1993. Prior to founding Sutherland HDL, Mr. Sutherland 
worked as an engineer on high-speed graphics systems 
used in military flight simulators. In 1988, he became a 
corporate applications engineer for Gateway Design 
Automation, the founding company of Verilog, and has 
been deeply involved in the use of Verilog and 
SystemVerilog ever since. Mr. Sutherland has authored 
several books and conference papers on Verilog and 
SystemVerilog. He holds a Bachelors Degree in Computer 
Science with an emphasis in Electronic Engineering 
Technology and a Masters Degree in Education with an 
emphasis on eLearning. You can contact Mr. Sutherland at 
stuart@sutherland-hdl.com. 

13.   ACKNOWLEDGMENTS

The author appreciates the contributions Don Mills and 
Shalom Bresticker have made to this paper. Don provided 
several of the examples and coding recommendations in 
this paper, and provided valuable suggestions regarding the 
paper content. Shalom made an in-depth technical review 
of the paper draft and provided detailed comments on how 
to improve the content of the paper.

The author also expresses gratitude to his one-and-only 
wife of more than 30 years (she will never be an “X”), 
who, despite the title of the paper, painstakingly reviewed 
the paper for grammar, punctuation, and sentence structure.
19



14.   REFERENCES

[1] Turpin, “The dangers of living with an X,” Synopsys Users 
Group Conference (SNUG) Boston, 2003.

[2] Mills, “Being assertive with your X (SystemVerilog asser-
tions for dummies),” Synopsys Users Group Conference 
(SNUG) San Jose, 2004.

[3] “P1800-2012/D6 Draft Standard for SystemVerilog—Unified 
Hardware Design, Specification, and Verification Language 
(re-ballot draft)”, IEEE, Pascataway, New Jersey. Copyright 
2012. ISBN: (not yet assigned).

[4] Merriam-Webster online dictionary, http://www.merriam-
webster.com/, accessed 11/20/2012.

[5] Bening, “A two-state methodology for RTL logic simula-
tion,” Design Automation Conference (DAC) 1999.

[6] Cummings and Bening, “SystemVerilog 2-state simulation 
performance and verification advantages,” Synopsys Users 
Group Conference (SNUG) Boston, 2004.

[7] Piper and Vimjam, “X-propagation woes: masking bugs at 
RTL and unnecessary debug at the netlist,” Design and Verifi-
cation Conference (DVcon) 2012.

[8] Weber and Pecor, “All My X values Come From 
Texas…Not!,” Synopsys Users Group Conference (SNUG) 
Boston, 2004.

[9] Turpin, “Solving Verilog X-issues by sequentially comparing 
a design with itself,” Synopsys Users Group Conference 
(SNUG) Boston, 2005.

[10]Chou, Chang and Kuo, “Handling don’t-care conditions in 
high-level synthesis and application for reducing initialized 
registers,” Design Automation Conference (DAC) 2009.

[11]Greene, “Getting X Propagation Under Control”, a tutorial 
presented by Synopsys, Synopsys Users Group Conference 
(SNUG) San Jose, 2012.

[12]Evans, Yam and Forward, “X-Propagation: An Alternative to 
Gate Level Simulation”, Synopsys Users Group Conference 
(SNUG) San Jose, 2012.

[13]Greene, Salz and Booth, “X-Optimism Elimination during 
RTL Verification”, Synopsys Users Group Conference 
(SNUG) San Jose, 2012.

[14]Browy and K. Chang, “SimXACT delivers precise gate-level 
simulation accuracy when unknowns exist,” White paper, 
http://www.avery-design.com/files/docs/SimXACT_WP.pdf, 
accessed 11/12/2012.

[15]Cummings, “SystemVerilog 2012 new proposals for design 
engineers,” presentation at SystemVerilog Standard Working 
Group meeting, 2010, http://www.eda.org/sv-ieee1800/Meet-
ings/2010/February/Presentations/
Cliff%20Cummings%20Presentation.pdf, accessed 11/12/
2012.

[16]Mills, “Yet another latch and gotchas paper” Synopsys Users 
Group Conference (SNUG) San Jose, 2012.
20


	I’m Still In Love With My X!
	1. Introducing My X
	2. How did my one (or zero) become my X?
	2.1. Uninitialized 4-state variables
	2.2. Uninitialized registers and latches
	2.3. Low power logic shutdown or power-up
	2.4. Unconnected module input ports
	2.5. Multi-driver Conflicts (Bus Contention)
	2.6. Operations with an unknown result
	2.7. Out-of-range bit-selects and array indices
	2.8. Logic gates with unknown output values
	2.9. Setup or hold timing violations
	2.10. User-assigned X values in hardware models
	2.11. Testbench X injection
	3. An optimistic X — is that good or bad?
	3.1. If...else statements
	3.2. Case statements without a default-X assignment
	3.3. Casex, casez and case...inside statements
	3.4. Bitwise, unary reduction, and logical operators
	3.5. And, nand, or, nor, logic primitives
	3.6. User-defined primitives
	3.7. Array index with X or Z bits for write operations
	3.8. Net data types
	3.9. Posedge and negedge edge sensitivity
	4. A pessimistic X — is that any better?
	4.1. If...else statements with X assignments
	4.2. Conditional operator
	4.3. Case statements with X assignments
	4.4. Edge-sensitive X pessimism
	4.5. Bitwise, unary reduction, and logical operators
	4.6. Equality, relational, and arithmetic operators
	4.7. User-defined primitives
	4.8. Bit-select, part-select, array index on right-hand side of assignments
	4.9. Shift operations
	4.10. X-pessimism summary
	5. Eliminating my X by using 2-state simulation
	6. Eliminating some of my X with 2-state data types
	7. Breaking the rules — simulator-specific X- propagation options
	8. Changing the rules — A SystemVerilog enhancement wish list
	9. Detecting and stopping my X at the door
	10. Minimizing problems with my X
	10.1. 2-state versus 4-state guidelines
	10.2. Register initialization guidelines
	10.3. X-assignment guidelines
	10.4. Trapping X guidelines
	11. Conclusions
	12. ABOUT THE AUTHOR
	13. Acknowledgments
	14. References

