
IEEE 1800-2009 SystemVerilog: Assertion-based
Checker Libraries

Eduard Cerny
and Surrendra Dudani

Synopsys Inc.
Email: eduard.cerny@synopsys.com
and surrendra.dudani@synopsys.com

Dmitry Korchemny
Intel Corp.

Email: dmitry.korchemny@intel.com

Abstract— The enhancements to the IEEE SystemVerilog lan-
guage in the 2009 standard and in particular to the SystemVerilog
Assertions (SVA) allow us to create much more useful and
versatile checker libraries. They benefit primarily from the
following features: checker encapsulation, let declarations, clock
and disable inference, deferred assertions, elaboration error
tasks, and enhanced property operators. In this paper we first
identify the weaknesses of the current checker libraries by
examining an example from the OVL library. We then provide a
classification of checkers, and show how various forms of effective
checker libraries can be created using the new constructs.

I. INTRODUCTION

In the paper we refer to the SystemVerilog 2009 [1]
checker language construct using bold face as a keyword,
while the common usage of a checker (of any kind) as a
verification unit in normal text font.

There are many functional properties common to any design
that are reusable modulo some expression changes. Therefore,
to speed up the deployment of assertions without requiring
extensive knowledge of the syntax and semantics of the
SystemVerilog assertions language, it is essential to create
libraries of checkers. Such checker libraries have been around
for some time, such as the Accellera Open Verification Library
(OVL) [3], and other checker libraries from EDA vendors. A
similar approach was used even before the arrival of assertion
languages, by hiding procedural or RTL implementation of
assertions in modules used as checkers. The initial implemen-
tation as well as the Verilog’95 implementation of OVL is in
this form.

The enhancements to the SystemVerilog language in the
2009 standard and in particular to the assertion features allow
us to create much more useful and versatile checker libraries.
They benefit primarily from the following features: New
encapsulation, let declarations, clock and disable inference,
deferred assertions, elaboration error tasks, and enhanced
property operators. The new checker encapsulation can be
used to replace the module. These enhancements in SVA pro-
vide a solution to many problems faced today when designing
a checker library. Let us recall the main new SVA features
that help checker library development and deployment [2]:

• checker encapsulation is versatile for assertion libraries.
– Argument specification is similar to that of proper-

ties.

– checker can be instantiated in procedural code.
– Inference of clocking event, disable condition on the

ports of the checker is possible.
– In an always and initial procedure, evaluation is

triggered by control reaching the checker instance.

• Inference functions $inferred_clock and
$inferred_disable can be used as default values on
formal ports of checker, sequence and property declara-
tions.

• global clocking and default disable iff decla-
rations are possible.

• Free variables and modeling code in checkers is available
with some restrictions:

– Restricted assignment forms, but easier to analyze
and synthesize.

– Only non-blocking (NBA) assignments in clocked
always procedures.

– Must respect single assignment rule (SAR).

• let construct allows for making abstractions from ex-
pressions.

• Checking of configuration parameters at elaboration time.

The paper is organized as follows: We briefly discuss typical
module-based checkers and their weaknesses in Section II. In
the subsequent section III we offer a set of characteristics that
checkers should possess and according to which they can be
classified. In Section IV we show typical kinds of checkers
that follow the classification. We conclude in Section V by
summarizing the changes that must be done to module-based
libraries to convert them to checker based libraries, and
by alluding to several enhancements to the SVA language
that would further simplify development and deployment of
checker libraries.

II. WEAKNESSES OF MODULE-BASED CHECKER

LIBRARIES

To explain the current weaknesses, let us consider a simple
checker assert_handshake inspired by its equivalent in
the OVL library. The checker is reduced to include only its
important excerpts. Details of included files are omitted. The
user may wish to consult the OVL library for further details
[3]. First, let us consider the checker interface.

// Accellera Standard V2.4 Open Verification
// Library (OVL).
// Accellera Copyright (c) 2005-2009.
// All rights reserved.
‘module ovl_handshake (

clock, reset, enable, req, ack, fire);
parameter severity_level =

‘OVL_SEVERITY_DEFAULT;
parameter min_ack_cycle = 0;
parameter max_ack_cycle = 0;
parameter req_drop = 0;
parameter deassert_count = 0;
parameter max_ack_length = 0;
parameter property_type =

‘OVL_PROPERTY_DEFAULT;
parameter msg =‘OVL_MSG_DEFAULT;
parameter coverage_level= ‘OVL_COVER_DEFAULT

;
parameter clock_edge =

‘OVL_CLOCK_EDGE_DEFAULT;
parameter reset_polarity =‘

OVL_RESET_POLARITY_DEFAULT;
parameter gating_type =

‘OVL_GATING_TYPE_DEFAULT;

input clock, reset, enable;
input req;
input ack;
output [‘OVL_FIRE_WIDTH-1:0] fire;
//...

‘endmodule // ovl_handshake

The macros ‘module and ‘endmodule resolve to either
module and endmodule or interface and endinterface.
This distinction is made so that the checker could also be
instantiated in SV interfaces. In either case, the kinds of ports
such checkers are allowed to have impose severe constraints
on the deployment of the checker in a design:

• Clock port clock cannot be an event such as
edge clk iff en.

• Clock, disabling condition reset, and the enabling con-
dition cannot be inferred from the instantiation context.

• The checker cannot be instantiated inside a procedure.
• The ports req and ack must be integral expressions, they

cannot be of type sequence or property.

The restrictions make the usage of the checker tedious. In
particular, the last item makes the checker less flexible to
use because if either the request or the acknowledgment are
more complex temporal sequences of signal values, additional
modeling code must be added on the outside of the checker
instance to detect such sequences. This code and the checker
instance are usually not to be included in the synthesized
code, hence enclosing them between ‘ifndef - ‘endif

compilation controls becomes necessary.

III. KINDS OF CHECKERS AND THEIR CHARACTERISTICS

Checkers can be classified according four criteria:

1) Temporality: combinational (has no clock) vs. concur-
rent (requires a clock).

2) Encapsulation: checker vs. property (or let) based.

3) Packaging: in a Verilog library vs. in a SystemVerilog
package.

4) Configurability: local per-instance vs. global for all
instances.

A. Temporality

Many interesting checkers can be stated as unclocked
Boolean expressions. Often clock is not needed and the user
may be interested in instantiating the checker in combinational
always procedures or design modules that do not have access
to any clock. Such checkers cannot use concurrent assertions
because they would require a clocking event. For this purpose
deferred immediate assertions [1] are the best candidates.
When it is required to verify behaviors that are synchronous to
some clock, concurrent assertions need to be used. They can be
Boolean expressions evaluating each attempt at a single clock
tick or temporal properties evaluating attempts over several
clock ticks.

B. Encapsulation

property-based encapsulation for temporal checkers, and
let-based encapsulation for combinational checkers are the
simplest ones. They are easy to use, but they allow no
modeling code and can encompass only a single assertion.
They are usually part of relatively simple checker libraries.
More complex checkers that consist of several assertions,
modeling code and coverage items need encapsulation in
module, interface or more importantly now in checker

constructs.

C. Packaging

Packaging checker libraries as a series of files, one per
checker, in a ”library” directory that is included automatically
during compilation is the most typical usage. This mechanism
has been used with the various existing module-based checker
libraries. checker, property and let encapsulations allow
for a more robust use model by packaging them in the Sys-
temVerilog package enclosure. In this way, the appropriate
library can be ”imported” only where it is needed. Therefore,
even different checkers with the same names can be deployed
in different parts of the design. Of course, there is always
the third possibility by accessing checker definitions that are
brought into the source code using the ‘include directive.
However, this method provides the least flexibility and we do
not consider it further.

D. Configurability

Global configuration is achieved best by macros, for exam-
ple, that includes the following:

• Enabling all assertions or all functional coverage or both.
• Exclusion of non-synthesizable code like action block re-

porting tasks, covergroups or test-bench related items.

Local configuration on a per-instance basis is best achieved
by elaboration-time constants and conditional generate blocks.
This includes:

• Selection of specific functional coverage items or lev-
els, from a combination of cover property and
covergroup constructs.

• Selection of assert, restrict or assume forms of
assertions.

• Configuration and selection of subsets of assertions that
should be active in a checker instance.

• Specification of minimal and maximal delay latencies and
repetition counts in clock cycles.

• Specific user failure and success messages.
• Specification of severity level of assertion failure.

Elaboration-time constants must provide default values. For
example,

• Most typical assertion usage (kind, delays, repetitions).
• Default failure message.
• Minimal useful functional coverage.

Functional coverage should provide several levels of detail
whenever practically useful. Some may or may not be suitable
for formal and synthesis tools and these should also be under
global control. Here is a typical gradation:

• Minimal — “did the checked behavior ever happen?”
• More detailed — “which specific delay, data, etc., values

were observed?”
• Corner cases — “were min and max delays, and extreme

data points ever encountered?”

It is often desirable to perform X/Z value checks on signals
used in a checker. There may be separate checkers that perform
just that task and report a failure when an X or Z is detected.
However, even ”regular” assertions may have to include such
checks, either to disable the assertion from failing or forcing
a failure. The choice depends on whether separate checks for
these values are used. If yes, then there is no point reporting a
failure in regular assertions, they should just report a vacuous
or disabled success. Usually the detection of X/Z is done using
the system function $isunknown that returns true if an X or
Z is detected in the argument expression value.

The ease of using configuration capability is important when
different test environments are used. For example, control may
be provided over the following features:

• Choice of failure, success and information reporting
integrated with the SystemVerilog test-bench verification
methodologies (e.g., VMM [4] or OVM [5]), or only
reporting using $display, or using run-time error tasks
such as $error, etc.

• Macro encapsulation over the checker such that it would
automatically provide some of the keywords, thus sim-
plifying instantiation (e.g., see IV-B). It may also hide
differences between checker, property, and module-
based checkers.

• Validation of values of arguments used as elaboration-
time constants at elaboration time. Using conditional
generate statements to test the constant arguments, elabo-
ration tasks can issue error messages at elaboration, rather
than at a later time during simulation (possibly many
hours after the start of the compilation of the design).

The checker instances should also be easily identifiable by
synthesis and formal tools, without the need of ‘ifndef -
‘endif enclosures around the checker instances. It is then left
up to the tool to specify whether checkers should or should
not be included in the process.

IV. EXAMPLES OF TYPICAL CHECKER KINDS

We now examine examples of different forms of checkers,
illustrating the various characteristics and limitations.

A. Simple Combinational Checker

The combinational checker shown in the following example
is defined in a let declaration, which is then used in a deferred
immediate assertion. Notice the configuration mechanism us-
ing ‘ifdef SYNTHESIS for selecting a form that is suitable
for synthesis and formal tools.

// in a package or an ‘include file
let onehot0 (sig, reset_n = 1’b1) =
‘ifdef SYNTHESIS
// Selected for synthesis or formal
!|reset_n || $onehot0(sig);

‘else
// Selected for 4-valued simulation
|reset_n === 0 ||

($onehot0(sig) && !$isunknown(reset_n);
‘endif

Such a checker can be instantiated in a module (program or
interface), and procedural scope as follows.

module m(input logic [3:0] r1,
output logic [3:0] r2);

A1: assert #0 (onehot0(r1))
else $error("A1 failed"); //check input
always_comb begin

r2 = r1;
A2: assert #0 (onehot0(.sig(r2)))
else $error("A2 failed"); //check output

end
endmodule

The example illustrates several points:

• A macro definition SYNTHESIS selects between two
forms of let, one suitable for formal tools and synthe-
sizable checkers, the other one for 4-valued simulation.
In the latter case the assertion is enabled when reset_n

is 1, disabled (success) when reset_n is 0, and it is
forced to fail when reset_n is X, or Z.

• Both positional as in A1 and named as in A2 argument
associations can be used.

• The system function $onehot0 could be used directly
in the assertion, however, it would not provide for a
disabling condition.

• The reset_n argument has a default actual argument
1’b1, meaning that when the actual is not provided in
an instance, the resetting condition is false by default as
shown in both A1 and A2.

• The assertion is in the deferred form, hence it filters
out 0-width glitches on both reset_n and sig actual
arguments.

• The assertions can be instantiated in the module scope
like A1, or in a procedure like A2.

• The disabling condition cannot be inferred in let in-
stances. That is, $inferred_disable may not be used
as a default actual argument.

B. A checker-Based Combinational Checker

Next we examine a more flexible combinational checker. We
assume that the convention is that default disable iff

provides an active low reset.

typedef enum {ASSERT, ASSUME, NONE}
assert_type;

typedef bit [15:0] cover_type
checker onehot0(sig,

assert_type usage_kind = ASSERT,
cover_type cover_level = 1,
reset_n = $inferred_disable,
string msg = "", synthesis = ‘SYNTHESIS);

if (cover_level<16’b0 || cover_level>16’b11)
// check valid coverage selection

$error("Coverage level is invalid %d",
cover_level,
"\nonly 1(level 0), 2(level 2), 3(both)",
" or 0 (disabled) are allowed");

if (usage_kind != ASSERT || usage_kind !=
ASSUME)

$warning("No assert or assume selected");
if (synthesis) begin : SYNTH

let check_onehot0 (sig, reset_n=1’b1) =
((!|reset_n) || $onehot0(sig));

let cover_onehot0 (sig, reset_n=1’b1) =
((|reset_n) && $onehot0(sig));

end : SYNTH
else begin : NO_SYNTH

let check_onehot0 (sig, reset_n=1’b1) =
((|reset_n === 0) || $onehot0(sig) &&

!$isunknown(reset_n));
let cover_onehot0 (sig, reset_n=1’b1) =
((|reset_n === 1) && $onehot0(sig));

end : NO_SYNTH
‘ifdef ASSERT_ON
if (usage_kind == ASSERT) begin : ASSERT

Assert_onehot0:
assert #0 (check_onehot0(reset_n, sig))

else $error(msg);
end : ASSERT
else if (usage_kind==ASSUME) begin : ASSUME

Assume_onehot0:
assume #0 (check_onehot0(reset_n, sig))

else $error(msg);
end : ASSUME
‘endif
‘ifdef COVER_ON
if (cover_level & 1) begin : COVER_L1

Cover_onehot0_1:
cover #0 (cover_onehot0(reset_n, sig));

end : COVER_L1
if (!synthesis && (cover_level & 2))

begin : COVER_L2
function int position(logic $bits(sig) arg);
for (int i=0; i<$bits(sig); i++)

if (sig[i] === 1) return i;
return 0;

endfunction // position

covergroup cg_onehot0_2 with
function sample(int index);
coverpoint index;

endgroup
cg_onehot0_2 onehot0_2_index = new();
Cover_onehot0_2:

cover #0 (cover_onehot0(reset_n, sig))
onehot0_2_index.sample(position(sig));

end : COVER_L2
‘endif
endchecker : onehot0

This combinational checker illustrates many of the features
that the checker encapsulation provides over the simpler let-
based form:

• Coverage can be enabled globally for all checker in-
stances by defining the symbol COVER_ON. Similarly, ver-
ification statements (assert or assume) can be globally
enabled by defining ASSERT_ON.

• Synthesizable form is selected by a conditional generate
block controlled by the argument synthesis that has as
default actual value the macro symbol SYNTHESIS. This
allows overriding the global selection if so required.

• The reset condition may be inferred from
a default disable iff declaration.

• Deferred assert (usage_kind == ASSERT) or
assume (usage_kind == ASSUME) statement or none
can be selected using the argument usage_kind.

• When an invalid value is provided for cover_level, no
coverage is enabled in this instance and an error message
is issued.

• When an invalid value (or NONE) is provided for
usage_kind, no verification statement (assert or
assume) is enabled in this instance and a warning mes-
sage is issued.

• Two levels of functional coverage are provided, they can
be individually enabled or disabled:

– Level 1 — when cover_level == 1 is selected, it
collects information on how many times a one hot
or 0 condition was encountered while not disabled
by reset.

– Level 2 — when cover_level == 2 is selected,
the covergroup classifies the bit positions that are
set to 1 when the one hot condition holds. A deferred
cover statement is used to trigger sampling of the
bit position index by calling the sample method of
the covergroup in the pass action statement of the
deferred cover statement.

– Both levels can be selected by setting
cover_level == 3.

The checker can be instantiated in a simpler way than the
one using a let declaration because the disable condition can
be inferred:

‘define ASSERT_ON
// Instantiations of a combinational checker
module m(input logic [3:0] r1,

output logic [3:0] r2);

default disable iff 1’b1;
onehot0 A1(r1); // check input
always_comb begin
r2 = r1;
onehot0 A2(r1); // check output

end
endmodule

There is however a difference between using this checker
and the simple checker in Section IV-A in that according to
the checker specification in the LRM, all the variable inputs
to the checker are sampled (the values are taken from the
Preponed scheduling region), while the simple checker uses
only the current values. This may make a difference when
the checker is used in procedural code like the instance A2.
The problem can be avoided by const casting of the actual
arguments r1. The instance in the always procedure thus
becomes:

always_comb begin
r2 = r1;
onehot0 A2(const’(r1)); // check output

end

The first instance, A1, may use sampled values because it
does not depend on any current time condition in the module.
It would report any violation one simulation time step later
than if it used the current value, but that is all. If we remove
sampling even in instance A1 then we can encapsulate the
checker instantiation statement in a macro and hide the const
cast as follows:

‘define ASSERT_ONEHOT0 \
(name = "", sig, usage_kind = ASSERT, \
cover_level = 1, reset_n = 1’b1, msg = "", \
synthesis = ‘SYNTHESIS) \
onehot0 ‘name (const’(sig), usage_kind, \

cover_level, const’(reset_n),
\

msg, synthesis)

Unfortunately, due to the automatic sampling of checker
arguments, we cannot use $inferred_disable as a default
value for reset_n. There is no way to place the const cast
on the function. Therefore, by using the macro encapsulation
we have lost the ability to infer the reset condition.

As with the previous simple combinational checker, this
more complex one can still be instantiated both inside (in-
stance A1) and outside (instance A2) a procedure. Both checker
instances use default values for configuration constants and
enable verification statement assert #0 because ASSERT_ON
is defined and usage_kind default value of ASSERT is
used. Coverage is globally disabled because COVER_ON is not
defined.

C. A Simple Property-Based
Temporal Checker

We now turn our attention to checkers that verify behavior
over time — temporal checkers.

Similarly as with the simple combinational checker and
let declarations, we can define a simple temporal, clocked,

checker using property declarations. As before, we assume
that default disable iff defines an active low reset.

property time_interval_p
(sequence trig, property cond,
start_tick=1, end_tick=1,
event clk = $inferred_clock,
untyped rst_n = $inferred_disable);

@clk disable iff (!bit’(|rst_n))
trig |->

always [start_tick:end_tick] cond;
endproperty : time_interval_p

Note that in the consequent of |-> we used the always

operator instead of using the consecutive repetition
cond[*start_tick:end_tick]. The reason is that we ob-
tain maximum generality as to the actual argument for the
formal cond. It can be not only a Boolean or a sequence,
but also any property expression.

The property verifies that when trig occurs cond holds
true in the interval start_tick to end_tick clock ticks,
unless it is disabled by rst_n being 1’b0. The property has
the following characteristics:

• The actual argument for trig is restricted to the type
sequence because it is used in the antecedent of |->.
The actual argument for cond can be any property

expression (Boolean, sequence or property). The actual
argument for clk must be a clocking event, while rst_n
is left untyped for the user to be able to pass any valid
expression.

• trig and cond do not have default actual arguments,
hence the user must supply valid arguments there.

• Both clk and rst can be inferred from the context
because the inference functions are used as default actual
arguments.

• The arguments start_tick and end_tick have the
typical default value of 1. If used as in the following
instantiation example, the property will check that cond
holds true at the next clock tick after trig holds true.

A simple instantiation of the time_interval_p property
is illustrated in the next example.

module m(input logic clk, reset_n, load,
input logic [3:0] r1,
output logic [3:0] r2);

default disable iff reset_n;
always @(posedge clk) begin
if (!reset_n) r2 <= ’b0;
else if (load) r2 <= r1;
Loaded_r2: assert property(time_interval_p(

$past(load), r2 == $past(r1))) else
$error("r2 not loaded correctly by r1");

end
endmodule

Except for the arguments that are used in the actual verifica-
tion, all other ones use default values. The clock and the dis-
abling condition are inferred from the always procedure and
from the default disable iff declaration, respectively.

D. A checker-Based Temporal Checker

The final example illustrates the full power of a checker-
based temporal checker definition. We show a modified form
of the of assert_handshake checker discussed at the begin-
ning of our paper (Section II), but for reasons of brevity we
include only those portions of the code that will illustrate the
differences.

The interface of the new checker is now as follows:

//Modified assert_handshake checker
import std_ovl_defines::*;
checker assert_handshake (

sequence req, sequence ack,
event clk = $inferred_clock,
untyped reset_n = $inferred_disable,
//elaboration-time constants:
int severity_level = OVL_SEVERITY_DEFAULT,
int min_ack_cycle = 0,
int max_ack_cycle = 0,
int req_drop = 0,
int deassert_count = 0,
int max_ack_length = 0,
int property_type = OVL_PROPERTY_DEFAULT,
string msg = OVL_MSG_DEFAULT,
int coverage_level = OVL_COVER_DEFAULT,
int synthesis = SYNTHESIS

);
//...
generate // elaboration-time constant checks

at compile time
if (min_ack_cycle < 0)
$error("min_ack_cycle is negative");

if (max_ack_cycle < min_ack_cycle) $error(
"max_ack_cycle is less than min_ack_cycle"

);
if (req_drop < 0 || req_drop > 1) $warning(
"req_drop \%0d is not 0 or 1",
req_drop, " positive assumed 1, "
"anything less than 1 assumed 0");

// ... checks for other arguments ...
endgenerate

default clocking checker_clk @clk; endclocking
default disable iff (reset_n);

//... Body of the checker ...

endchecker : assert_handshake

The parameters from the original checker became regular
arguments of the checker-based checker. It simplifies instan-
tiation, although the user should be aware that these arguments
must be elaboration-time constants. The argument values of
constants are verified at elaboration time using a conditional
generate and elaboration time error tasks. If the values are
illegal then an error message is issued, or if a reasonable
alternative exists then that value is used and a warning is
issued.

The following parameters from the original checker are
missing: clock_edge, reset_polarity and gating_type.

This is because
• clock_edge is not needed as the argument clk can be

an event expression.

• reset_polarity is not needed because we can pass any
expression to the checker and it can infer the appropriate
default expression from the contextual
default disable iff declaration.

• gating_type is omitted for the same reason as
clock_edge, i.e., the actual clocking event provided for
clk can contain iff enabling condition.

The formal arguments clk and reset_n were placed
after the arguments that do not have defaults. This simplifies
instantiation of the checker when all arguments use default
values. The type of reset_n is left unspecified (the keyword
untyped) to provide more flexibility as to the kind of the
actual reset expression. As in the case of the checker based
combinational checker, all variable arguments are sampled.
This may not be desirable for reset_n, hence the actual argu-
ment for reset_n should have the const cast. Unfortunately,
if the default is inferred, it will be sampled.

The default value constants for the arguments are no more
‘defines, but instead they are constants picked up from
package std_ovl_defines as enum type values.

The type for req and ack is specified as sequence,
to allow Booleans and sequences, but prohibit supplying a
property expression as the actual argument. This makes the
checker more general, eliminating the need for modeling
code to reduce a complex temporal behavior to a Boolean
expression.

The body of the checker has to be modified to comply with
restrictions on modeling code in checker constructs, and to
use all the new features that help implementing and using
checkers. The body of the checker-based checker is shown
next. Please refer to the OVL library to compare with the
original checker body [3].

Only those portions as in the example of the original checker
are shown that illustrate the differences with the original
checker. The following piece of code shows the transformation
needed in the modeling code of the checker.

‘ifdef ASSERT_ON
logic first_req = 1’b0;

sequence s_req;
req;

endsequence

function logic setFirstReq();
if (!reset_n) return 1’b0;
if((first_req ˆ first_req) == 1’b0)

return s_req.triggered;
return 1’b0;

endfunction : setFirstReq

always @(clk) first_req <= setFirstReq();

Since always procedures in checker cannot have any
conditional statements, the function setFirstReq is defined
to encapsulate the procedural code. The function is then called
on the right-hand side of a non-blocking assignment. Variable
first_req is used in a property in the following code
fragment.

property ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P;
s_req |-> not s_eventually [0:min_ack_cycle]

ack;
endproperty
property

ASSERT_HANDSHAKE_ACK_WITHOUT_REQ_FIRST_REQ_P
;

(##1 ack) implies
(first_req or s_req.triggered);

endproperty
// other properties
// this remains as before
case (property_type)

OVL_ASSERT_2STATE, // defined as enum types
OVL_ASSERT: begin : ovl_assert
if (min_ack_cycle > 0)
begin : a_assert_handshake_ack_min_cycle

A_ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P:
assert property (

ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P)
else ovl_error_t("...as before...");

end
// other assert and assume statements
endcase
‘endif //ASSERT_ON

‘ifdef COVER_ON
generate

if (coverage_level != OVL_COVER_NONE) begin
: ovl_cover

if (OVL_COVER_BASIC_ON)
begin : ovl_cover_basic

cover_req_asserted:
cover property

(reset_n throughout s_req))
ovl_cover_t("req_asserted covered");

end
//... other cover statement ...

end
endgenerate
‘endif // COVER_ON

Notice the following differences:

• Procedural conditional code is placed in a function to
satisfy restrictions on assignments to checker variables.
The always procedure contains a single assignment only.

• Case default values on parameters are removed since
constant argument values are checked at compile time.

• Case item labels are predefined enum types rather than
‘define symbols.

• The property expressions use property operators to allow
sequences as the arguments and to make the assertions
more efficient for formal tools. For example, in property
ASSERT_HANDSHAKE_ACK_MIN_CYCLE_P the sequence
repetition is replaced by not s_eventually ... to
accept a sequence expression for ack.

• A new sequence s_req is defined that instantiates req.
This allows us to use the sequence method
s_req.triggered in the function.

• Since both req and ack can be sequences, $rose had to
be removed from both of these operands of the property.
Thus, if the user wishes to use $rose on a Boolean,

the appropriate expression has to be passed as the actual
argument. 1

There is currently a restriction imposed on this form of
checkers: There are no output and inout arguments allowed
in checker encapsulation. That is, the output port fire of
the original OVL checker is missing here. Therefore, the only
way to chain several checker based checkers is to access
some internal variable of one checker instance in some other
checker instance using a cross checker reference. This makes
it less flexible.

Note that by extending the type of the arguments to
sequence, it is now impossible to include checks for the
presence of X/Z values in the variables involved in the actual
arguments. If such checking is required, the best approach is to
create specific checkers just for the purpose of verifying X/Z

on variables. An open question remains how to disable existing
assertions within the checker in such cases. It either requires
an enhancement to the SystemVerilog language to provide
a function that detects X/Z in sequences and properties, or
an enhancement in the simulator to evaluate assertion in a
pessimistic fashion.

The following is an example of instantiation of the new
checker. For simplicity all elaboration-time arguments take on
default values.

module m;
bit clk; logic rst_n, request, acknowledgment,

endtrans;

default clocking @(posedge clk iff enabled);
endclocking
default disable iff rst_n;
//... some design code ...
always @(posedge clk) begin
assert_handshake chk_handshake_inst(

.req($rose(request)),

.ack(acknowledgment ##1 endtrans));
if (!rst_n) begin

//... some design procedure ...
end

end
//... some design code ...
endmodule

The main points to notice are:
• The checker instantiation syntax is similar to that of a

module, except that there is no parameter section.
• It can be instantiated in an always procedure.
• The reset argument is inferred from default disable

declaration.
• The clocking event is inferred from the always proce-

dure, hence even though default clocking is defined,
the clock from the always procedure takes precedence.

• The actual argument for the formal argument req is
$rose(request); its clock is obtained from the default
clocking defined in the module.

1If a system function existed that allowed to distinguish Boolean expres-
sions from temporal sequences and properties, a conditional generate could
be used to construct different forms of properties depending on the actual
argument.

• The actual argument for ack is a sequence expression.

V. CONCLUSIONS

In conclusion we summarize the transformations to consider
when converting the old-style module-based checkers into the
new format based on checker construct encapsulation, and
suggest some further enhancements to the SVA language to
ease the development and usage of checker libraries.

A. Transformations Needed to Convert
Module-Based Checkers to the New Format

• Replace ‘define for various constants by typedef

declarations using an enum type whenever possible.
• Change modeling code to respect Single Assignment Rule

(SAR) by introducing functions for evaluating the right-
hand side expressions of assignments.

• Replace all continuous assignments by references to let

statements.
• Create compile-time checks on elaboration-time constant

values.
• Use initial procedures only for indicating that the en-

closed assertions should have only one evaluation at-
tempt. Initialize variables in their declaration.

• Change interface definition to include original parameters
as regular arguments.

• Provide inference functions as default arguments to clock
and reset.

• Provide default actual arguments wherever appropriate.
• Generalize the type of arguments to sequence or
property wherever the checker properties can admit
such operands.

• Checker instance identification task calls in initial pro-
cedures should be replaced by initial and an immediate
assert statement on true, with a pass action statement
displaying the required identification message.

• Consider using covergroups to provide more detailed
coverage, selectable by an argument.

• Add default clocking and disable iff declara-
tions and simplify assertions.

• Place the new checkers in a package for easy yet con-
trolled access from a design unit.

B. SVA Language Enhancements

• The usage and development of checkers for libraries
could be made easier if let, property, sequence and
checker allowed passing variable number of arguments.
This would reduce the number of checker variants and
configuration arguments. The same enhancement should
also be done for macro definitions so as to allow en-
capsulation of the generalized checkers in macros as we
illustrated earlier.

• The enhancement for variable number of arguments
should be supplemented with new elaboration-time sys-
tem functions to manipulate the variable lists of argu-
ments (e.g., similar to map and reduce functions in LISP).

• Sampling of checker arguments should be controlled by
some qualifier on the formal argument declaration.

• Allow continuous assignment in checker encapsulation.
It may be more efficient in some situations because of
the substitution semantics of let.

• Allow the use of conditional statements in always proce-
dures in checkers, possibly under some restrictions.

• Provide output and inout ports in checker encapsu-
lation.

ACKNOWLEDGMENT

The authors would like to thank John Havlicek (Freescale)
for helpful discussions.

REFERENCES

[1] IEEE Standard for SystemVerilog Unified Hardware Design, Specification,
and Verification Language, IEEE 1800-2009.

[2] E. Cerny, D. Korchemny, L. Piper, E. Selingman, S. Dudani, Verification
case studies: evolution from SVA 2005 to SVA 2009, Proc. Design
Verification Conference (DVCon) 2009.

[3] Accellera Standard Open Verification Library (OVL), Version V2.4,
Accellera, 2009.

[4] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale Verification Method-
ology Manual for SystemVerilog (VMM), Springer, ISBN: 978-0-387-
25538-5, 2005.

[5] M. Glasser, Open Verification Methodology Cookbook, Springer, ISBN:
978-1-4419-0967-1, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

