
of 126

IEEE 1800.2 UVM - Changes
Useful UVM Tricks & Techniques

Clifford E. Cummings
World Class Verilog, SystemVerilog & UVM Training

1639 E 1320 S, Provo, UT 84606
Voice: 801-960-1996

Email: cliffc@sunburst-design.com
Web: www.sunburst-design.com

Connect with Cliff
on Linked

Life is too short for bad
or boring training!

1

of 126

• IEEE UVM 1800.2 Topics
– Quick Introduction
– Resources & References
– Most Obvious IEEE UVM 2017 Question & Answer
– Virtual classes & the UVM Factory
– `uvm_do macro replacement
– UVM comparators - status

New IEEE UVM Features
Agenda

2

of 126

Introduction

• UVM Best Known Methods (BKMs) …

• Frequently Asked Question: What will replace UVM?

Do not exist !!
(At least not all)

Complementary methodologies will emerge
(such as PSS)

In my opinion, Nothing!
(At least for a very long time)

PSS will help generate
UVM sequences

BUT … there will be modifications, simplifications
and enhancements to UVM

IEEE 1800.2 is the first set of IEEE
standardized enhancements to UVM

UCIS (Unified Coverage Interoperability Standard)
helps with collection of coverage data

3

of 126

References

• DVCon 2018 Tutorial - IEEE-Compatible UVM Reference Implementation and
Verification Components

• DVCon 2017 Tutorial - Introducing IEEE 1800.2 The Next Step for UVM

• forums.accellera.org/

• https://ieeexplore.ieee.org/document/7932212

• https://ieeexplore.ieee.org/document/8299595

You need free video registrations & two free logins

4

Access the SystemVerilog and UVM Forums

To watch this presentation, go to:
videos.accellera.org/videos.html

To watch this presentation, go to:
videos.accellera.org/videos.html

1800.2-2017 - IEEE UVM

1800-2017 - IEEE SystemVerilog

Linked from
www.accellera.org/downloads/ieee

Downloading PDF documents requires IEEE login
(You can create a free IEEE login account)

of 126

DVCon 2017 - UVM Features Described
Reference Slides at End of Presentation

5

Reference
Material

Tom Alsop
Slides 14-19

Srivatsa Vasudevan
Slides 28-41

Srinivasan Venkataramanan
Slides 76-105

Mark Glasser
Slides 63-70

Srivatsa Vasudevan
Slides 43-58

of 126

DVCon 2018 - UVM Features Described
Reference Slides at End of Presentation

6

Reference
Material

Justin Refice
Slides 3-13

Mark Strickland & Mark Peryer
Slides 17-31

Srivatsa Vasudevan
Slides 65-77

Uwe Simm
Slides 45-63

Mark Strickland & Mark Peryer
Slides 17-31

of 126

Where to Get Latest UVM BCL

• Download the latest Base Class Library from Accellera web site

• Latest release is: UVM 2017-1.0 Reference Implementation

Accellera Base Class Library

http://www.accellera.org/downloads/standards/uvm

Date Modified: 2018-11

No login required

Just released!

7

of 126

Most Obvious IEEE UVM 2017 Question

• From the UVM 2017 - Methodology and BCL Forum

• Question from Brian Hunter:

• Response from Justin Recife

http://forums.accellera.org/

"Who can provide a summary of what is new and what has changed?"

Accellera UVM Group Chair

"Wow, starting the questions off with a (not entirely unexpected) doozy!"

"Unfortunately there's no single document which states 'Here's a full list of
everything that changed'. This is because a large number of changes were

performed by the Accellera UVM WG prior to the IEEE UVM WG …"

8

of 126

Most Obvious IEEE UVM 2017 Question

0) Removal of the User Guide

1) Added more set_ / get_ accessor methods to replace some current knobs

2) Users can insert code into the UVM core services

3) Library initialization ordering

http://forums.accellera.org/ - Justin Recife's Summary - Part 1

Knobs still work but accessor methods
are a better coding practice

Advanced topic - example:
create factory debugger

Allows users to make custom version of
libraries without hacking existing UVM

Advanced topic - but might allow "parameterized
classes participating in the name-based factory"

"User Guide” material removed
- It’s not standard-worthy"

- DVCon 2017 - Slide 10

9

of 126

Most Obvious IEEE UVM 2017 Question

4) "Removing the Black Magic" - Field macros had undocumented behavior

5) Policy class changes

6) Registers - "Surprisingly few changes here"

7) Deprecation - new methodologies / practices for handling deprecated code

http://forums.accellera.org/ - Justin Recife's Summary - Part 2

Users COULD now implement their
own field macros more safely

All policy classes now
extend uvm_policy

New policy class for
copy() operations

New printer policy class extensions
to implement new printers

Most obvious change: can now unlock and re-lock
models to remove/replace registers at runtime

Helps support hot-plugging and
re-configuration designs

Justin's words

Justin's words

Between UVM versions

10

of 126

Accellera DVCon Resources

• U.S. DVCon 2018 Presentation by:
– Justin Refice -

Nvidia
– Mark Strickland -

Cisco Systems
– Mark Peryer -

Mentor, a Siemens Business
– Uwe Simm -

Cadence Design Systems
– Srivatsa Vasudevan -

Synopsys

• U.S. DVCon 2017 Presentation by:
– Thomas Alsop -

Intel
– Srivatsa Vasudevan -

Synopsys
– Mark Glasser -

Nvidia
– Srinivasan Venkataramanan -

CVC Pvt., Ltd.
– Krishna Thottempudi - Qualcomm

http://www.accellera.org/resources/videos
Registration & viewing

the videos is FREE!

Justin - "At DVCon 2017 & 2018, there were tutorials which covered all of the above and
more, with detailed examples."

Justin - "Aside from #1, most of those changes are for advanced use cases, or providers
of infrastructure. Day-to-day users shouldn't necessarily see a drastic change."

#1 Added more set_ / get_ accessor methods
to replace some current knobs

11

of 126

DVCon 2017 & 2018 Tutorials

• Multiple features shared but most were very
complex corner-case enhancements

• Personally, I never tried to implement the corner-case functionality:

• I could re-show:
– Excellent examples from DVCon presentations
– And show advanced corner-case topics that most would barely understand

I am not going
to do that

I want to show you more mainstream
enhancement examples

(Complex) examples in the
DVCon presentation slides

Many examples were very
difficult to understand

Except to the
presenter!

I personally barely followed the
complex examples

12

of 126

DVCon 2017 & 2018 Tutorials

• Justin's list of 1800.2 features shows topics
covered in the DVCon presentations

• Doing anything tricky or complex?

• See the slides and hear the explanations by the actual presenters

Presentation audio always includes
more than the presentation slides

If you are doing anything complex,
it is worth a listen

Now you know you can register for
free login on the Accellera web page

Please review the excellent examples that
you will find in the DVCon presentations

13

of 126

• This is Cliff's way of saying these guys are really smart!

• To Be Shown: Enhancement features that the average UVM coder can use

• Where appropriate: List DVCon slides where you can find more info

• I will also show you a few of my favorite tricks

New UVM Features Will Be Shown

… and Cliff is
really average!

To make your attendance
worth while

14

of 126

Virtual Classes

• virtual classes - only intended to be a base class

• virtual class methods can be virtual or non-virtual
– non-virtual methods means extended class can override and change the prototype

– virtual methods create placeholders with required prototype

Purpose and Usage

Not enough functionality to use as
stand-alone constructed objects

Most UVM components must be extended to
be useful - so they are virtual classes

Prototype = function/task
header

Polymorphism not possible
with non-virtual methods

Same function/task
header

Can include default implementation if the extended
class does not override the method.

15

of 126

Virtual Classes

• You want virtual classes to have virtual methods

• SystemVerilog-2009 added pure virtual methods

• pure virtual methods REQUIRE extended classes to override the method

Purpose and Usage

virtualmethods make upcasting
and polymorphism possible

Just like virtual methods -
Requires the same prototype

Unlike virtual methods -
There can be no default method implementation

Extended class must provide
an implementation

pure keyword is only legal
in a virtual class

16

of 126

Pure Virtual Methods
Two important purposes

virtual class vc1a;
bit [7:0] a;

pure virtual function void seta(bit [7:0] val);
endclass

class ex1a extends vc1a;

virtual function void seta(bit [7:0] val);
a = val;

endfunction
endclass ex1a MUST override seta()

(must provide an implementation)

pure virtual method

(2) pure virtual methods must be overridden
in a non-virtual class

(1) pure virtual methods can only be
a method prototype

No method body allowed

No endfunction / endtask allowed

NOTE: pure keyword is only legal in virtual classes

17

of 126

Pure Virtual Methods
virtual class vc1a;
bit [7:0] a;

pure virtual function void seta(bit [7:0] val);
endclass

virtual class vc2a extends vc1a;

endclass

class ex1a extends vc2a;

virtual function void seta(bit [7:0] val);
a = val;

endfunction
endclass

virtual class vc1b;
bit [7:0] a;

pure virtual function void seta(bit [7:0] val);
endclass

virtual class vc2b extends vc1b;

virtual function void seta(bit [7:0] val);
a = val;

endfunction
endclass

class ex1b extends vc2b;

// optional override of seta()
endclass

vc2a does NOT override
seta() method

ex1a MUST override seta()
(must provide an implementation)

vc2b DOES override
seta() method

ex1b can OPTIONALLY
override seta()

virtual classes

non-virtual classes

pure virtual method pure virtual method

18

of 126

Prior to Pure Virtual?

• Engineers would code virtual methods with a simple implementation

• Comparing virtual -vs- pure virtual:

– virtual methods

– pure virtual methods

How was the pure-virtual functionality implemented?

To display a fatal message that the
method had not been overridden

VMM had some of these
non-pure virtual methods

Very late to discover the
missing implementation

Problems are found sooner
and resolved quicker

Missing implementations were
discovered at run-time

Missing implementations are
discovered at compile-time

virtual class uvm_subscriber ...
extends uvm_component;

...
virtual function void write(T t);

`uvm_fatal("ERR", "Must implement write()")
endfunction

endclass UVM-like non-pure virtual method
with Fatal message

19

of 126

Two Common Testbench Base Classes

• User-defined classes that should not be directly created:
– test_base

– vseq_base

• In UVM, these cannot be virtual classes

Common User-Defined Base Classes

class test_base extends uvm_test; ...

class test1 extends test_base; ...

class vseq_base extends uvm_sequence; ...

class vseq1 extends vseq_base; ...

Virtual classes cannot be
factory-created

UVM compilation errors
if put in the factory

Common test functionality

Declares subsequecer handles and
retrieves / checks the handles

from the virtual sequencer

Typical error: "An abstract class cannot be instantiated .."

20

of 126

Virtual Classes in the Factory

• Utils-macros for Classes:

`define uvm_object_utils(T)

`define uvm_object_utils_begin(T)

`define uvm_object_utils_end

`define uvm_object_param_utils(T)

`define uvm_object_param_utils_begin(T)

`define uvm_object_param_utils_end

• Utils-macros for Virtual Classes:

`define uvm_object_abstract_utils(T)

`define uvm_object_abstract_utils_begin(T)

`define uvm_object_abstract_utils_end

`define uvm_object_abstract_param_utils(T)

`define uvm_object_abstract_param_utils_begin(T)

`define uvm_object_abstract_utils_end

UVM 1800.2 Enhancement - For uvm_objects

Now virtual base classes for transactions
and sequences can be stored in the factory

NOTE: Now you can store virtual classes
with pure virtual methods in the factory

21

of 126

Virtual Classes in the Factory

• Utils-macros for Classes:

`define uvm_component_utils(T)

`define uvm_component_utils_begin(T)

`define uvm_component_utils_end

`define uvm_component_param_utils(T)

`define uvm_component_param_utils_begin(T)

`define uvm_component_param_utils_end

• Utils-macros for Virtual Classes:

`define uvm_component_abstract_utils(T)

`define uvm_component_abstract_utils_begin(T)

`define uvm_component_abstract_utils_end

`define uvm_component_abstract_param_utils(T)

`define uvm_component_abstract_param_utils_begin(T)

`define uvm_component_abstract_utils_end

UVM 1800.2 Enhancement - For uvm_components

22

Now virtual base classes for tests and other
components can be stored in the factory

NOTE: Many of the UVM virtual base classes are now
factory enabled using the abstract_utils macros

of 126

Testbench & Factory Access

• UVM 1.1d allowed access to the factory handle

UVM 1.1d

class test_base extends uvm_test;
...

function void start_of_simulation_phase(uvm_phase phase);
super.start_of_simulation_phase(phase);
this.print();
factory.print();

endfunction

...
endclass

Add this code to print out the testbench structure

Add this code to print out the factory
entries and overrides

start_of_simulation phase
(after the testbench is built and connected)

23

of 126

Testbench & Factory Access

• UVM 1.2 & 1800.2 require declaration of the factory handle

UVM 1.2 & 1800.2

class test_base extends uvm_test;
...
uvm_factory factory=uvm_factory::get();

function void start_of_simulation_phase(uvm_phase phase);
super.start_of_simulation_phase(phase);
this.print();
factory.print();

endfunction

...
endclass

Add this code to print out the testbench structure

Add this code to print out the factory
entries and overrides

start_of_simulation phase
(after the testbench is built and connected)

Declare factory handle and use uvm_factory::get()
static method to return the handle

24

of 126

`uvm_do Macros
UVM 1.2 -vs- UVM 1800.2

S
E
Q
_
O
R
_
I
T
E
M

S
E
Q
U
E
N
C
E
R

P
R
I
O
R
I
T
Y

{
C
O
N
S
T
R
A
I
N
T
S
}

Macro Inputs

c
r
e
a
t
e
(
)

s
t
a
r
t
_
i
t
e
m
(
)

r
a
n
d
o
m
i
z
e
(
)

f
i
n
i
s
h
_
i
t
e
m
(
)

UVM actions

X X X X X

X X X X X X

X X X X X X

X X X X X X X

X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X X

`uvm_do(I)

`uvm_do_with(I,{C})

`uvm_do_on(I,S)

`uvm_do_on_with(I,S,{C})

`uvm_do_pri(I,P)

`uvm_do_pri_with(I,P,{C})

`uvm_do_on_pri(I,S,P)

`uvm_do_on_pri_with(I,S,P,{C})

`uvm_do
actions`uvm_do sequence

or sequence item

Deprecated

Deprecated

Deprecated

Deprecated

Deprecated

Deprecated

Deprecated

25

of 126

`uvm_create, `uvm_send, `uvm_rand Macros
UVM 1.2 -vs- UVM 1800.2

S
E
Q
_
O
R
_
I
T
E
M

S
E
Q
U
E
N
C
E
R

P
R
I
O
R
I
T
Y

{
C
O
N
S
T
R
A
I
N
T
S
}

Macro Inputs

c
r
e
a
t
e
(
)

s
t
a
r
t
_
i
t
e
m
(
)

r
a
n
d
o
m
i
z
e
(
)

f
i
n
i
s
h
_
i
t
e
m
(
)

UVM actions

X X

X X X

X X X

X X X X

X X X X

X X X X X

X X X X X

X X X X X X

`uvm_create(I)

`uvm_create_on(I,S)

`uvm_send(I)

`uvm_send_pri(I,P)

`uvm_rand_send(I)

`uvm_rand_send_with(I,{C})

`uvm_rand_send_pri(I,P)

`uvm_rand_send_pri_with(I,P,{C})

`uvm_macro
actions

Less frequently
used macros

`uvm_macro sequence
or sequence item

Deprecated

Deprecated

Deprecated

Deprecated

Deprecated

26

of 126

`uvm_do(SEQ_OR_ITEM, SEQR=get_sequencer(), PRIORITY=-1, CONSTRAINTS={})

`uvm_create(SEQ_OR_ITEM, SEQR=get_sequencer())
`uvm_send(SEQ_OR_ITEM, PRIORITY=-1)

`uvm_rand_send(SEQ_OR_ITEM, PRIORITY=-1, CONSTRAINTS={})

New 1800.2 `uvm_do Commands
`uvm_do `uvm_create `uvm_send `uvm_rand_send

UVM 1.2 usage examples

`uvm_do_with(tr, {rw_type==WRITE;}) `uvm_do(tr, , , {rw_type==WRITE;})

UVM 1800.2 usage examples

`uvm_do_on(ahb_seq, ahb_sqr)
`uvm_do_on(eth_seq, eth_sqr)

`uvm_do(ahb_seq, ahb_sqr)
`uvm_do(eth_seq, eth_sqr)

… AND before
you ask ! `uvm_do(.SEQ_OR_ITEM(tr), .CONSTRAINTS({rw_type==WRITE;}))

NO ... you cannot pass values by argument name

Virtual sequences

Transaction
w/constraint

27

of 126

UVM Comparator Classes

• Removed from P1800.2
uvm_comparator
uvm_algorithmic comparator
uvm_in_order_comparator

DVCon 2017 - Slide 51

Deemed as not standard-worthy"
DVCon 2017 - Slide 51

NOT Deprecated:
The Source files are still there

These are some of my favorite
UVM 1800.2 new features

28

of 126

Some of Cliff's favorite UVM topics

• Cliff's favorite UVM topics
– UVM transaction - why is it a class?
– UVM do_methods -vs- field macros
– start_item() / finish_item() -vs- `uvm_do
– UVM messaging macros, tricks & guidelines
– UVM factory & factory.print()
– Analysis paths

29

of 126

Why Is UVM Hard To Learn?

• UVM User Guide was written by Cadence

• UVM tutorials by Mentor on
VerificationAcademy.org

• OVM Cookbook written by Mentor employees

• User Guide, tutorials and Cookbook do not
acknowledge alternate methods

• Authors of UVM materials are really, really
smart software engineers

Teaches Mentor recommended methods

Based on earlier versions of OVM

Teaches Cadence recommended methods

Uses a large number of UVM macros

Fewer UVM macros / more UVM method calls

Users think one or more sources have bugs

Authors assume everyone knows
SV, OO and polymorphism

Authors don't know how to teach
the concepts to beginners

30

of 126

UVM Transaction Base Classes

Good reference paper:
UVM Transactions - Definitions, Methods and Usage

www.sunburst-design.com/papers/CummingsSNUG2014SV_UVM_Transactions.pdf

31

of 126

Transactions & Sequences

• Transactions are driven into the dut_if
• Sequences can be built from:

– A single transaction
– Multiple transactions
– Multiple other sequences

What Is Their Composition? Basic transactions are extended
from uvm_sequence_item

seq1

sequence

tr1

sequence

tr1 tr2 tr3 tr4

sequence

seq1 seq2 seq3

tr2tr1

32

of 126

Transaction Data

• Classes - dynamic
Multiple fields
rand fields
Randomization constraints
Built-in methods
Generate as many as needed at run time

Classes can be extended

Can be in a factory for run-time substitution

• Structs - static
Multiple fields
NO rand fields
NO randomization constraints
NO built-in methods
Must anticipate & statically declare all
structs at the beginning of the simulation
Structs must be copied

No factories for structs

Why use classes? Why not use structs?

33

Classes are basically dynamic, ultra flexible structs that can
• be easily randomized
• easily control the randomization
• be created whenever they are needed

The default transaction type used by UVM
components is uvm_sequence_item

Allows more than one transaction
type with a common base type

Copies are modified if more than
one transaction type is desired

of 126

*

*

top

test1test1

Passing Transactions & Signals
Block Diagram

env

dut

dut_if

tb_scoreboard

tb_agent

tb_driver

vif

Ignore trans
outputs

Predictor
ignores trans

outputs

trans

trans

Do not randomize
trans outputs

You do not need different
input and output

transaction classes !!

tb_cover

Comparator
ignores trans

inputs

tb_sequencer

tb_monitor

vif
Drive DUT
inputs

trans

Sample DUT
inputs &
outputs

trans

34

of 126

Standardized UVM Formatting

35

of 126

Standard UVM Coding Style

• UVM testbench components and UVM transaction definitions

(0) Declare transaction variables
(1) Register class with factory

Optional: declare field macros
(2) Declare variables & covergroups
(3) Declare virtual interface
(4) Declare ports & components
(5) Standard new() constructor
(6) build_phase()
(7) connect_phase()
(8) Other pre-run phases
(9) run_phase()
(10) Other post-run phases
(11) Common class methods

Cliff's preferred styles

If any

If any

Mostly in transactions

If field macros are used

Components only

Components only

36

of 126

UVM Transactions Styles

• Using do_methods()

(1) Register with factory

(2) Declare vars/covergroups
(5) new() constructor
(11) Common trans methods

convert2string()
do_copy() / do_compare()
other do_methods()

• Using field macros

(0) Declare trans vars
(1) Register with factory

Optional: field macros
(2) Declare vars/covergroups
(5) new() constructor
(11) Common trans methods

convert2string()

do_methods() -vs- field macros

37

of 126

`uvm_object_utils Macro Usage

• Using do_methods()

• Using field macros

class trans1 extends uvm_sequence_item;
`uvm_object_utils(trans1)
<declare variables>
<standard constructor>
<override do_methods()>

class trans1 extends uvm_sequence_item;
<declare variables>
`uvm_object_utils_begin(trans1)

<declare field macros for variables>
`uvm_object_utils_end
<standard constructor>

`uvm_object_utils()
before declarations

`uvm_object_utils()
after declarations

Variables declared after
`uvm_object_utils()

Variables declared before
`uvm_object_utils()

Field macros declared after
`uvm_object_utils()

38

of 126

Standard Transaction Methods

39

of 126

Standard Transaction Methods

• 11 Standard Transaction Methods
copy(),

compare(),
print(), sprint(),
pack(), pack_bytes(), pack_ints(),

unpack(), unpack_bytes(), unpack_ints(),
record()

• 3 more transaction methods
create(),
clone(),
convert2string()

Defined in uvm_object()
base class

Somewhat important

Used for serial-to-parallel
applications

copy() & compare() are very important

For debugging transactions

convert2string() is very important

Auto-generated by `uvm_object_utils() macro

Creates and copies a transaction

40

of 126

top

copy() & compare() Usage
Common Usage

test1

env

dut_if

tb_scoreboard

tb_agent

tb_driver

tb_sequencer

tb_monitor

vif vif

tb_cover

Compares expected output
to actual output

exp_tr.compare(out_tr)

Output calculator
takes tr.copy()

of trans

trans

trans

Sample DUT
inputs &
outputs

dut

41

of 126

*

Implementing Transaction Methods

• Each transaction should include important methods

• Two ways to implement important transaction methods:

– Field macros

– Manual coding

For User-Defined sequence_items

Simple - but
inefficient (simulations)

Not too difficult -
more efficient (simulations)

Cadence recommends
using these macros

Mentor recommends
coding the methods

(using user-defined hooks - next slides)

Mentor recommends
avoiding these macros

These are shown in
the UVM User Guide

These are shown on
Verification Academy

42

of 126

Override
these

`uvm_object_utils_begin()
`uvm_field_int(…)
`uvm_field_int(…)
`uvm_field_enum(…)
`uvm_field_string(…)
`uvm_object_utils_end

Field macros contribute
to these methods

Standard Transaction Methods

Call
these

Never call the
do_methods()

Field macros do not build
convert2string()Override and call this

Never override these
Standard Transaction Methods

Standard Transaction Methods
call field-macro-created code-AND-

copy()

compare()

print()
sprint()

pack()
pack_bytes()
pack_ints()

unpack()
unpack_bytes()
unpack_ints()

record()

convert2string()

do_copy()

do_compare()

do_print()

do_pack()

do_unpack()

do_record()

`uvm_object_utils()

Standard Transaction
Methods using do_methods()

43

of 126

Your code goes here !!

Are you kidding me ??

Why Not Override
compare() Method?

– Insert your compare code on line 58 or line 59

// compare
// -------

function bit uvm_object::compare (uvm_object rhs,
uvm_comparer comparer=null);

bit t, dc;
static int style;
bit done;
done = 0;
if(comparer != null)

__m_uvm_status_container.comparer = comparer;
else

__m_uvm_status_container.comparer = uvm_default_comparer;
comparer = __m_uvm_status_container.comparer;

if(!__m_uvm_status_container.scope.depth()) begin
comparer.compare_map.clear();
comparer.result = 0;
comparer.miscompares = "";
comparer.scope = __m_uvm_status_container.scope;
if(get_name() == "")

__m_uvm_status_container.scope.down("<object>");
else

__m_uvm_status_container.scope.down(this.get_name());
end
if(!done && (rhs == null)) begin

if(__m_uvm_status_container.scope.depth()) begin
comparer.print_msg_object(this, rhs);

end
else begin

comparer.print_msg_object(this, rhs);
uvm_report_info("MISCMP",

$sformatf("%0d Miscompare(s) for object %s@%0d vs. null",
comparer.result,
__m_uvm_status_container.scope.get(),
this.get_inst_id()),
__m_uvm_status_container.comparer.verbosity);

done = 1;
end

end

if(!done && (comparer.compare_map.get(rhs) != null)) begin
if(comparer.compare_map.get(rhs) != this) begin

comparer.print_msg_object(this, comparer.compare_map.get(rhs));
end
done = 1; //don't do any more work after this case, but do cleanup

end

if(!done && comparer.check_type && (rhs != null) &&
(get_type_name() != rhs.get_type_name())) begin
__m_uvm_status_container.stringv = { "lhs type = \"", get_type_name(),

"\" : rhs type = \"", rhs.get_type_name(), "\""};
comparer.print_msg(__m_uvm_status_container.stringv);

end

if(!done) begin
comparer.compare_map.set(rhs, this);
__m_uvm_field_automation(rhs, UVM_COMPARE, ""); // LINE 58-field macros
dc = do_compare(rhs, comparer); // LINE 59-do_compare()

end

if(__m_uvm_status_container.scope.depth()==1) begin
__m_uvm_status_container.scope.up();

end

if(rhs != null)
comparer.print_rollup(this, rhs);

return (comparer.result == 0 && dc == 1);
endfunction

69 Lines
of code !!

function bit uvm_object::compare (uvm_object rhs, ...

__m_uvm_field_automation(rhs, UVM_COMPARE, "");
dc = do_compare(rhs, comparer);

endfunction

Line 58 - Call the
field-macros compare() code

Line 59 - Call the
do_compare() code

10 lines of post-compare() code

57 lines of pre-compare() code

It would be too complex to override
the compare() base method !!

uvm_object compare() method 44

of 126

`uvm_object_utils(T)
macros/uvm_object_defines.svh

`define uvm_object_utils(T) \
`uvm_object_utils_begin(T) \
`uvm_object_utils_end

`define uvm_object_utils_begin(T) \
`m_uvm_object_registry_internal(T,T)\
`m_uvm_object_create_func(T) \
`m_uvm_get_type_name_func(T) \
`uvm_field_utils_begin(T)

`define uvm_object_utils_end\
end \

endfunction \

Each field macro adds
more code here

function void __m_uvm_field_automation (…)\
begin \

... \

end \
endfunction \

Define the create() method

Define the get_type_name()
method

Register the transaction
class with the factory

Defines first 20 lines of method:
__m_uvm_field_automation()

Defines last 2 lines of method:
__m_uvm_field_automation()

Each `uvm_field_int
adds 59 lines -

big case statement

45

of 126

Overriding do_methods()

46

of 126

Override
these

Standard Transaction Methods

`uvm_object_utils_begin()
`uvm_field_int(…)
`uvm_field_int(…)
`uvm_field_enum(…)
`uvm_field_string(…)
`uvm_object_utils_end

Field macros contribute
to these methods

Call
these

Never call the
do_methods()

Override and call this

Never override these
Standard Transaction Methods

Field macros will
be shown later

copy()

compare()

print()
sprint()

pack()
pack_bytes()
pack_ints()

unpack()
unpack_bytes()
unpack_ints()

record()

convert2string()

do_copy()

do_compare()

do_print()

do_pack()

do_unpack()

do_record()

`uvm_object_utils()

Defining Standard Transaction Method
behavior using do_methods()

47

of 126

User-Defined Transaction Class
Derivative of uvm_object

class trans1 extends uvm_sequence_item;
`uvm_object_utils(trans1)

logic [15:0] dout;
rand bit [15:0] din;
rand bit ld, inc, rst_n;
...
function void do_copy(uvm_object rhs);

trans1 tr;
if(!$cast(tr, rhs))

`uvm_fatal("trans1", "FAIL: do_copy() cast");
super.do_copy(rhs);
dout = tr.dout;
din = tr.din;
ld = tr.ld;
inc = tr.inc;
rst_n = tr.rst_n;

endfunction
...

endclass

uvm_object

uvm_transaction

uvm_sequence_item

uvm_sequence trans1

uvm_object is the top-level
base class in UVM

The user transaction typeThe user transaction type is
a derivative of uvm_object

48

of 126

Transaction Class do_copy() Method
Upcasting & Downcasting

class trans1 extends uvm_sequence_item;
`uvm_object_utils(trans1)

logic [15:0] dout;
rand bit [15:0] din;
rand bit ld, inc, rst_n;
...
function void do_copy(uvm_object rhs);

trans1 tr;
if(!$cast(tr, rhs))

`uvm_fatal("trans1", "...");
super.do_copy(rhs);
dout = tr.dout;
din = tr.din;
ld = tr.ld;
inc = tr.inc;
rst_n = tr.rst_n;

endfunction
...

endclass

trans1 t object
with five variables

dout = 0000

din = AAAA

ld = 1

inc = 1

rst_n = 0

rhs

dout = 0000

din = AAAA

ld = 1

inc = 1

rst_n = 0

tr

dout = 0000

din = AAAA

ld = 1

inc = 1

rst_n = 0

ttr1.copy(t);

do_copy(t);

calls …

trans1 t object
converted to

uvm_object rhs

uvm_object rhs
Cannot access variables

Declare trans1 tr handle

$cast uvm_object rhs
handle to trans1 tr handle

Upcast

Downcast

Assume trans1 tr1 object

Now copy tr signals to
local tr1 trans1 signals

49

of 126

Transaction Class do_copy() Method
Example Usage from Scoreboard Predictor

class trans1 extends uvm_sequence_item;
`uvm_object_utils(trans1)

logic [15:0] dout;
rand bit [15:0] din;
rand bit ld, inc, rst_n;
...
function void do_copy(uvm_object rhs);

trans1 tr;
if(!$cast(tr, rhs))

`uvm_fatal("trans1", "...");
super.do_copy(rhs);
dout = tr.dout;
din = tr.din;
ld = tr.ld;
inc = tr.inc;
rst_n = tr.rst_n;

endfunction
...

endclass

function trans1 ... sb_calc_exp (trans1 t);
...
trans1 tr1 = trans1::type_id::create("tr1");
...
tr1.copy(t);
...
return(tr1);

endfunction

The sb_calc_exp() function is
called with trans1 t handle

Local trans1 tr1 object is created

All fields of the t object are copied
to the fields of the local tr1 object

The sb_calc_exp() function
returns the tr1 handle

The scoreboard predictor has
sb_calc_exp() function

copy() method calls
do_copy() method

tr1 trans1 object

do_copy() is a virtual method -
must keep the same prototype

50

of 126

• Many industry examples name the local transaction handle rhs_

• Using rhs_ means that casting is done in the form $cast(rhs_, rhs);

• Causes fields to be referenced as rhs_.field_1 , …

• Better practice: Use a transaction handle name like tr

Avoid Confusing Names
Upcasting & Downcasting Variable Names

Guideline: Declare local transaction handles using distinct names such as tr and
avoid local transaction handle names such as rhs_

This is confusing and therefore
a poor practice

Easy to confuse the uvm_object rhs handle
with the transaction class rhs_ handle

Previous slide - We named
the local trans1 handle tr

Or another name that is visually distinct

51

of 126

function bit do_compare(uvm_object rhs, uvm_comparer comparer);
trans1 tr;
bit eq;
$cast(tr, rhs);
eq = super.do_compare(rhs, comparer);
eq &= (a == tr.a);
… (compare remaining variables)
return(eq);

endfunction

do_copy() & do_compare()
Template Methods

function void do_copy(uvm_object rhs);
trans1 tr;
$cast(tr, rhs);
a = tr.a;
… (copy remaining variables)

endfunction

This is just overhead code

Required prototype code

This is just overhead code

Required prototype code
Overhead code

Overhead code

This is the added
copy code

This is the added
compare code

52

of 126

Using Field Macros

53

of 126

`uvm_object_utils_begin()
`uvm_field_int(…)
`uvm_field_int(…)
`uvm_field_enum(…)
`uvm_field_string(…)
`uvm_object_utils_end

Field macros contribute
to these methods

Standard Transaction Methods

Call
these

Field macros do not build
convert2string()

Never override these
Standard Transaction Methods

Override
these

Never call the
do_methods()

do_copy()

do_compare()

do_print()

do_pack()

do_unpack()

do_record()

`uvm_object_utils()

do_methods() were
shown earlier

copy()

compare()

print()
sprint()

pack()
pack_bytes()
pack_ints()

unpack()
unpack_bytes()
unpack_ints()

record()

convert2string()

54Defining Standard Transaction Method
behavior using field macros

of 126

What is required to use field macros?

1. Declare all the transaction variables

2. `uvm_object_utils_begin(trans1)

3. `uvm_field_* (for each variable)

4. Set `uvm_field_* FLAGS

5. `uvm_object_utils_end

Using Field Macros
Requirements

Declare before
`uvm_object_utils()

Re-declare variables
using `uvm_field_*

Set FLAG values
for each variable

55

of 126

Transaction with Field Macros
Rules

class trans2 extends uvm_sequence_item;
rand bit [7:0] a, b, c;

`uvm_object_utils_begin(trans2)
`uvm_field_int(a, UVM_ALL_ON)
`uvm_field_int(b, UVM_ALL_ON)
`uvm_field_int(c, UVM_ALL_ON)

`uvm_object_utils_end
...

endclass

`uvm_field_int(a,b,c, UVM_ALL_ON)

`uvm_field_int({a,b,c}, UVM_ALL_ON)

Same type and size:
variables can be
declared as a list

Same field macro flags:
variables MUST be
declared separately

ILLEGAL to group variables
in the same field macro

STILL ILLEGAL
to concatenate variables
in the same field macro

56

of 126

`uvm_field Macros
Data declaration field types

`uvm_field_int (ARG,FLAG)
`uvm_field_enum (T,ARG,FLAG)
`uvm_field_object (ARG,FLAG)
`uvm_field_string (ARG,FLAG)
`uvm_field_real (ARG,FLAG)
`uvm_field_event (ARG,FLAG)

`uvm_field_sarray_int (ARG,FLAG)
`uvm_field_sarray_enum (ARG,FLAG)
`uvm_field_sarray_object(ARG,FLAG)
`uvm_field_sarray_string(ARG,FLAG)

`uvm_field_array_int (ARG,FLAG)
`uvm_field_array_enum (ARG,FLAG)
`uvm_field_array_object (ARG,FLAG)
`uvm_field_array_string (ARG,FLAG)

`uvm_field_queue_int (ARG,FLAG)
`uvm_field_queue_enum (ARG,FLAG)
`uvm_field_queue_object (ARG,FLAG)
`uvm_field_queue_string (ARG,FLAG)

1-dimensional dynamic
array field macros

Static array
field macros

Queue field macros

Most commonly
used field macros

int field macros are for any
integral number-type

Includes most signals
and buses (vectors)

57

of 126`uvm_field Macros

Data declaration field types

`uvm_field_aa_string_int (ARG, FLAG)
`uvm_field_aa_string_string (ARG, FLAG)

`uvm_field_aa_object_int (ARG, FLAG)
`uvm_field_aa_object_string (ARG, FLAG)

`uvm_field_aa_int_int (ARG, FLAG)
`uvm_field_aa_int_int_unsigned (ARG, FLAG)
`uvm_field_aa_int_integer (ARG, FLAG)
`uvm_field_aa_int_integer_unsigned (ARG, FLAG)
`uvm_field_aa_int_byte (ARG, FLAG)
`uvm_field_aa_int_byte_unsigned (ARG, FLAG)
`uvm_field_aa_int_shortint (ARG, FLAG)
`uvm_field_aa_int_shortint_unsigned(ARG, FLAG)
`uvm_field_aa_int_longint (ARG, FLAG)
`uvm_field_aa_int_longint_unsigned (ARG, FLAG)
`uvm_field_aa_int_string (ARG, FLAG)

`uvm_field_aa_int_key (KEY, ARG, FLAG)
`uvm_field_aa_int_enumkey (KEY, ARG, FLAG)

Associative array
field macros

1st argument =
data-field type 2nd argument =

array index type

String
associative arrays

Object
associative arrays

Integral-number
associative arrays

58

of 126

• UVM_ALL_ON - Automatically creates the following important core data
methods:

copy() & compare()
pack() & unpack()
record()
print() & sprint()

Other macro flags
on the next slide

UVM Field Macro Flags
59

of 126

• UVM Field Macro Flags
UVM_ALL_ON Set all operations on (default)
UVM_DEFAULT Use the default flag settings

UVM_NOCOPY Do not copy this field
UVM_NOCOMPARE Do not compare this field
UVM_NOPRINT Do not print this field
UVM_NODEFPRINT (not documented in User Guide or Reference Manual)
UVM_NOPACK Do not pack or unpack this field

UVM_PHYSICAL Treat as a physical field. Use physical setting in policy class for this field
UVM_ABSTRACT Treat as an abstract field. Use the abstract setting in the policy class for this field
UVM_READONLY Do not allow setting of this field from the set_*_local methods

UVM Field Macro Flags

Can also add the flags together
but bitwise or'ed is safer
(avoids double incrementing)

Mentor warns about
inefficiencies

Users like the
ease of use

Multiple flags can be
bitwise OR-ed together

60

of 126

UVM Macro Flags

0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1

UVM_DEFAULT

UVM_ALL_ON

C
O
M
P
A
R
E

P
R
I
N
T

R
E
C
O
R
D

P
A
C
K

D
E
E
P

S
H
A
L
L
O
W

R
E
F
E
R
E
N
C
E

P
H
Y
S
I
C
A
L

A
B
S
T
R
A
C
T

C
O
P
Y

N Y N Y N Y N Y N Y

R
E
A
D
O
N
L
Y

N
O
D
E
F
P
R
I
N
T

Bit 16 Bit 0

UVM_param

NODEFPRINT removed from
uvm-1.1c documentation

Equivalent to:
UVM_PACK | UVM_RECORD | UVM_PRINT | UVM_COMPARE | UVM_COPY

These flags do
the same thing

Cliff prefers
"All On"

Unused
(commented out)

61

of 126

Field Macro Flags
Adding Multiple Flags

class trans3 extends uvm_sequence_item;
rand bit [7:0] a, b, c;

`uvm_object_utils_begin(trans3)
`uvm_field_int(a, UVM_ALL_ON)
`uvm_field_int(b, UVM_ALL_ON)
`uvm_field_int(c, UVM_ALL_ON | UVM_NOCOPY)

`uvm_object_utils_end

function new (string name="trans3");
super.new(name);

endfunction

`include "print_trans.sv"
endclass

Creates ALL standard transaction
methods for these variables

Creates ALL standard transaction
methods for this variable

EXCEPT copy()

Legal Exception FLAGS:
UVM_NOCOPY UVM_NOCOMPARE UVM_NOPRINT
UVM_NOPACK UVM_NORECORD

OFF-FLAGS have precedence
over ON-FLAGS

62

of 126

Adding Field Macro Flags
Multiple Flags Using | or +

…
`uvm_object_utils_begin(trans3)
`uvm_field_int(a, UVM_ALL_ON)
`uvm_field_int(b, UVM_ALL_ON)
`uvm_field_int(c, UVM_NOCOPY | UVM_ALL_ON | UVM_NOCOPY)

`uvm_object_utils_end
…

…
`uvm_object_utils_begin(trans3)
`uvm_field_int(a, UVM_ALL_ON)
`uvm_field_int(b, UVM_ALL_ON)
`uvm_field_int(c, UVM_NOCOPY + UVM_ALL_ON + UVM_NOCOPY)

`uvm_object_utils_end
…

Setting multiple flags with | separation is preferred

Setting multiple flags with + separation is legal

Mistakenly OR-ing UVM_NOCOPY
twice still yields no-copy operation

Mistakenly adding UVM_NOCOPY
twice clears the no-copy bit

c variable will be copied

63

of 126

Efficiency Benchmarks

64

of 126

Benchmarking Methodology

• test1 component with a tight loop:
– Transactions repeatedly: (1) randomize() (2) copy() (3) compare()

From test1.sv File

task run_phase(uvm_phase phase);
trans1 tr1 = trans1::type_id::create("tr1");
trans1 x1 = trans1::type_id::create("x1");
//--
phase.raise_objection(this);
repeat(`CNT) begin
if (!tr1.randomize()) `uvm_fatal(...);
x1.copy(tr1);
if (x1.compare(tr1)) PASS (tr1);
else ERROR(tr1, x1);

end
phase.drop_objection(this);

endtask

Tight
loop

Create tr1 and x1
transactions

`include CNT value
from separate file

tr1.randomize()

Copy tr1 to x1

Compare tr1 to x1

65

of 126

Benchmarking Methodology

• How to setup transactions is always tricky

• trans1 transactions benchmarks:
– 5 rand inputs

– 5 rand outputs
– 5 non-rand outputs

– do_copy() & do_compare()
– Field macros

– do_copy() with & without super.do_copy()
– do_compare() with & without super.do_compare()

From trans1.sv Files

All benchmark code is
in Annex B of the paper

You can try it!

All inputs randomized

Penalty for unnecessary
randomization of outputs??

Penalty for using
field macros??

Penalty for unnecessary calls
to super-base methods??

66

of 126

Benchmark Results

Unnecessary rand-outputs
-vs- non-randomized outputs

(Using do_methods())

Unnecessary rand-outputs -vs-
non-randomized outputs

(Using Field Macros)

Simulator A

CNT=100M

Simulator B

CNT=100M

Penalty Benchmark

16.5% slower 11.2% slower

12.1% slower 5.3% slower

Penalty for using Field Macros
-vs- using do_methods() 6.0% slower 13.3% slower

Penalty for calling unnecessary
super.do_methods() 2.4% slower 6.7% slower

Do NOT randomize
transaction output fields

Using Field Macros
has a penalty

Calling super.do_methods()
has a small-ish penalty

2018 Benchmarks
67

of 126

UVM Basic Transaction Objects

• On the next slides, we will build:

– trans1

– read_sequence, write_sequence

– write_read

Basic transaction type built
from uvm_sequence_item

Example uvm_sequence code

Example sequence of sequences

68

of 126

UVM Transaction
(Built from uvm_sequence_item)

class trans1 extends uvm_sequence_item;
`uvm_object_utils(trans1)

rand bit rw_n, cs_n;
rand data_t data;
rand addr_t addr;

typedef enum {READ, WRITE} rw_e;
rand rw_e rw_type;

constraint c1 {(rw_type == READ) -> rw_n == '1;
(rw_type == WRITE) -> rw_n == '0;}

function new(string name="trans1");
super.new(name);

endfunction

...

Extend uvm_sequence_item to
build the base transaction

Guideline: create transactions by
extending uvm_sequence_item

(it is common to create sequences of transactions)

Register the trans1 object
in the UVM factory

NOTE:`uvm_object_utils
NOT `uvm_sequence_utils

Common transaction
constructor (no parent)

Randomizable
data members

Randomization
"knob"

Randomization
constraints

Optional: add convert2string()
and post_randomize() methods

(next slide)

69

of 126

UVM Transaction
Add convert2string() & post_randomize()

...

function string convert2string();
return($sformatf(" addr=%3h data=%2h rw_n=%b cs_n=%b",

addr, data, rw_n, cs_n)});
endfunction

function void post_randomize();
`uvm_info("trans1", this.convert2string(), UVM_HIGH);

endfunction
endclass

class trans1 (cont.)

Returns a formatted
string for this object

Prints the formatted string
after randomize()

70

of 126

codey.3

Sequence: read_sequence
(Read sequence definition)

Extend uvm_sequence to build a
sequence of transactions

class read_sequence extends uvm_sequence #(trans1);
`uvm_object_utils(read_sequence)

function new(string name="read_sequence");
super.new(name);

endfunction

task body;
trans1 tr;
tr = trans1::type_id::create("tr");
//--
start_item (tr);
if (!(tr.randomize() with {rw_type==READ;}))

`uvm_error("RAND", "Failed randomization")
finish_item (tr);

endtask
endclass

Register the read_sequence
in the UVM factory

(object type)

Common constructor

uvm_sequence is a parameterized class
(passes trans1 transactions)

body method

Standard steps:
(1) declare a transaction (tr)

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer
(4) randomizes the tr data

with added constraint (READ sequence)

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer
(4) randomizes the tr data

with added constraint (READ sequence)
(5) finish communication with the sequencer

71

of 126

codey.3

Sequence: write_sequence
(Write sequence definition)

Extend uvm_sequence to build a
sequence of transactions

class write_sequence extends uvm_sequence #(trans1);
`uvm_object_utils(write_sequence)

function new(string name="write_sequence");
super.new(name);

endfunction

task body;
trans1 tr;
tr = trans1::type_id::create("tr");
//--
start_item (tr);
if (!(tr.randomize() with {rw_type==WRITE;}))

`uvm_error("RAND", "Failed randomization")
finish_item (tr);

endtask
endclass

Register the write_sequence
in the UVM factory

(object type)

Common constructor

uvm_sequence is a parameterized class
(passes trans1 transactions)

body method

Standard steps:
(1) declare a transaction (tr)

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer
(4) randomizes the tr data

with added constraint (WRITE sequence)

Standard steps:
(1) declare a transaction (tr)
(2) create (register) the tr in the factory
(3) start communication with the sequencer
(4) randomizes the tr data

with added constraint (WRITE sequence)
(5) finish communication with the sequencer

72

of 126

Sequence: write_read
(sequence defined using other sequences)

class write_read extends uvm_sequence #(trans1);
`uvm_object_utils(write_read)

rand int cnt;
constraint loop_cnt {cnt inside {[3:5]};}

function new(string name="write_read");
super.new(name);

endfunction

task body;
write_sequence wseq;
read_sequence rseq;
wseq = write_sequence::type_id::create("wseq");
rseq = read_sequence::type_id::create("rseq");
//--
repeat (cnt) begin
wseq.start(m_sequencer);
rseq.start(m_sequencer);

end
endtask

endclass

Extend uvm_sequence to build a
sequence of sequences

Register the write_read
in the UVM factory

uvm_sequence is a parameterized class
(passes trans1 transactions)

Common constructor

Start write_sequence(wseq)
on m_sequencer

Start read_sequence(rseq)
on m_sequencer

Standard steps:
Declare and create write_sequence(wseq)

and read_sequence(rseq)

Randomized repeat(cnt)

Setup and constrain
randomizable cnt

73

of 126

`uvm_do Macros

S
E
Q
_
O
R
_
I
T
E
M

S
E
Q
U
E
N
C
E
R

P
R
I
O
R
I
T
Y

{
C
O
N
S
T
R
A
I
N
T
S
}

Macro Inputs

c
r
e
a
t
e
(
)

s
t
a
r
t
_
i
t
e
m
(
)

r
a
n
d
o
m
i
z
e
(
)

f
i
n
i
s
h
_
i
t
e
m
(
)

UVM actions

X X X X X

X X X X X X

X X X X X X

X X X X X X X

X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X X

`uvm_do(I)

`uvm_do_with(I,{C})

`uvm_do_on(I,S)

`uvm_do_on_with(I,S,{C})

`uvm_do_pri(I,P)

`uvm_do_pri_with(I,P,{C})

`uvm_do_on_pri(I,S,P)

`uvm_do_on_pri_with(I,S,P,{C})

`uvm_do
actions

Common

Common
vsequencer

Less
Common

`uvm_do sequence
or sequence item

74

of 126

Summary of Rules

• do_methods() rule: you must use `uvm_object_utils()

• Field macros rule: declare the transaction variables before calling field macros

• Field macros rule: declare variables before registering the transaction with the
factory

• Field macros rule: you must use:
`uvm_object_utils_begin() / `uvm_object_utils_end

• Field macros rule: each variable in a separate field macro

Variables cannot be grouped into
a common field macro definition

75

of 126

Summary of Important Guidelines

• Guideline: do not directly override standard trans methods

• Guideline: never manually implement the create() method

• Guideline: Transactions should include a convert2string() method

• Guideline: Avoid using the print() and sprint() methods

• Guideline: If you must, use sprint() over print()

copy(), compare(), etc.

Call `uvm_object_utils() to automatically implement create()

The outputs are verbose

Better yet … use
convert2string()

convert2string() is more simulation
and more print-space efficient

sprint() can be called
from messaging macros

Get a life !!

Always !!

76

of 126

UVM Basic Message Commands

Same techniques apply to OVM

Good reference paper:
UVM Message Display Commands - Capabilities, Proper Usage and Guidelines

www.sunburst-design.com/papers/CummingsSNUG2014AUS_UVM_Messages.pdf

77

of 126

Introduction

• UVM verbosity settings are NOT message priority settings!

• UVM_LOW is not a low priority message
• UVM_LOW is one of the highest priority messages !!

• Reference sources and public examples … get it wrong !!

• The paper offers guidelines on proper usage
• The paper shows useful messaging tricks

UVM Verbosity ≠ Message Priority !!

UVM User Guide
UVM Class Reference
+2 recent UVM books

78

of 126

UVM Basic Printing Guidelines

• Printing command types
– Verilog $display commands

– Messages & messaging macros

– UVM_LOW

– convert2string

Guideline: replace $display commands with:
`uvm_info("id", "msg", UVM_MEDIUM)

User-defined formatting
(like $display)

Guideline: quit using $display
(quit using $display / $write / $strobe)

Guideline: override convert2string
method in all data/transaction classes

convert2string becomes a built-in
"show_my_contents" method

UVM_LOW should almost
NEVER be used

Widely misused in books
and examples

79

of 126

UVM Message Facilities

• $display - does not allow easy message filtering

• uvm_report_info/fatal* methods allow message filtering
– by id -or-
– by verbosity settings

• `uvm_info/fatal* macros:
– Further simplify usage of uvm_report_info/fatal*
– Include automatic file and line number reporting
– Are more simulation efficient than uvm_report_info/fatal * methods

Good messaging reference:
A Practical Guide to Adopting the

Universal Verification Methodology (UVM)
Rosenberg & Meade

uvm_report_info/fatal* methods include:
uvm_report_info (...)
uvm_report_warning(...)
uvm_report_error (...)
uvm_report_fatal (...)

`uvm_info/fatal* macros include:
`uvm_info (...)
`uvm_warning(...)
`uvm_error (...)
`uvm_fatal (...)

Macros avoid $sformat processing

These macros
recommended
by all vendors

80

of 126

uvm_report_info/fatal* Messages

• UVM has reporting services built into all uvm_component(s)

• UVM messages take up to 5 arguments (last 3 have defaults)
string id
string message

int verbosity=<default_value>

string filename=""

int line=0

task run;
uvm_report_info("run", "env still running", UVM_HIGH);

endtask

Optional: user can list file name and line number
(for debug purposes)

Two string values:
"id" and "message"

Default verbosities:
uvm_report_info: UVM_MEDIUM
uvm_report_warning: UVM_MEDIUM
uvm_report_error: UVM_LOW
uvm_report_fatal: UVM_NONE

81

of 126

`uvm_info/fatal* Macros

• UVM macros are more simulation efficient than messages

• UVM macros take 2-3 arguments, depending on macro type
string id
string message

int verbosity

Macros automatically include
file name and line number

(good for debugging)

task run;
`uvm_info("run", " env still running", UVM_HIGH)

endtask

Default macro verbosities that cannot be changed:
`uvm_warning: UVM_NONE
`uvm_error: UVM_NONE
`uvm_fatal: UVM_NONE

Explanation on the next slide

Two string values:
"id" and "message"

Only `uvm_info allows
a verbosity setting

82

of 126

UVM Messaging Macro Advantages

• UVM message macros:
– Are more simulation efficient

– Include `__FILE__ and `__LINE__ arguments

– `uvm_warning / error / fatal include pre-defined default UVM_VERBOSITY settings

Avoids new-user mistakes
(like setting uvm_report_error verbosity to UVM_HIGH)

Automatically reports file and line
numbers - good for debugging

Removes expensive string processing
if the verbosity setting would exclude

the uvm_report_* calls

More efficient than
uvm_report methods

During Compilation: use command line switch
+define+UVM_REPORT_DISABLE_FILE_LINE

To turn off FILE
and LINE info

SystemVerilog-2009

Wraps uvm_report_*
calls in an if-statement

83

of 126

convert2string()

• convert2string() is a virtual function defined in uvm_object

• convert2string() is user-defined in the data/transaction class
– This virtual function is a user-definable hook

– Called directly by the user

– Users provide object info in the form of a string

– No uvm_printer policy object required

– Format is fully user-customizable

Guideline: add convert2string() to all
data/transaction classes

Simple & simulation efficient

Good for applications that do not require
consistent formatting offered by:

print / sprint / do_print

Fields declared in `uvm_field_* macros
will not automatically appear in calls

to convert2string()

From uvm_object base class

Unlike sprint

Default returns ""

84

of 126

$sformat, $sformatf & $psprintf Commands

• $sformat is used to generate a formatted string

$sformat (string_var, "formatted_string" [, list_of_arguments]);

• $sformatf behaves like $sformat except:
– Function that returns a string
– Therefore - no first string_var argument

string_var = $sformatf ("formatted_string" [, list_of_arguments]) ;

• $psprintf - same as $sformatf

What Are The Differences?

Stand-alone
command

String to be
written

(Can be integral or unpacked array of byte)

Formatted string or variables
that represent strings

Arguments that satisfy
format specifiers

NON-standard
Appears to be implemented by all vendors

Function that
returns string

Formatted string or variables
that represent strings

Arguments that satisfy
format specifiers

85

of 126

UVM Message Verbosity

• What is verbosity?
– Highly verbose simulations would show lots of messages
– Minimally verbose simulations would only show important messages

• UVM has built-in enumerated type: uvm_verbosity
– Defines standard verbosity levels for reports:

UVM_DEBUG Print if selected verbosity is UVM_DEBUG
UVM_FULL Print if selected verbosity is UVM_FULL or lower
UVM_HIGH Print if selected verbosity is UVM_HIGH or lower
UVM_MEDIUM Print if selected verbosity is UVM_MEDIUM or lower
UVM_LOW Print if selected verbosity is UVM_LOW or lower
UVM_NONE Print always

Lower verbosity = fewer messages Higher verbosity = more messages

Cannot be disabled by
verbosity level setting

86

of 126

UVM Message Verbosity

• UVM built-in uvm_verbosity enumerated values:
UVM_DEBUG = 500

UVM_FULL = 400

UVM_HIGH = 300

UVM_MEDIUM = 200

UVM_LOW = 100

UVM_NONE = 0

• Two ways to change the verbosity for debugging:

<sv_sim_cmd> +UVM_VERBOSITY=UVM_LOW

set_report_verbosity_level_hier(UVM_LOW);

Equivalent Verbosity Values

Does not require re-compilation

Can be put in a test

Prints level 500 and lower

Prints level 200 and lower

87

of 126

Useful Debugging Trick

88

of 126

Testbench & Factory Debugging

• Good technique to view testbench and factory setup

Unconditional Printing

class test_base extends uvm_test;
...
uvm_factory factory=uvm_factory::get();

function void start_of_simulation_phase(uvm_phase phase);
super.start_of_simulation_phase(phase);
this.print();
factory.print();

endfunction

...
endclass

Add this code to print out the testbench structure

Add this code to print out the factory
entries and overrides

start_of_simulation phase
(after the testbench is built and connected)

PROBLEM: these printouts are unconditional
(not controlled by verbosity)

Could use `uvm_info(… this.sprint() …)

There is no factory.sprint()

89

of 126

Testbench & Factory Debugging

• Better technique to view testbench and factory setup

Verbosity-Controlled Printing

class test_base extends uvm_test;
...
uvm_factory factory=uvm_factory::get();

function void start_of_simulation_phase(uvm_phase phase);
super.start_of_simulation_phase(phase);

if (uvm_report_enabled(UVM_HIGH)) begin

this.print();
factory.print();

end
endfunction
...

endclass

Print testbench structure
and factory entries

start_of_simulation phase
(after the testbench is built and connected)

Allows conditional printing
based on verbosity

Conditionally execute *.print() commands
when verbosity= UVM_HIGH or higher

Cool
Trick

90

of 126

UVM Documentation Errors

91

of 126

Existing Documentation Problems

• UVM_LOW is pervasive in References, Books & Examples
– UVM User Guide

• Uses $display once

• Uses 3 `uvm_info macros with bugs in the examples

• Uses 5 `uvm_info macro examples with UVM_LOW - wrong verbosity

• Uses 2 `uvm_info macro examples without UVM_LOW - correct!

– UVM Class Reference
• Uses 1 `uvm_info macro with bugs in the example

• Uses 3 `uvm_info macro examples with UVM_LOW - wrong verbosity

• Uses 2 `uvm_info macro examples without UVM_LOW - correct!

– Popular UVM Book published in 2013
• More than 20 examples improperly use UVM_LOW

– Popular UVM Beginner's Guide published in 2013
• More than 30 examples improperly use UVM_LOW

No wonder the UVM books get it wrong!

For low-priority messages

92

of 126

Summary of Important Guidelines

Macro Type/Verbosity Usage Guideline
`uvm_fatal (…) fatal - test-aborting errors
`uvm_error (…) non-aborting simulation errors
`uvm_warning (…) error-inject warnings
`uvm_info (… UVM_NONE) for final reports
`uvm_info (… UVM_LOW) high priority messages
`uvm_info (… UVM_MEDIUM) normal messages - replaces $display

`uvm_info (… UVM_HIGH) (1) passing transactions
(2) conditionally print testbench & factory info

`uvm_info (… UVM_FULL) print UVM status messages
`uvm_info (… UVM_DEBUG) add debug messages

Sunburst Design Usage Guidelines

Non-maskable*

Almost always prints

Use sparingly!

Almost always OFF

Think of `uvm_info as your new $display command

----------------------------- Above messages print by default -----------------------------

93

of 126

Section Agenda

• Basic queues, mailboxes and TLM FIFOs
• Subscriber satellite TV analogy
• Analysis paths & analysis ports, exports, and imps
• TLM FIFOs
• Importance of the copy() method
• How analysis port connections work - write() method
• Summary & Conclusions

Using UVM Analysis Ports & Paths

The paper has more details
and more examples

1st pass

More detail

UVM Analysis Port Functionality and Using Transaction Copy Commands
www.sunburst-design.com/papers/CummingsSNUG2018AUS_UVMAnalysisCopy.pdf

94

of 126

Important SystemVerilog Features

• Queues
– push_back() method to put a handle into the queue
– foreach() method to walk through all stored handles
– Does not have blocking get() method

• Mailboxes
– Has nonblocking try_put() method
– Has blocking get() method

• Analysis path considerations:
– Must start with uvm_analysis_port and end with uvm_analysis_imp
– uvm_tlm_fifo cannot terminate an analysis path
– uvm_tlm_analysis_fifo CAN terminate an analysis path

Can store class handles -
great for storing connected components

Can store class handles -
great for storing transactions

Important for scoreboards

Not too useful for scoreboards

Must include write() method

Built using mailboxes

Very useful for scoreboards !!

95

of 126

Subscriber Satellite TV Analogy

• Two ways to watch a broadcast satellite TV program
– Watch the program live
– Record the program to a DVR to view later

• Satellite programs are broadcast as scheduled

• No way to restart a broadcast program

• Subscribers not allowed to change the live program

There might be 1,000's of viewers

There might be NO viewers

No way to communicate back to the satellite

Other viewers would object to restarting the program

With the right equipment, you can modify your copy

96

of 126

Analysis Port Connections

and TLM FIFOs

97

of 126

top

test1

env

Common UVM Components
Overview Block Diagram

e

tb_agent

tb_scoreboard

tb_monitor

tb_cover

mon

agnt

sbdcov

After the monitor samples
signals from the DUT …

… the monitor becomes the
broadcast source for the transaction

Analysis (broadcast) port

98

of 126

tb_scoreboard

UVM Testbench Analysis Port Paths
Common Paths - Monitor to Multiple Subscribers

uvm_analysis_export(s)
(transfer exports)

uvm_analysis_port
(transfer port)

tb_cover

uvm_analysis_imp
(required termination imp)

tb_agent

tb_monitor

sb_comparator

uvm_analysis_imp
(required termination imp)

uvm_analysis_port
(broadcast source)

path #1

path #2

path #3

outfifo

uvm_analysis_imp
(required termination imp)

sb_predictor expfifo

*1 broadcast port to
3 termination imps

99

of 126

UVM Testbench Analysis Port Paths
Common Paths - Predictor to Expected Transaction FIFO

tb_scoreboard

uvm_analysis_export(s)
(transfer exports)

uvm_analysis_port
(broadcast source)

tb_cover

tb_agent

tb_monitor

sb_comparator

outfifo

sb_predictor

uvm_analysis_imp
(required termination imp)

expfifo

*1 broadcast port to
1 termination imp

100

of 126

UVM Analysis Port Paths
LEGAL Paths

101

axp1ap3

ap1 aimp

uvm_analysis_port
(broadcast source)

uvm_analysis_imp
(required termination imp)

ap2ap1

uvm_analysis_port
(broadcast source)

uvm_analysis_port(s)
(optional transfer ports)

aimpaxp2

uvm_analysis_imp
(required termination imp)

uvm_analysis_export(s)
(optional transfer exports)

*

*

write()
method

write()
method

of 126

ap1 axp1

*write()
method

UVM Analysis Port Paths
ILLEGAL Paths

102

uvm_analysis_port
(broadcast source)

BAD: uvm_analysis_export
(termination REQUIRES imp)

ap3ap2

BAD: uvm_analysis_port(s)
(ports cannot follow exports)

ap1 axp1

uvm_analysis_export
(transfer export)

BAD: uvm_analysis_imp
(imp must be last in the chain)

aimp

axp2

BAD: uvm_analysis_export
(export cannot terminate the chain)

uvm_analysis_port
(broadcast source)

*write()
method

Not automatically called from
a uvm_analysis_export

of 126

UVM Analysis Ports
Recommended Usage

ap1 ap2 ap3

uvm_analysis_port
(broadcast source)

uvm_analysis_port (s)
(optional transfer ports)

Outgoing
transactions

Use uvm_analsys_port(s)

103

of 126

UVM Analysis Exports & Imps
Recommended Usage

axp1 aimpaxp2
write()
method

uvm_analysis_export(s)
(optional transfer exports)

Incoming
transactions

Use uvm_analsys_export(s)
& uvm_analysis_imp

Requires
write() method

uvm_analysis_imp
(required termination imp)

104

of 126

tb_cover
cov

tb_scoreboard

sb_predictor
prd

sb_comparator
cmp

tb_agent

Common Analysis Port Connections
Recommended Connections

function
write(...)

Predictor extends
uvm_subscriber

Comparator extends
uvm_component

uvm_tlm_analysis_fifo
blocks

uvm_analysis_export

uvm_analysis_export

tb_monitor
mon

sbd

agnt

uvm_analysis_imp inherited from
uvm_subscriber - the handle

name is analysis_export

uvm_analysis_port

uvm_analysis_port

tlm_fifo

expfifo

tlm_fifo

outfifo

task run_phase(...);
trans1 exp_tr, out_tr;
forever begin
expfifo.get(exp_tr);
outfifo.get(out_tr);
...

end
endtask

write() method built into
uvm_tlm_analysis_fifo

uvm_tlm_analysis_fifo
get() method interface

uvm_analysis_imp declared in
uvm_tlm_analysis_fifo - the

handle name is analysis_export

write()
method

105

of 126

TLM FIFOs - Definitions & Usage

106

of 126

mbx.put(tr)

mbx.try_get(exp_tr)

• Scoreboards typically store expected and actual transactions
• SystemVerilog has queues and mailboxes

SystemVerilog Queues & Mailboxes
TLM FIFOs & Scoreboards

Queue example:
trans1 q [$];

Mailbox example:
mailbox #(trans1) mbx;

mbx.get(exp_tr)mbx.put(tr)

q.push_front(tr) q.pop_back(exp_tr) mbx.try_put(tr) mbx.try_get(exp_tr)

Nonblocking functions
(these do not wait - complete in 0-time)

Blocking tasks (wait until success)Cannot be called from
a write() function

Called from a write() function but
throw away the return status

Not very
useful

VERY
useful

Do not use

Do not use

Hard to use in a scoreboard
Used by

TLM FIFOs !!

Which should be used?

107

of 126

Although there are 2 non-analysis imp ports
and 2 analysis ports on the uvm_tlm_fifo,

uvm_tlm_fifo
Most Common Usage

get() method retrieves
from the mailbox

try_put() method stores
into the mailbox

uvm_tlm_fifo

local mailbox #(T) m

The uvm_tlm_fifo, will be constructed
to be unbounded. Example:

exp_fifo=new("exp_fifo", this, 0);

The uvm_analysis_imp write(tr) method
will call void'(try_put(tr))

The scoreboard comparator will call the
blocking get(tr) method and wait to
retrieve a uvm_tlm_fifo transaction

void-cast to throw away the try_put() return-status
(try_put() always succeeds on unbounded fifo's mailbox)

0 means
unbounded

Although there are 2 non-analysis imp ports
and 2 analysis ports on the uvm_tlm_fifo,

they typically are not used

uvm_tlm_fifo

local mailbox #(T) m

108

of 126

Although there are 2 non-analysis imp ports
and 2 analysis ports on the uvm_tlm_fifo,

uvm_tlm_analysis_fifo
Most Common Usage

get() method retrieves
from the mailbox

The uvm_tlm_analysis_fifo
is unbounded by default

The scoreboard comparator still calls blocking
get(tr) method and waits to retrieve a
uvm_tlm_analysis_fifo transaction

uvm_tlm_analysis_fifo

local mailbox #(T) m
Termination of an analysis-path

uvm_tlm_analysis_fifo

local mailbox #(T) m

<analysis_export>

uvm_analysis_imp with handle name
analysis_export is almost always used

imp already has write(t)
method built-in

Internally executes:
void'(this.try_put(t));

Although there are 2 non-analysis imp ports
and 2 analysis ports on the uvm_tlm_fifo,

they typically are not used

109

of 126

tb_agent

Typical Scoreboard
Using uvm_tlm_fifos

tb_monitor

analysis
ports

tb_scoreboard

task run_phase(...);
forever begin

expfifo.get(exp_tr);
outfifo.get(out_tr);

Uniquely named
analysis

imp[lementations]

function write_prd(...)
... expfifo.try_put()

function write_out(...)
... outfifo.try_put()

Uniquely named
write() methods

Requires two
`uvm_analysis_imp_decl(SFX)

macros

uvm_tlm_fifo[s] must be
constructed to be unbounded

tlm_fifo

outfifo

tlm_fifo

expfifo

uvm_tlm_fifo[s] do not have
uvm_analysis_imp[s]

run_phase() calls blocking
get() methods

This macro and its usage
are described in the paper

110

of 126

tb_scoreboard

sb_predictor sb_comparator

tb_agent

Typical Scoreboard
Using uvm_tlm_analysis_fifos

tb_monitor

analysis
ports

Predictor extends
uvm_subscriber

analysis
export

tlm_fifo

expfifo

tlm_fifo

outfifo

Built-in analysis
imp[lementation]

uvm_tlm_analysis_fifo [s] have built-in
uvm_analysis_imp [s] with write()-methods

analysis
exports

analysis
port

task run_phase(...);
forever begin

expfifo.get(exp_tr);
outfifo.get(out_tr);

function write(...)
...ap.write()
function write(...)
...ap.write()

Built-in analysis
imp[lementations]

run_phase() calls blocking
get() methods

111

of 126

tb_scoreboard

sb_predictor sb_comparator

tb_agent

Creating & Copying Transactions

tb_monitor

tlm_fifo

expfifo

tlm_fifo

outfifo

task run_phase(...);
forever begin

expfifo.get(exp_tr);
outfifo.get(out_tr);

function write(...)
...ap.write()
function write(...)
...ap.write()

tb_cover

task run_phase(...);

Predictor write() method creates
new etr and copies trans

copy()

Pointers to etr #1

tr #1tr #1tr #1tr #1tr #1tr #1 task run_phase(uvm_phase phase);
trans1 tr;
forever begin

sample_dut(tr);
aport.write(tr);

end
endtask

Broadcast this new transaction

Create new trans and sample DUT signals

tr #1 →

tr #1 →

tr #1 →

tr #1 →tr #1 → out_tr (tr #1 →)

etr #1etr #1 etr #1 →etr #1 → exp_tr (etr #1 →)

112

of 126

Comparing TLM FIFOs
uvm_tlm_fifo -vs- uvm_tlm_analysis_fifo

get() method retrieves
from the mailbox

uvm_tlm_analysis_fifo

local mailbox #(T) m

get() method retrieves
from the mailbox

Requires write() method
with try_put() command

uvm_tlm_fifo

local mailbox #(T) m

Scoreboard

uvm_analysis_imp

uvm_analysis_export

Scoreboard makes
connection write() method

built-in

uvm_tlm_fifo, must be constructed to be unbounded

uvm_tlm_analysis_fifo, is unbounded by default

113

of 126

Ports & Exports

• How to think about Ports and Exports

• Automobile features:

– Steering wheel

– Accelerator Pedal

– Brake Pedal

– Hands-free Bluetooth-phone connection

Is The Naming Backwards?

114

of 126

Analysis Path Basics

How do analysis port-paths work?

In the software world, this is known
as the "Observer Pattern"

115

of 126

How Does UVM Work?

• We have learned about analysis ports & TLM FIFOs

• You do not have to know how UVM works

• The best engineers want to have some understanding on how UVM works

• The remaining slides show how UVM makes subscribers work

This is a high-level tutorial on how
monitors and subscribers work

This is not exactly how UVM works,

This is a basic version of what
UVM does internally

These slides show how UVM uses queues and foreach
loops to call each subscriber's write() method

This is NOT
UVM code !!

You now know how to use:
uvm_analysis_port
uvm_analysis_export
uvm_analysis_imp
uvm_tlm_fifo
uvm_tlm_analysis_fifo

You now have enough knowledge
to use analysis components

This is not exactly how UVM works,
but it is close

On previous slides

116

of 126

Monitor with Multiple Subscribers

• Create a Monitor that can connect to any number of subscribers and can call a
write() method from each subscriber without modifying the Monitor code

– Version #1

– Version #2

Uses foreach loop to call write() methods
using queued subscriber handles

Defines common connect()
method for all subscribers

Has queue of
subscriber handles

Monitor w/ generic connect() method to hide subscriber handle names

Must call write() method
for each subscriber

Has no connect() method
Must copy handles by name

Must declare each
subscriber handle

top module must know subscriber handle names in the Monitor

Goal

*UVM
Like!

The monitor …

The monitor …

117

of 126

mon

sub1 sub2 sub3

top

class subscriber1 extends analysis_if;
virtual task write(trans1 t);
$display("subscriber1: ",

"received ...", ...);
endtask

endclass

Monitor & Subscribers
Version 1 - No connect() method

118

virtual class analysis_if;
pure virtual task write(trans1 t);

endclass

class monitor1;
analysis_if ap1;
analysis_if ap2;
analysis_if ap3;

task run();
trans1 t = new();
repeat(5) begin
void'(t.randomize());
$display("monitor: ",
"**BROADCAST** ...", ...);
ap1.write(t);
ap2.write(t);
ap3.write(t);

end
endtask

endclass

sub1

class subscriber3 extends analysis_if;
... virtual task write(...) ...

class subscriber2 extends analysis_if;
... virtual task write(...) ...sub2

sub3

subscriber1 sub1 to ap1

subscriber2 sub2 to ap2

subscriber3 sub3 to ap3

...
mon.ap1 = sub1;
mon.ap2 = sub2;
mon.ap3 = sub3;
... In top module

Each subscriber handle is copied
to the ap1-3 handles in monitor1

virtual
analysis_if

base class

Extended classes
must implement
write() method

of 126

Monitor & Subscribers
Version 1 - No connect() method

119
class monitor1;

analysis_if ap1;
analysis_if ap2;
analysis_if ap3;

task run();
trans1 t = new();
repeat(5) begin
void'(t.randomize());
$display("monitor: ",
"**BROADCAST** ...", ...);
ap1.write(t);
ap2.write(t);
ap3.write(t);

end
endtask

endclass

sub3sub2sub1

mon

sub3sub2sub1

mon

top

module top;
import tb_pkg::*;

monitor1 mon;
subscriber1 sub1;
subscriber2 sub2;
subscriber3 sub3;

initial begin
mon = new();
sub1 = new();
sub2 = new();
sub3 = new();
mon.ap1 = sub1;
mon.ap2 = sub2;
mon.ap3 = sub3;
mon.run();

end
endmodule

Declare monitor1 handle

new()-construct mon

Copy sub1-3 handles to ap1-3
handles in monitor1

Call the mon.run() task

Repeat 5 times

randomize()
transaction

Separately call each
ap[#].write() method

Monitor must declare
each analysis_if

Declare monitor1 and subscriber1-3 handles

new()-construct mon and sub1-3

With no connect() method in monitor1,
the top module must reference
names declared in monitor1

of 126

mon

sub1 sub2 sub3

top

Monitor & Subscribers
Version 2 - Adds analysis_if queue

120
class monitor2;

analysis_if ap[$];

function void connect (analysis_if port);
ap.push_back(port);

endfunction

task run();
trans1 t = new();
repeat(5) begin
void'(t.randomize());
$display("monitor: ",
"**BROADCAST** ...", ...);

foreach(ap[i]) ap[i].write(t);

end
endtask

endclass

module top;
import tb_pkg::*;

monitor2 mon;
subscriber1 sub1;
subscriber2 sub2;
subscriber3 sub3;

initial begin
mon = new();
sub1 = new();
sub2 = new();
sub3 = new();
mon.connect(sub1);
mon.connect(sub2);
mon.connect(sub3);
mon.run();

end
endmodule

Monitor declares queue of
analysis_if ports

Each subscriber's write() method
is called from the ap-queue

Each call to connect() method will
push_back another analysis_if

onto the ap-queue

More subscribers could be added to top
module without modifying monitor2 code

No change from Version 1

Common connect()
method to connect
mon to the sub1-3

objects

NEW

NEW

NEW

NEW

Common connect() method

of 126

Monitor & Subscribers
Simulation Output

121

Randomized trans1 values addr=f9 data=50
monitor: **BROADCAST** addr=f9 data=50
subscriber1: received addr=f9 data=50
subscriber2: received addr=f9 data=50
subscriber3: received addr=f9 data=50

Randomized trans1 values addr=e9 data=27
monitor: **BROADCAST** addr=e9 data=27
subscriber1: received addr=e9 data=27
subscriber2: received addr=e9 data=27
subscriber3: received addr=e9 data=27

...
mon

sub1 sub2 sub3

top

Each subscriber has seen the exact
same addr and data values that were

broadcast to all subscribers

of 126

class subscriber1 extends analysis_if;
virtual task write(trans1 t);
$display("subscriber1: ", "received addr=%2h data=%2h", t.addr, t.data);

endtask
endclass

Subscriber2 BUG
Version 3 - modifies transaction values

122

class subscriber3 extends analysis_if;
virtual task write(trans1 t);
$display("subscriber3: ", "received addr=%2h data=%2h", t.addr, t.data);

endtask
endclass

class subscriber2 extends analysis_if;
virtual task write(trans1 t);
$display("subscriber2: ", "received addr=%2h data=%2h", t.addr, t.data);

`ifdef BUG
t.addr = 8'hFF;
t.data = 8'h00;
$display("subscriber2: ", "set addr=%2h data=%2h", t.addr, t.data);

`endif

endtask
endclass

BUG: subscriber2 modifies the addr &
data of the broadcast transaction

subscriber1 has the original transaction
addr & data values

subscriber3 now sees the modified
transaction addr & data valuesmon

sub1 sub2 sub3

top

BUG

sub3 sees corrupted
transaction

NEVER modify the broadcast transaction !!

of 126

Monitor & Subscribers
BUG: Simulation Output

123

mon

sub1 sub2 sub3

top

BUG

sub3 sees corrupted
transaction Randomized trans1 values addr=f9 data=50

monitor: **BROADCAST** addr=f9 data=50
subscriber1: received addr=f9 data=50
subscriber2: received addr=f9 data=50
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

Randomized trans1 values addr=e9 data=27
monitor: **BROADCAST** addr=e9 data=27
subscriber1: received addr=e9 data=27
subscriber2: received addr=e9 data=27
subscriber2: set addr=ff data=00
subscriber3: received addr=ff data=00

...

Depending on how the subscribers are pushed onto
the ap - queue, sub1 might also see the bug

of 126

Transaction Copy() Method

• All subscribers receive a handle to the same broadcast transaction

• A subscriber should NEVER modify contents of the received transaction

• Any subscriber that modifies transaction contents MUST take a copy before
making modifications

124

of 126

Summary & Conclusions

• Analysis ports are ports that broadcast transactions to 0 or more destinations
• Each subscriber chain terminates with a uvm_analysis_imp and

corresponding write() method
• Subscribers should NEVER modify the broadcast transaction
• Subscribers need to use the transaction in 0-time

-OR-
• Subscribers need to take a local copy
• If a component has multiple imp-inputs, use the macro:

`uvm_analysis_imp_decl(SFX)

• The uvm_tlm_analysis_fifo has a built-in uvm_analysis_imp port
• Prove that the scoreboard analysis paths are working

This is described in the paper

Great feature for terminating an
analysis path in a scoreboard

DO NOT ASSUME that the analysis
paths are working correctly !!

125

of 126

Resources Summary

• Get a free Accellera login
www.accellera.org

• Register for free access to the DVCon 2017 and DVCon 2018 videos

• forums.accellera.org/

• Get a free IEEE login

• https://ieeexplore.ieee.org/document/7932212

• https://ieeexplore.ieee.org/document/8299595

126

Access the SystemVerilog and UVM Forums

Linked from
www.accellera.org/downloads/ieee

Downloading PDF documents requires IEEE login
(You can create a free IEEE login account)

To watch these presentations, go to:
videos.accellera.org/videos.html

1800.2-2017 - IEEE UVM

1800-2017 - IEEE SystemVerilog

Many great resources on this web site

of 126

IEEE 1800.2 UVM - Changes
Useful UVM Tricks & Techniques

Clifford E. Cummings
World Class Verilog, SystemVerilog & UVM Training

1639 E 1320 S, Provo, UT 84606
Voice: 801-960-1996

Email: cliffc@sunburst-design.com
Web: www.sunburst-design.com

Connect with Cliff
on Linked

Life is too short for bad
or boring training!

127

of 126

DVCon 2017 - UVM Features Described

14 - Introduction to IEEE and Backward Compatibility
15 - BCL compliance to the IEEE 1800.2 spec
16 - Implementations artifacts and additive but non-IEEE APIs
17 - Deprecation policy and roadmap
18 - Removal of pre-1.2 deprecated code - Motion pending
19 - APIs that changed from 1.2 to IEEE - Motion pending

Thomas Alsop - Intel Corp.

128

Slide #

Reference
Material

of 126

DVCon 2017 - UVM Features Described

28 - UVM Policy Classes - copy, compare, print, pack, record all have
policy classes

29 - uvm_policy - users can apply different printer or compare policy + many
accessor methods

30 - uvm_packer - new pack / unpack capabilities
31-32 - uvm_copier - signature of copy() has changed to allow uvm_copier
33-34 - uvm_comparer - provides new accessor methods
35-36 - uvm_printer - new printer knobs & accessor methods
37-39 - uvm_line_printer / uvm_table_printer / uvm_tree_printer
40 - uvm_recorder - new methods
41 - Summary of core utility policies

Srivatsa Vasudevan - Synopsys, Inc.

129

Slide #

Reference
Material

of 126

DVCon 2017 - UVM Features Described

43-45 - UVM factory now supports abstract objects (virtual classes)
47 - uvm_component - can turn off apply_config_settings()
49 - uvm_object - small modifications & new methods
50 - minor uvm_transaction modifications
51 - Removed from IEEE 1800.2 - Deemed as not standard worthy

uvm_comparator
uvm_algorithmic_comparator
uvm_in_order_comparator

53-54 - uvm_report_object - minor modifications
55 - uvm_report_server - UVM_FILE type change
56 - uvm_report_catcher - minor modifictions
58 - Callbacks now extend from uvm_callback - functions documented

Srivatsa Vasudevan - Synopsys, Inc.

130

Slide #

Reference
Material

of 126

DVCon 2017 - UVM Features Described

63 - Summary of TLM Mantis Items
68 - Register models - documentation enhanced / system level / dynamic
69 - Reg model unlock - models can now be unlocked & re-locked
70 - Register changes - virtual and non-virtual classes

Mark Glasser - NVIDIA Corporation

131

Slide #

Reference
Material

of 126

DVCon 2017 - UVM Features Described

76 - Details regarding Typical UVM Architecture
77 - Description of UVM Mechanics
81-105 - Description of VerifWorks Go2UVM package and capabilities

Srinivasan Venkataramanan - CVC Pvt., Ltd.

132

Slide #

Reference
Material

of 126

DVCon 2018 - UVM Features Described

3-7 - Accellera & IEEE UVM responsibilities
8 - Transitioning from UVM 1.2 to IEEE 1800.2 UVM
8 - `UVM_ENABLE_DEPRECATED_API to keep using UVM 1.2
9-12 - Deprecation notes and transitioning considerations
13 - Recommended Steps of Updating to IEEE 1800.2

Justin Refice - Nvidia

133

Slide #

Reference
Material

of 126

DVCon 2018 - UVM Features Described

17 - uvm_object - New UVM seeding / new methods for configuration and
policies

18 - do_execute_op - call-back to add flexibility in field operations
19 - Configuration considerations - field macros execute do_execute_op
21 - UVM Policy Classes - copy, compare, print, pack, record all have

policy classes that extend from uvm_policy
22 - Policy extensions and methods
23 - do_method() use model changes
24 - Standard method changes: compare() calls do_execute_op() calls

do_compare()
26-28 - copy() / do_copy() / copy_object() / uvm_copier example
29-31 - record() / do_record() / detail_extension / uvm_recorder

example

Mark Strickland - Cisco Systems Mark Peryer - Mentor, a Siemens Business

134

Slide #

Reference
Material

of 126

DVCon 2018 - UVM Features Described

32 - Scoreboards need to compare objects of differing types
33-35 - compare() / do_compare() / uvm_comparer / do_execute_op() with

scoreboard example
36 - pack() / unpack() - small enhancements
37- UVM printer policies now use uvm_printer_element &

uvm_printer_element_proxy

38-43 - JSON printer example with details

Mark Strickland - Cisco Systems Mark Peryer - Mentor, a Siemens Business

135

Slide #

Reference
Material

of 126

DVCon 2018 - UVM Features Described

45 - UVM abstract factory - can now register and override virtual classes
46-50 - Abstract UVM factory examples
51 - Pre-IEEE 1800.2 UVM initialization
52 - New IEEE 1800.2 reliable UVM initialization - describes

uvm_coresevice_t ::get() / uvm_init() / run_test()
53-56 - UVM deferred initialization examples
57-58 - uvm_run_test_callback / pre_run_test() / post_run_test() /

pre_abort()
59-62 - uvm_reg_block.lock_model() / unlock_model()
63 - Miscellaneous uvm_reg notes & changes including uvm_door_e

Uwe Simm - Cadence Design Systems

136

Slide #

Reference
Material

of 126

DVCon 2018 - UVM Features Described

65-66 - apply_config_settings() for `uvm_field_* macros user controllable
67-68 - set_local() replaces set_*_local() methods
69-71 - Callbacks now extend from uvm_callback - users can call

all_callbacks[$]
72-74 - Report severity is now UVM_NONE for uvm_report_error
76 - `uvm_do replaces all earlier `uvm_do_* macros
77 - `uvm_do_* deprecation notes

Srivatsa Vasudevan - Synopsys

137

Slide #

Reference
Material

	IEEE 1800.2 UVM - Changes�Useful UVM Tricks & Techniques
	New IEEE UVM Features
	Introduction
	References
	DVCon 2017 - UVM Features Described
	DVCon 2018 - UVM Features Described
	Where to Get Latest UVM BCL
	Most Obvious IEEE UVM 2017 Question
	Most Obvious IEEE UVM 2017 Question
	Most Obvious IEEE UVM 2017 Question
	Accellera DVCon Resources
	DVCon 2017 & 2018 Tutorials
	DVCon 2017 & 2018 Tutorials
	New UVM Features Will Be Shown
	Virtual Classes
	Virtual Classes
	Pure Virtual Methods
	Pure Virtual Methods
	Prior to Pure Virtual?
	Two Common Testbench Base Classes
	Virtual Classes in the Factory
	Virtual Classes in the Factory
	Testbench & Factory Access
	Testbench & Factory Access
	`uvm_do Macros
	`uvm_create, `uvm_send, `uvm_rand Macros
	New 1800.2 `uvm_do Commands
	UVM Comparator Classes
	Some of Cliff's favorite UVM topics
	Why Is UVM Hard To Learn?
	UVM Transaction Base Classes
	Transactions & Sequences
	Transaction Data
	Passing Transactions & Signals
	Standardized UVM Formatting
	Standard UVM Coding Style
	UVM Transactions Styles
	`uvm_object_utils Macro Usage
	Standard Transaction Methods
	Standard Transaction Methods
	copy() & compare() Usage
	Implementing Transaction Methods
	Standard Transaction Methods��
	Why Not Override �compare() Method?
	`uvm_object_utils(T)
	Overriding do_methods()
	 Standard Transaction Methods��
	User-Defined Transaction Class
	Transaction Class do_copy() Method
	Transaction Class do_copy() Method
	Upcasting & Downcasting Variable Names
	do_copy() & do_compare()
	Using Field Macros
		 Standard Transaction Methods��
	Using Field Macros
	Transaction with Field Macros
	`uvm_field Macros
	`uvm_field Macros�
	UVM Field Macro Flags
	UVM Field Macro Flags
	UVM Macro Flags
	Field Macro Flags
	Adding Field Macro Flags
	Efficiency Benchmarks
	Benchmarking Methodology
	Benchmarking Methodology
	Benchmark Results
	UVM Basic Transaction Objects
	UVM Transaction
	UVM Transaction
	Sequence: read_sequence
	Sequence: write_sequence
	Sequence: write_read
	`uvm_do Macros
	Summary of Rules
	Summary of Important Guidelines
	UVM Basic Message Commands
	Introduction
	UVM Basic Printing Guidelines
	UVM Message Facilities
	uvm_report_info/fatal* Messages
	`uvm_info/fatal* Macros
	UVM Messaging Macro Advantages
	convert2string()
	$sformat, $sformatf & $psprintf Commands
	UVM Message Verbosity
	UVM Message Verbosity
	Useful Debugging Trick
	Testbench & Factory Debugging
	Testbench & Factory Debugging
	UVM Documentation Errors
	Existing Documentation Problems
	Summary of Important Guidelines
	Section Agenda
	Important SystemVerilog Features
	Subscriber Satellite TV Analogy
	Analysis Port Connections
	Common UVM Components
	UVM Testbench Analysis Port Paths
	UVM Testbench Analysis Port Paths
	UVM Analysis Port Paths
	UVM Analysis Port Paths
	UVM Analysis Ports
	UVM Analysis Exports & Imps
	Common Analysis Port Connections
	TLM FIFOs - Definitions & Usage
	TLM FIFOs & Scoreboards
	uvm_tlm_fifo
	uvm_tlm_analysis_fifo
	Typical Scoreboard
	Typical Scoreboard
	Creating & Copying Transactions
	Comparing TLM FIFOs
	Ports & Exports
	Analysis Path Basics
	How Does UVM Work?
	Monitor with Multiple Subscribers
	Monitor & Subscribers
	Monitor & Subscribers
	Monitor & Subscribers
	Monitor & Subscribers
	Subscriber2 BUG
	Monitor & Subscribers
	Transaction Copy() Method
	Summary & Conclusions
	Resources Summary
	IEEE 1800.2 UVM - Changes�Useful UVM Tricks & Techniques
	DVCon 2017 - UVM Features Described
	DVCon 2017 - UVM Features Described
	DVCon 2017 - UVM Features Described
	DVCon 2017 - UVM Features Described
	DVCon 2017 - UVM Features Described
	DVCon 2018 - UVM Features Described
	DVCon 2018 - UVM Features Described
	DVCon 2018 - UVM Features Described
	DVCon 2018 - UVM Features Described
	DVCon 2018 - UVM Features Described

