
IDEs SHOULD BE AVAILABLE
TO HARDWARE ENGINEERS

TOO!

Author: Syed Daniyal Khurram, Horace Chan
Speaker: Syed Daniyal Khurram

Contribution
• Illustrates productivity benefits of using IDEs in keeping with the

demand of a SystemVerilog UVM TB
– Internal feature evaluation of four popular IDEs: DVT, Sigasi, SlickEdit,

SVEditor
• Analyzes application usability and addresses inhibitions towards IDE

adoption
– Helps eliminate/reduce application assessment costs

UVM (1.2) “UBus” example verification environment
will be used for feature demonstration purposes

Motivation
• “One tool to rule them all”
• Automation of code

development and
simplification of debug
for modern design
sizes

Verification
TB

Repository

Extensions

VCS
Server

Text
Editors

Compiler

Debug
logs

Simulator

Scripts

Outline

IDE Feature Overview

Code Navigation
Symbol Lookup

File Browsing

Class Browsing

Design Browsing

Reduce time spent on
understanding source code

and locating design
information!

Symbol Lookup :: Search by Definition

Jump from a symbol to
its declaration!

Localized to
workspace and not

just current file

Symbol Lookup :: Search by Reference

List all occurrences of the
symbol!

Localized to workspace, project or single
file

File Browsing

Visually
Copy/Paste,
Add, Delete
and Rename

files!

Class Browsing

Presents hierarchical view of object oriented
programming code!

Removes need
to open up

multiple
files/tabs to
understand

class
relationships

Design Browsing

Display
recursively all
instances of a

Verilog/SystemV
erilog module,
SystemVerilog

instances,
instances of
VHDL entitity

and VHDL
components!

Code Navigation :: Takeaways
• Symbol Lookup

– Push-button alternative to external/built-in search plugins such as ‘Grep’
• File Browsing

– File management through an easy to use interface
• Class Browsing

– Visualization of the hierarchy makes it easier to understand class-based TB
organization and relationships

• Design Browsing
– Design engineers benefit when analyzing external IP or during design audits.

Next to none prior knowledge of
the workspace/project hierarchy

required!

Code Development & Refactoring
Auto-Editing

Intelligent Refactoring

Code Collapse

Automate common programming
tasks through intelligent code

formatting and code prediction!
Contextual

Design
Awareness

Awareness
of Classes &

Functions

Awareness of
Modules,

Entities, Signals
& Connections

Awareness
of Standards

Auto-Editing

• Auto-completion

• Auto-
parametrization

• Inline Expansion

• Smart Indentation

Intelligent Refactoring

Resolves
symbol and

its references
first

Changes only relevant occurrences
of renamed element based on the

results!

Code Collapse

Selective
hiding or

displaying of
relevant code!

Highlights
functional

information
during code
reviews and

audits

Code Development & Refactoring ::
Takeaways

• Auto-Editing
– Solution to typical questions that arise during code development:

• What is the name of the method that you wish to use?
• What is a methods order of arguments?
• What are the possible values of an enumerated type?

• Intelligent Refactoring
– Code transformations that maintain the behavior of the design

• Especially handy when dealing with port related changes in design modules!
• Code Collapse

– Useful for masking irrelevant information

Enter the Macro

Macro Recording/Keyboard Macros

Macro Expansion

Automate repetitive actions
performed frequently while writing

code

Open pre-existing Macros in an
interactive window and trace line by

line for debug and analysis

Macro recording/Keyboard Macros

SlickEdit Pro
lets you create a
Macro simply by

recording a
series of user
interactions!

The recorded
Macro is saved
as proprietary
Slick-C source
code, and can
be re-opened
and modified

afterwards

Once recorded the Macro can
be saved and bound to a key

for ease of access

Macro Expansion

UVM Macros
can be

unwrapped line
by line and
analyzed

Macros:: Takeaways

• Macro Recording/Keyboard Macros
– Save time spent on typing re-use code
– Extend existing command functionality or add new commands e.g Macros to

display duplicate lines of text, file attributes etc

• Macro Expansion
– Expand and analyze :

• Proprietary simulator pre-processing code
• Macros included as part of a verification methodology standard such as UVM
• Macros created in a tool specific programming language such as Slick-C

Advanced Macro debug features such
as breakpoint insertion can be utilized
in IDEs that support compiler/simulator

integration capabilities

Emacs still reigns supreme in this category!
As macro programming in Emacs Lisp can
be remarkably powerful in the hands of an

experienced user

Advanced Features

Integration with UVM

Integration with Simulation Tools

Revision Control Integration

• Each IDE integrates with UVM
• Integration with popular compilers

and simulators through the use of
add-ons/licenses/tools & build
configuration

• Revision Control from within the IDE
• Eclipse based IDEs require plugins

e.g Subclipse
• SlickEdit Pro has inbuilt VCS support

IDE Integration with Tools and
Standards

• Additional UVM debug features available in DVT:
– UVM Factory queries
– UVM Templates
– UVM Browser & Sequence Tree

• Integration with simulation tools:
– External tools and build configuration in Eclipse based IDEs. However this

requires strenuous effort and may not work for all tools
– DVT : Add-on tool (DVTDebugger)
– Sigasi : Sigasi Studio Creator and higher

While UVM debug features are supported in
most advanced simulators available in the

market, they can only be used post-
compilation!

Refer to the product
website or the full paper

for a list of supported
simulators!

Revision Control Integration

All features common
to SVN can be used:
• Update files
• Add files
• Commit
• Check in(with

comments)/Check
out files

• Revert/Remove
files

“Diff”
against a file
or history,
and view
changes or
annotations
to your code
from within
the IDE!

Advanced Features:: Takeaways
• Integration with UVM

– Significant in modern ASIC verification
• Integration with simulation tools

– On the fly debug!
– Invoke compiler/simulator from within tool GUI and trace warnings/errors

to problematic source code
• Revision Control Integration

– Removes time spent switching between command line and text editor
– Visual ‘diff’ is powerful and interactive

Usability and Concerns

Usability and Concerns
• Learning Curve

– User-friendly and easy to pick-up by junior engineers
– Prior experience in using established IDEs(Eclipse, Visual Studio) reduces

training time
• Reduction of Tools

– Vast array of features in a centralized environment
– External plugins are supported

• Support
– Customer specific support available for all commercial IDEs

• Setup Flow
– Possibly the biggest adherence towards IDE adoption
– Quite simple actually with clear instructions

Conclusion
• There are tools!

– Established tools exist in the marketspace
– Choose what best fits your needs

• Worth your time!
– Invest to save time

• Less is more!
– Centralize your environment
– Reduce resource consumption

Questions?

A comprehensive summary of
features available per tool is

tabulated in the full paper as a
reference!

	IDEs SHOULD BE AVAILABLE TO HARDWARE ENGINEERS TOO!
	Contribution
	Motivation
	Outline
	IDE Feature Overview
	Code Navigation
	Symbol Lookup :: Search by Definition
	Symbol Lookup :: Search by Reference
	File Browsing
	Class Browsing
	Design Browsing
	Code Navigation :: Takeaways
	Code Development & Refactoring
	Auto-Editing
	Intelligent Refactoring
	Code Collapse
	Code Development & Refactoring :: Takeaways
	Enter the Macro
	Macro recording/Keyboard Macros
	Macro Expansion
	Macros:: Takeaways
	�Advanced Features�
	IDE Integration with Tools and Standards
	Revision Control Integration
	Advanced Features:: Takeaways
	Usability and Concerns
	Usability and Concerns
	Conclusion

