
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

[AMD Official Use Only - Internal Distribution Only]

IDeALS For All – Intelligent Detection and Accurate
Localization of Stalls

Pallavi Jesrani
Advanced Micro Devices, Inc., 2485 Augustine Drive, Santa Clara, CA 95054

Introduction IDeALS

IDeALS - Staggering unit level timeout checks when used in
higher level system environment

• Downstream unit may also supply some input.
• Accounting for all secondary/tertiary inputs may result in

shadowing of the RTL that can be a maintenance nightmare.
• Second-level measure to avoid any mis-categorization due to lack

of modelling of secondary/tertiary inputs.
• Staggered as per general flow of information.
• Relative relationship needs to be maintained for accurate

localization.

IDeALS - System Level Timeout

To capture any fails that may potentially fall through block
level timeout checks. Examples of this are:

• Deadlock scenarios - all the units are waiting on each
other.

• The system is waiting upon some external trigger to
make forward progress.

• Implementation limitations of unit level timeouts.

Implementation DUV

Implementation Details

Results - Accuracy

IDeALS – Results - Effectiveness

In-Progress and Future work

• Row => the bugs found by a specific unit timeout check.
• Column => the different units.
• The diagonal elements indicate the number of bugs where the

localization was accurate.

The number of RTL bugs found by a check versus the number of
verification bugs (bugs in the check itself).

OPTIONAL
LOGO HERE /proj/cb_regr_cba0_wa

As per the IDeALS
approach, a unit timeout fail
should be flagged only if:

• the unit has received
input from upstream units,

• it is not encountering any
back-pressure from
downstream unit(s),

• but it still is not producing
any output for a
predetermined (X) number
of cycles .

0 10000 20000 30000 40000 50000 60000

System

B4

B3

B2

B1

Timeout value in Clock Cycles

Bl
oc

k

IDeALS Timeout Value Configuration

Simplified high-level block diagram of the design under
verification (DUV). The DUV is the core engine of a deeply
pipelined, superscalar, out-of-order X86 microprocessor core.

• Iterative process – runtime configurability is invaluable
• Too small a timeout value can lead to increased chances of

false fails - progress is slow due to legitimate reasons but no
livelock or deadlock

• Too big of a value - sim failing with extremely generic fails
like simulation or job timeout fails. Also highly inefficient
since we are then wasting precious simulation cycles.

• Knowledge of individual blocks and system under test is
invaluable.

• Can start with the system level check and work our way
backwards.

• If the same unit level timeouts are also utilized in unit level
testbenches, we can leverage from those values as well.

Functional Defects

• EX retire stall check had a limitation whereby it was not
accounting for the lack of input coming in from the LS and
hence ended up finding some LS bugs in the process. This is
the reason for 40% LS bugs found by this check.

• Dynamic scaling of timeouts to avoid false positives
• Legitimate cases where forward progress is very slow – but not

stalled
• Need to communicate to downstream timeout checks as well

• Fine-Grained
• Refine approach to a specific flow within the unit/block

• Use in Emulation environment
• Checks can be implemented in synthesizable system verilog
• Helps increase the observability and visibility

Conclusion

Acknowledgements

B1
B2

B3

B4
SYS

Stall

• Deadlock
Processing is completely stopped as all components are waiting
on one another and there is no forward progress.

• Livelock
Same sequence of events is continuously repeated as processing
retries or loops back to an initial state without making any forward
progress.

Extremely challenging to debug or root cause in a post-silicon
environment. Need to detect all such defects in pre-silicon verification.

• High demands on modern pipelined systems lead to extremely
complex RTL designs

• This leads to greater number of Functional Defects
• This work focuses on the specific type of Functional Defects that

result in Stalls

Stalls - Detection

Stalls - Localization

• Increased Debug Efficiency.
• Visibility into health of design even before debug.
• Faster bug fix turnarounds.
• Faster design convergence.
• Fewer post silicon issues.

In this work, we presented the IDeALS approach to detect and localize
stalls in complex pipelined systems. We have seen promising results from
our implementation of this approach. This methodology has helped to:
• Increase Debug Efficiency.
• Provide more visibility into health of design even before debug.
• Reduce bug fix turnarounds.
• Hasten design convergence.
• Reduce number of post silicon issues.

Consider a system consisting of 4 Blocks named B1, B2, B3, and B4 as
shown above. The major flow of information/data is indicated by the
arrows from B1 to B2 and so forth. Each block can include a number of
pipeline stages.

Design Under Verification (DUV)

Narrowing down the
location of the RTL bug
to a specific block/unit/IP

The results presented in this paper have been obtained by the combined
effort of many talented engineers across multiple AMD locations.

IDeALS - Unit/Block level Timeouts

• We present the IDeALS approach for Intelligent Detection and
Accurate Localization of Stalls.

• It includes the following sections prefixed with IDeALS.
• We also present our implementation of this approach in our X86

microprocessor core design.

An IC stall would be flagged only if:
• IC was receiving input from BP in the form of predictions and not

waiting on getting a response from upstream units like a level 2
cache (L2) or a page translation (TLB) response from LSDC

• The instruction byte buffer in downstream DE unit is not full
• However, the IC still does not produce output in the form of valid fetch

packets to send downstream to DE in X number of cycles.

The relationship chosen for the different unit timeouts is as seen in
above figure following the general flow of information in the core engine
System level timeout was implemented as a Core level instruction stall.

ICBP LS EX DE
ICBP stall 88% 7% 4% 1%

LS stall 0 96% 2% 2%
EX retire stall 0 40% 50% 10%
Dispatch stall 25% 0% 0% 75%

Unit with RTL bug

TI
M

EO
U

T
CH

EC
K

IDeALS Implementation

Attribution
© 2019 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

	Slide Number 1

