HYBRID EMULATION: ACCELERATING SOFTWARE DRIVEN VERIFICATION AND DEBUG

Issac P Zacharia (Arm Ltd Cambridge, UK)

Jitendra Aggarwal (Arm Ltd Bangalore, India)

MOTIVATION TOWARDS HYBRID PLATFORM

- Debugging HW/SW issues using real OS Apps on FPGA is challenging due to low design visibility. It took more than 3 months to resolve.
- Complex real OS app issues could take weeks to generate the stimulus and reproduce at unit level simulation platforms.
- RTL GIC/IM and SW live debug is challenging in present platform setup.
- Issues reported in different verification platforms/tools typically are not cross reproducible.

PROPOSED METHODOLOGY & ADVANTAGES

- A high-performance transaction-level model of the CPU subsystem running on Virtual Platform with RTL for the rest of the SoC running on the emulator.
- Enables the software to execute at virtual platform speeds.
- Higher performance for software-driven hardware verification even when RTL for critical blocks isn’t available.
- Early architecture validation and software development.
- Easier platform upgradability and Much better design debug visibility.
- Supports different debug methods over FPGA platform such as waveform, Smart memory debug tools, memory dump, tarmac, capture replay, monitors etc.

HYBRID PLATFORM INTEGRATION

![Hybrid Platform Integration Diagram]

- Replaced RTL CPU and GIC with Arm Cortex A55 and GIC 600 fast model on the virtual platform.
- Converted RTL memory to smart memory to enable the CPU to access it via backdoor.
- Smart memory acts as shared memory which is visible to both virtual and RTL platforms.
- Integrated TLM bridges to facilitate the communication between virtual and RTL platform.
- CPU access the memory within the virtual platform and other peripherals in the RTL through TLM bridge connected to the CCI550.
- GPU access the memory through CCI550 bridge.

RUNTIME PERFORMANCE AND RESULTS

<table>
<thead>
<tr>
<th>Test</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux Boot</td>
<td>62 sec</td>
</tr>
<tr>
<td>Android 10</td>
<td>2640 sec</td>
</tr>
<tr>
<td>Debian Buster 11</td>
<td>185 sec</td>
</tr>
</tbody>
</table>

CONCLUSION AND NEXT STEPS

- Helped reproducing the hardware and software issues captured in FPGA platform which enables much better turnaround time for the debug and corresponding patch validation.
- Caters an effective co-ownership of FPGA based challenges in Software development, therefore it is certainly not a replacement of our existing FPGA platform.
- Observed significant gain with Hybrid usage in Emulator which led us to explore and deploy it on bigger ecosystems of Arm.

REFERENCES

Developer, Arm tools-and-software/development-boards/Juno-development-board