HYBRID EMULATION: ACCELERATING SOFTWARE
DRIVEN VERIFICATION AND DEBUG

Issac P Zacharia (Arm Ltd Cambridge, UK)
Jitendra Aggarwal (Arm Ltd Bangalore, India)
MOTIVATION TOWARDS HYBRID PLATFORM

Debugging HW/SW issues using real OS Apps on FPGA is challenging due to low design visibility. TRYM-3135 took more than 3 months to resolve.

Complex real OS App issues could take weeks to generate the stimulus and reproduce at unit level simulation platforms.

Mali® GPU HW and SW live debug is challenging in present platform setup.

Issues reported in different verification platforms/tools typically are not cross reproducible.
PROPOSED METHODOLOGY & ADVANTAGES

• A high-performance transaction-level model of the CPU subsystem running on Virtual Platform with RTL for the rest of the SoC running on the emulator
• Enables the software to execute at virtual platform speeds
• Higher performance for software-driven hardware verification even when RTL for critical blocks isn’t available
• Early architecture validation and software development
• Easier platform upgradability and Much better design debug visibility
• Supports different debug methods over FPGA platform such as waveform, Smart memory debug tools, memory dump, tarmac, capture replay, monitors etc
HYBRID PLATFORM INTEGRATION
PLATFORM INTEGRATION STAGES

- Replaced RTL CPU and GIC with Arm Cortex A55 and GIC 600 fast model on the virtual platform
- Converted RTL memory to smart memory to enable the CPU to access it via backdoor
- Smart memory acts as shared memory which is visible to both virtual and RTL platforms
- Integrated TLM bridges to facilitate the communication between virtual and RTL platform
- CPU access the memory within the virtual platform and other peripherals in the RTL through TLM bridge connected to the CCI550
Runtime Performance and Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux Boot</td>
<td>62 sec</td>
</tr>
<tr>
<td>Android 10</td>
<td>2640 sec</td>
</tr>
<tr>
<td>Debian Buster 11</td>
<td>185 sec</td>
</tr>
</tbody>
</table>
CONCLUSION AND NEXT STEPS

• Helped reproducing the hardware and software issues captured in FPGA platform which enables much better turnaround time for the debug and corresponding patch validation

• Caters an effective co-ownership of FPGA based challenges in Software development, therefore it is certainly not a replacement of our existing FPGA platform

• Observed significant gain with Hybrid usage in Emulator which led us to explore and deploy it on bigger ecosystems of Arm
Questions