
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Hybrid Approach to Testbench and Software Driven

Verification on Emulation
Debdutta Bhattacharya Ayub Khan

Mentor, A Siemens Business

Testbench Driven Verification in Emulation

Virtual testbench driven verification for SoCs can be

done on hardware emulation in various ways,

including running a virtual Testbench written in

C/C++, SystemC/UVM as a standalone executable or

on a simulator on a comodel server connected to the

emulator. Testbenches can also be synthesized along

with DUT and run on the emulator.

Virtual testbench based verification provides flexibility

in terms of -

• Running a variety of tests by changing testbench

stimulus

• Altering stimulus to find specific bugs

• Flexible debug in terms of stopping clocks,

checking or setting register values etc.

• Uploading waves for entire DUT for debug based

on signal triggers or time points

Transaction based communication between a Virtual

Testbench and hardware emulator often provides

50x-1000x speedup as compared to simulation

verification flows.

DMA in Testbench Based Verification

Certain software features can be very complex to

model in testbenches. One such example is Direct

Memory Access (DMA) -

• DMA enables CPU concurrency and boosts overall

system performance by handling large memory

operations through a DMA engine

• DMA engines are often multi-threaded, handling

multiple descriptors to write to or read large chunks

of memory at a time using queues

DMA applications running on a software stack which

handle complex DMA transactions are difficult to

model in testbench based verification.

Software Driven Verification in Emulation

Software verification in pre-silicon is enabled in

hardware emulation through the use of virtual CPU

emulators like Quick EMUlator (QEMU) or VirtualBox

or using a physical machine in ICE along with an

emulator. In a virtual setup, the platform consists of –

• Guest OS on CPU emulator like QEMU

• QEMU running on a host network connected to the

hardware emulator

• Synthesized DUT on hardware emulator

• Communication via protocol like PCIe using

comodelling infrastructure

Concurrent HW and SW Debug

For software development, this enables –

• Virtual environment for driver and application

development

• Application testing capabilities across OS

• Lab-like SW debug flows

Hybrid Approach to Testbench and SW Driven Verification

Blockwise Shift From Testbench to SW

A hybrid method for testbench based and software

based verification in emulation is proposed. One part

of the setup consists of single or multiple threads of a

testbench communicating to a synthesized DUT

running on the emulator. The second part of the setup

consists of a virtual machine like QEMU, running a

Guest OS. Both parts communicate among each

other via APIs and use the same protocol for SoC

configuration.

This approach has the following advantages –

• Software driver and application development with

real RTL starts early, months in advance to post-

silicon validation

• Eliminates need of modelling complex software

scenarios like DMA in testbenches. Re-use of

software blocks saves time and effort spent in

modelling these in testbenches

• Bugs are flushed out early by enabling early

software validation

• Improved corner-case testing is made possible

with real software configurations

• Overall project cycle is shorter with software in

better shape in pre-silicon verification

This setup enables software development for SoC

blocks in a modular fashion wherein parts of the

testbench responsible for configuration and providing

stimulus to a particular sub-block can be swapped

with corresponding software application running on

the virtual machine once ready.

Certain modern-day applications such as Software

Defined Networking (SDN) require an SoC to work

with a multitude of software profiles which are

configured by software stack running on a processor.

Verifying such an SoC in pre-silicon is challenging –

• Software is not ready early in the design cycle

• Software profiles need to be abstracted and used

for chip characterization in pre-silicon

A sample testbench for SDN switch verification is

shown -

A virtual software based verification flow on emulation

enables –

• Full capabilities of SW stack in pre-silicon.

Complex software can be written and run in Guest

OS running in QEMU, eg. DMA

• Simultaneous verification of hardware and

software by enabling the full debug capabilities of a

hardware emulator. Eg. –

– Waveform upload and viewing

– Enabling triggers to capture bugs

– Streaming live waveforms during tests

• Software debug using gdb or kernel messages in

QEMU

QEMU along with the testbench allows running

software applications which are complex and time-

consuming to model in testbench based verification,

eg. multi-threaded DMA applications

Testbench SW

int initialization_proc()

{

Block1_configure();

Block2_configure();

Block3_configure();

…

BlockN_configure();

}

int block_verification_routine()

{

block1_SW();

block2_SW();

}

