
HSI Issues – Fake News or Not? 
How Hardware/Software Interface Impacts Tape-Outs

1

Gary Stringham - Gary Stringham & Associates, LLC
Rich Weber - Semifore, Inc.

Jamsheed Agahi - Semifore, Inc.



Wilson Study: Increasing Respins

2

Source: Foster Harry, (2019) https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-
group-functional-verification-study/

https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-group-functional-verification-study/


Logic/Functional, Firmware Flaws

3

Source: Foster Harry, (2019) https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-
group-functional-verification-study/

https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-group-functional-verification-study/


Design Error, Specs Changed/Bad

4

Source: Foster Harry, (2019) https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-
group-functional-verification-study/

https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-group-functional-verification-study/


Improving HSI Will Reduce Respins
• Project Delays
• Chip Respins
• Cost Overruns
• Lost Productivity
• Inferior Quality

5



1 2 3 4 5 6 7
Principles

3
1

206 10

14

17
252285

42 47
54

58

63
7483

93 102
117

125135

146

157

163

184

195
4

Best Practices

The Seven Principles of Successful
Hardware/Software Interface Design

231



Have All Three
• Faster
• Better
• Cheaper

Fake News: Pick any two

Seven principles à Faster, Better, & Cheaper à Greater Profitability

7



Football or Football?

8



Principle #1 – Collaborate on the Design
• Fake News: “We don’t need 

the software team’s input”
• Requires pro-active 

participation on both sides
• Collaborate early
• An important collaborative 

tool: documentation
• Collaboration is the 

foundation of all other 
principles

9



#1 – Lessons
• Seventh Time’s a Charm –

Solve problems using a team 
of hardware & software 
engineers

• Permission to Drop – If 
hardware design request is 
risky, consult software 
engineers for alternatives

10



Principle #2 – Set and Adhere to Standards
• Formalize internal 

standards
• Stay true to industry 

standards
• Fake News: Customized 

standards

11



#2 – Lessons
• How to Ack an Interrupt – Design all 

interrupts where a write of a 1 acks
• Insufficient Documentation – Establish a 

standard and have a review process for 
all documents

12



Principle #3 – Balance the Load
• Fake News: “Let’s just let 

software handle this”
• HW & SW each have 

strengths and weaknesses
• Different products require 

different balance settings
• Proper balance improves 

performance, stability, and 
quality

13



#3 – Lessons
• Go, Go, Go – For bits that invoke a hardware 

task, hardware must clear it after software sets it
• Wait for How Long? – Provide indication to 

software that hardware is ready

14



Principle #4 – Design for Compatibility
• Fake News: “Software can 

easily accommodate this 
change”

• Permits any SW version to be 
paired up with any HW 
version (ideally)

• Designed for all but with only 
desired features enabled

• New versions paired with old 
versions won’t break

• Improves future productivity 

15



#4 – Lessons
• Remove the Unused Signal –

Don’t remove functionality 
because one target product 
does not need it; other 
products might

16



Principle #5 – Anticipate the Impacts
• Fake News: “Here’s a cool, 

new feature”
• Anticipate! Don’t just 

understand or prepare
• Don’t just avoid negative 

impact – bring in positive 
impact

• Collaborate to understand 
the impact 

17



#5 – Lessons
• New Chip Quickly – Limit changes to 

quickly produce a new version

18



Principle #6 – Design for Contingencies
• Problems will come up –

prepare for them
• Design in extra test and 

debug hooks, even if unlikely 
to be used

• Add extra registers for internal 
peek and poke access

• The few hooks that are used 
makes all hooks worth it

• Fake News: Remove test 
hooks

19



#6 – Lessons
• Artificial Signal Generator –

Include a hook to simulate 
external signals

• State of the State Machine –
Provide a register showing 
current state

20



Principle #7 – Plan Ahead
• Fake News: “There is never 

enough time to do it right, but 
there is always time to do it 
again.”

• Good decisions today pay off 
in the future without sacrificing 
the current product

• Put in a framework that will 
allow growth

• Modularity, abstraction, and 
reuse

• Do things right the first time 

21



#7 – Lessons
• This Version Has It All – Design 

the block with a superset of 
functionality

22



Successful Application of these 
Principles

23

Though cobbled together on the inside… it was a fully-functional and shippable product



The Seven Principles of Successful 
Hardware/Software Interface Design

1. Collaborate on the Design
2. Set and Adhere to Standards
3. Balance the Load
4. Design for Compatibility
5. Anticipate the Impacts
6. Design for Contingencies
7. Plan Ahead

24



FROM THE RTL TEAM'S PERSPECTIVE
Rich Weber Presents

25



Shiny, New Prototype

26



Software Bringing up Drivers

27



Didn't Work

28



Two Weeks of Imprisonment

29



Time, Money, and Market Share

30



Getting 
products out 
sooner is better 
than later. 

31



Why Was I Imprisoned?

32



A Typo

33



We Had Home Grown Tools.

34



To Stop Manual Entry

35



But …

36



Software Team Didn't Use It

37



Need the 
right tool to 
produce the 
right outputs.

38



Homebrew Automation Didn't Solve 
Our Problem. 

39



You'd Think We'd 
Learn?

40



Chip Design in the Wild

41



Software Wanted More Drivers

42



Drivers Couldn't Be Created

43



It Required A 
Respin

44



Time, Money, and Market Share

45



We Finally 
Learned

46



Single
Executable 
Source for 
Address 

Map

47



48



Talk with the Software Team

49



Use Structures That Help

50



Use Arrays

51



52

Will The Industry's 
Standards Save Us?



Standards Involving HSI

53

Accellera SystemRDL 2.0 
Allows RTL designers to capture RTL and software semantics

IEEE 1685-2014 IP-XACT
Passes Address Map information between IP providers and design teams

IEEE 1800.2-2017 UVM 
Class support for Address Map structures to benefit the verification team



Where Standards Fall Short

54



Avoid the Anti-Standard

55



What About Scripts?

56



Be Wary of Homebrew Automation 

57



And Open to Commercial Tools

58



CSRCompiler
• 14 years of Industry Validation
• Designs with over four million registers

59



FROM THE VERIFICATION TEAM'S PERSPECTIVE
Jamsheed Agahi Presents

60



61

Software Hardware

Verification



Reduce HSI verification impact on schedule

62



One HSI,
Multiple Disciplines

63

HSI



Verification Engineer’s Role

• Design the testbench
• Write sequences/tests

64



65



66

Software Hardware

Verification



Understand Cost Impact - Software

67



Understand Cost Impact - Software

Minimize software impact on 
tape-out

• How software interacts 
with the HSI

• Discover HSI issues 
early

• Simplify the HSI

68



69

Software Hardware

Verification



Understand Cost Impact - Verification
Minimize cost and impact on tape-
out

• Adopt a standard 
methodology – UVM

• Automate generation of 
register map model

• Automate generation of the 
HSI documentation

• Focus on verification, not tool 
development

70



Be Collaborative

• Participate in architectural 
discussions

• Understand the bigger 
picture

• Be aware of product 
evolution

71



72

Reuse
Modularization
Abstraction



73

Software Hardware

Verification



Discuss HSI verification plan with the 
software team

74



Be Bold - Request Changes

• Request simplifications to the 
HSI

• Keep out features not 
supported by standard 
verification methodologies 
(UVM)

• Visibility and debug hooks

75



Keep Unnecessary Changes Out!

• Register offsets in a block
• Field positions in a register

76


