

HSI Issues – Fake News or Not?

How Hardware/Software Interface Impacts Tape-Outs

Gary Stringham - Gary Stringham & Associates, LLC Rich Weber - Semifore, Inc. Jamsheed Agahi - Semifore, Inc.

Wilson Study: Increasing Respins

ASIC: Number of Required Spins Before Production

Source: Foster Harry, (2019) <u>https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-group-functional-verification-study/</u>

Logic/Functional, Firmware Flaws

60% 2012 2014 50% 2016 2018 Design Projects 0% LOGIC OR FUNCTIONAL CLOCKING TUNING ANALOG CROSSTALK POWER MIXED-SIGNAL YIELD OR TIMING – PA TOO SLOW FIRMWARE 4ING – PATH IR DROPS OTHER CIRCUIT CONSUMPTION INTERFACE RELIABILITY TOO FAST Type of ASIC Flaws Contributing to Respin * Multiple answers possible Source: Wilson Research Group and Mentor, A Siemens Business, 2018 Functional Verification Study © Mentor Graphics Corporation Mentor

ASIC: Type of Flaws Contributing to Respin

Source: Foster Harry, (2019) <u>https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-group-functional-verification-study/</u>

Design Error, Specs Changed/Bad

ASIC: Root Cause of Functional Flaws

systems initiative

Source: Foster Harry, (2019) <u>https://blogs.mentor.com/verificationhorizons/blog/2019/03/13/part-12-the-2018-wilson-research-group-functional-verification-study/</u>

Improving HSI Will Reduce Respins

- Project Delays
- Chip Respins
- Cost Overruns
- Lost Productivity
- Inferior Quality

The Seven Principles of Successful Hardware/Software Interface Design

Have All Three

- Faster
- Better
- Cheaper

Fake News: Pick any two

Seven principles \rightarrow Faster, Better, & Cheaper \rightarrow Greater Profitability

Principle #1 – Collaborate on the Design

- Fake News: "We don't need the software team's input"
- Requires pro-active participation on both sides
- Collaborate early
- An important collaborative tool: documentation
- Collaboration is the foundation of all other principles

#1 – Lessons

- Seventh Time's a Charm Solve problems using a team of hardware & software engineers
- Permission to Drop If hardware design request is risky, consult software engineers for alternatives

Principle #2 – Set and Adhere to Standards

- Formalize internal standards
- Stay true to industry standards
- Fake News: Customized standards

#2 – Lessons

- How to Ack an Interrupt Design all interrupts where a write of a 1 acks
- Insufficient Documentation Establish a standard and have a review process for all documents

Principle #3 – Balance the Load

- Fake News: "Let's just let software handle this"
- HW & SW each have strengths and weaknesses
- Different products require different balance settings
- Proper balance improves performance, stability, and quality

#3 – Lessons

- Go, Go, Go For bits that invoke a hardware task, hardware must clear it after software sets it
- Wait for How Long? Provide indication to software that hardware is ready

Principle #4 – Design for Compatibility

- Fake News: "Software can easily accommodate this change"
- Permits any SW version to be paired up with any HW version (ideally)
- Designed for all but with only desired features enabled
- New versions paired with old versions won't break
- Improves future productivity

#4 – Lessons

 Remove the Unused Signal – Don't remove functionality because one target product does not need it; other products might

Principle #5 – Anticipate the Impacts

- Fake News: "Here's a cool, new feature"
- Anticipate! Don't just understand or prepare
- Don't just avoid negative impact – bring in positive impact
- Collaborate to understand the impact

#5 – Lessons

 New Chip Quickly – Limit changes to quickly produce a new version

Principle #6 – Design for Contingencies

- Problems will come up prepare for them
- Design in extra test and debug hooks, even if unlikely to be used
- Add extra registers for internal peek and poke access
- The few hooks that are used makes all hooks worth it
- Fake News: Remove test hooks

#6 – Lessons

- Artificial Signal Generator Include a hook to simulate external signals
- State of the State Machine Provide a register showing current state

Principle #7 – Plan Ahead

- Fake News: "There is never enough time to do it right, but there is always time to do it again."
- Good decisions today pay off in the future without sacrificing the current product
- Put in a framework that will allow growth
- Modularity, abstraction, and reuse
- Do things right the first time

#7 – Lessons

 This Version Has It All – Design the block with a superset of functionality

Though cobbled together on the inside... is

it was a fully-functional and shippable product

The Seven Principles of Successful Hardware/Software Interface Design

- 1. Collaborate on the Design
- 2. Set and Adhere to Standards
- 3. Balance the Load
- 4. Design for Compatibility
- 5. Anticipate the Impacts
- 6. Design for Contingencies
- 7. Plan Ahead

Rich Weber Presents

FROM THE RTL TEAM'S PERSPECTIVE

Shiny, New Prototype

Software Bringing up Drivers

Didn't Work

Two Weeks of Imprisonment

Time, Money, and Market Share

Getting products out sooner is better than later.

Why Was I Imprisoned?

A Typo

We Had Home Grown Tools.

To Stop Manual Entry

But ...

Software Team Didn't Use It

Need the right tool to produce the right outputs.

Homebrew Automation Didn't Solve Our Problem.

You'd Think We'd Learn?

Chip Design in the Wild

Software Wanted More Drivers

It Required A Respin

Time, Money, and Market Share

We Finally Learned

Single Executable Source for Address Map

Talk with the Software Team

Use Structures That Help

Will The Industry's Standards Save Us?

Standards Involving HSI

Accellera SystemRDL 2.0

Allows RTL designers to capture RTL and software semantics

IEEE 1685-2014 IP-XACT

Passes Address Map information between IP providers and design teams

IEEE 1800.2-2017 UVM

Class support for Address Map structures to benefit the verification team

Where Standards Fall Short

Avoid the Anti-Standard

What About Scripts?

Be Wary of Homebrew Automation

And Open to Commercial Tools

CSRCompiler

- 14 years of Industry Validation
- Designs with over four million registers

Jamsheed Agahi Presents

FROM THE VERIFICATION TEAM'S PERSPECTIVE

2020 DESIGN AND VERIFICATION Reduce HSI verification impact on schedule

CONFERENCE AND EXHIBI

One HSI, Multiple Disciplines

Verification Engineer's Role

- Design the testbench
- Write sequences/tests

Understand Cost Impact - Software

Understand Cost Impact - Software

Minimize software impact on tape-out

- How software interacts with the HSI
- Discover HSI issues early
- Simplify the HSI

Understand Cost Impact - Verification

Minimize cost and impact on tapeout

- Adopt a standard methodology – UVM
- Automate generation of register map model
- Automate generation of the HSI documentation
- Focus on verification, not tool development

Be Collaborative

- Participate in architectural discussions
- Understand the bigger picture
- Be aware of product evolution

Discuss HSI verification plan with the software team

Be Bold - Request Changes

- Request simplifications to the HSI
- Keep out features not supported by standard verification methodologies (UVM)
- Visibility and debug hooks

Keep Unnecessary Changes Out!

Field positions in a register

