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What’s UPF?

 UPF is the ultimate power reduction methodology for

– design, verification and implementation today. 

 UPF provides the concepts and the artifacts of 

 Power management architecture, 

 Power aware verification methodologies and 

 Low power implementation mechanism. 

 However, there are different versions of UPF available 

today!

 UPF 1.0 (UPF Accellera 2007) 

 UPF 2.0 (IEEE 1801-2009)

 UPF 2.1 (IEEE 1801-2013)

 UPF 3.0 (IEEE 1801-2015)

 UPF 3.1 (IEEE 1801-2019) 

But the Question is Why? 

1. New release do not ‘totally’ obsoletes previous 

releases.  

2. Verification and implementation tools supports 

different variations of UPF for different reasons?

What are the Problems with Macros?

Soft Macros

 Soft Macro are designed in synthesizable RTL and 

part of a larger RTL subtree before implementation

 Self-contained UPF is mandatory for implementation 

- This is to accurately model the outside environment 

of SM based on the internal power supplies. 

- Because implementation is hierarchical but 

verification requires full SoC level flat view

 UPF perspective, SM is RTL and associated with the 

UPF attribute {UPF_is_soft_macro TRUE}

 UPF accompanied with a SM must be complete, 

define its own top level power domain with 

create_power_domain -elements {.} is_atomic

commands 

Hard Macros

 Hard Macro are already synthesized, or 

placed&routed

 HM are silicon proven and comes with pre-defined 

UPF and pre-verified at IP (block) level.

(a) .v behavioral model or GL netlist, lib and UPF 

with own top power domain defined 

create_power_domain -elements {.}.

(b) .v behavioral model or GL netlist, .lib and UPF 

without own top level power domain

(c) .v behavioral model or GL netlist and .lib

 UPF perspective, HM is IP block instantiated in the 

design with attribute {UPF_is_hard_macro TRUE} or 

<is_macro_cell:true;>

 Only the supplies, IO pins and ports of HM are visible 

or accessible for integration and verification.

PA Soft Macro Verification

 Power domain of SM created with atomicity signifies 

domain can be merged but cannot be split during 

implementation. 

 Contrarily, power model defined within begin ~ end or 

define_power_model {} and instantiated in a design 

with {UPF_is_soft_macro TRUE} may also represent a 

soft macro. 

 The rest – just follow the boundary condition

 Even for SM the terminal boundary conditions apply

 SM instantiated in ‘tb.top_inst.I2.X5.Y5’ 

 Atomic power domain PD2 with define_power _model

 Reports/wave from simulation results

 Power domain status results

PA Hard Macro Verification

Looking Back

 Standard SoC ‘design cores’ comes first and ‘sub-

system’ integration follows these cores

 Depending on Spec and requirements, the ‘cores’ 

could be Hard or Soft macros. 

Macro & Verification Env Reuse

 Boundary conditions and constraints allows to reuse 

the verified hard macros across different projects. 

 Terminal boundary = power domain boundary for both 

HM & SM, plays significant roles PA verification.

 Developing dynamic custom verification env

 Populating UPF objects with find_object tracing 

and traversing through HDL for objects. 

 Remember, find_object for source or sink supplies for 

a particular signal will returns different results at ‘core’ 

and at ‘SoC’ level because of terminal boundary

 Once these complexities are understood – reusing the 

macros and verification env become simple

For Soft Macros 

- UPF is mandatory to model the outside env view

- Implementation is hierarchical but verification requires 

full SoC level flat view. 

 This expose conflict for implementation Vs verification

 For Hard macros

– While implementation - do not use UPF even though 

they are power aware and contains isolation, power 

switch, power states etc. internally. 

– While delivering – they are usually HDL behavioral 

model accompanies with Liberty libraries. 

Liberty defines only few  power architecture/interface 

characteristics like related supply on logic/pg pins.

To overcome gaps between physical 

interpretations, potential conflict verification and 

implementation – we need to understand

What are minimum boundary parameters – mandatory 

to integrate, verify and reuse macros with the entire 

system level design? 

In Practice 

 SM comes only with power management constraints 

 HM comes with pre-defined UPF and 

 Both are pre-verified at IP (block) level. 

Hence – objectives with IPs for implementation and 

verification and reuse are

(1) Connecting the IP to proper supplies, 

(2) Ensuring power boundary, 

(3) Protecting the boundary with proper strategies and 

(4) Finally verify power states or power cycles with the 

entire system level design becomes mandatory.

How to Resolve Macro Problems I

Hard & Soft Macros Integrated in SoC 

How to Resolve Macro Problems II …cont

 Know the boundary condition clearly:

 Boundary 'create_power_domain PD -elements {.} 

-is_atomic‘ Vs  begin /end /define /apply_power

_model,  

 Terminal boundary – hard stop of everything!

 Global supply net can’t cross a terminal boundary

 Parent context’s power intent have no affect across a 

terminal boundary

 UPF of an ancestor context can’t contains any UPF 

artifacts of the child side of terminal boundary

 e.g. power states, refinements of states, connection

 All IO Ports treated as driver/receiver supply

 Parent context (output driver/ input receiver supply)

 Macro context (input driver / output receiver supply) 

 When UPF is missing!

 Anonymous power domain created around Macro 

with primary supply from parents

 When Hard macro not specified in –elements{} list 

of any power domain

 Anonymously created domain boundary implies all 

terminal boundary conditions

How to Resolve Macro Problems III …cont

 Another important verification parameter is corruption

 set_simstate_behavior <ENABLE | SIMSTATE_ONLY | 

PORT_CORR_ONLY | DISABLE>

 Corruption semantics based on set_simstate_behavior 

ENABLE + Soft (or) + Hard Macro & Liberty

 Both - port & simstate corruption semantics applies

 When SIMSTATE_ONLY + PORT_CORR_ONLY -

both enable or

 When SIMSTATE_ONLY enable but

PORT_CORR_ONLY disable or

 set_simstate_behavior DISABLE -models

 Strategy inside macros – Retention, Isolation –location 

fanout – Applies accordingly

 Hierarchical Macro domain – Not allowed

 For Anonymous domain - Tool implicit connects HM PG 

pins to parent domain primary – domain primary 

corruption applies

 Power domain of HM created with hard boundary

 Whether with create_power_domain or power model 

defined within begin ~ end or define_power_model {}

and instantiated in a design with {UPF_is_hard_macro

TRUE} may also represent a soft macro. 

 The rest – just follow the boundary condition

 Particularly for HM the terminal boundary conditions 

makes it pure block box

 Which makes How to Resolve Macro Problems III

difficult

 HM named ‘Hmacro’  instantiated in 

‘tb.top_inst.Hmacroinst’ 

 Power domain with define_power_model {}

 Reports results (where simulation consider power model 

as HM cell) 

 Power domain status, variables are also shown
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Represent PD Boundary

Predominant Factors Affecting DVIF

The extents of power domain boundary Integration, Verification, Implementation

Terminal boundary Implementation

Ancestor-descendant relations Verification, Implementation

Power intent confinement Verification, Implementation

Driver-receiver or related supply contexts Integration, Verification, Implementation

Power states expectation Integration, Verification

Simulation state behavior Verification

Corruption semantics etc. Verification

Flat Vs Hierarchical design Integration, Verification, Implementation


