
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

How UPF 3.1 Reduces the Complexities of Reusing PA Macros
Madhusudhana Reddy Lebaka, Abraham Guizer, and Progyna Khondkar,

Senior Staff Engineer, Senior Application Engineer, Senior Product Engineer, Mentor A Siemens Business

What’s UPF?

 UPF is the ultimate power reduction methodology for

– design, verification and implementation today.

 UPF provides the concepts and the artifacts of

 Power management architecture,

 Power aware verification methodologies and

 Low power implementation mechanism.

 However, there are different versions of UPF available

today!

 UPF 1.0 (UPF Accellera 2007)

 UPF 2.0 (IEEE 1801-2009)

 UPF 2.1 (IEEE 1801-2013)

 UPF 3.0 (IEEE 1801-2015)

 UPF 3.1 (IEEE 1801-2019)

But the Question is Why?

1. New release do not ‘totally’ obsoletes previous

releases.

2. Verification and implementation tools supports

different variations of UPF for different reasons?

What are the Problems with Macros?

Soft Macros

 Soft Macro are designed in synthesizable RTL and

part of a larger RTL subtree before implementation

 Self-contained UPF is mandatory for implementation

- This is to accurately model the outside environment

of SM based on the internal power supplies.

- Because implementation is hierarchical but

verification requires full SoC level flat view

 UPF perspective, SM is RTL and associated with the

UPF attribute {UPF_is_soft_macro TRUE}

 UPF accompanied with a SM must be complete,

define its own top level power domain with

create_power_domain -elements {.} is_atomic

commands

Hard Macros

 Hard Macro are already synthesized, or

placed&routed

 HM are silicon proven and comes with pre-defined

UPF and pre-verified at IP (block) level.

(a) .v behavioral model or GL netlist, lib and UPF

with own top power domain defined

create_power_domain -elements {.}.

(b) .v behavioral model or GL netlist, .lib and UPF

without own top level power domain

(c) .v behavioral model or GL netlist and .lib

 UPF perspective, HM is IP block instantiated in the

design with attribute {UPF_is_hard_macro TRUE} or

<is_macro_cell:true;>

 Only the supplies, IO pins and ports of HM are visible

or accessible for integration and verification.

PA Soft Macro Verification

 Power domain of SM created with atomicity signifies

domain can be merged but cannot be split during

implementation.

 Contrarily, power model defined within begin ~ end or

define_power_model {} and instantiated in a design

with {UPF_is_soft_macro TRUE} may also represent a

soft macro.

 The rest – just follow the boundary condition

 Even for SM the terminal boundary conditions apply

 SM instantiated in ‘tb.top_inst.I2.X5.Y5’

 Atomic power domain PD2 with define_power _model

 Reports/wave from simulation results

 Power domain status results

PA Hard Macro Verification

Looking Back

 Standard SoC ‘design cores’ comes first and ‘sub-

system’ integration follows these cores

 Depending on Spec and requirements, the ‘cores’

could be Hard or Soft macros.

Macro & Verification Env Reuse

 Boundary conditions and constraints allows to reuse

the verified hard macros across different projects.

 Terminal boundary = power domain boundary for both

HM & SM, plays significant roles PA verification.

 Developing dynamic custom verification env

 Populating UPF objects with find_object tracing

and traversing through HDL for objects.

 Remember, find_object for source or sink supplies for

a particular signal will returns different results at ‘core’

and at ‘SoC’ level because of terminal boundary

 Once these complexities are understood – reusing the

macros and verification env become simple

For Soft Macros

- UPF is mandatory to model the outside env view

- Implementation is hierarchical but verification requires

full SoC level flat view.

 This expose conflict for implementation Vs verification

 For Hard macros

– While implementation - do not use UPF even though

they are power aware and contains isolation, power

switch, power states etc. internally.

– While delivering – they are usually HDL behavioral

model accompanies with Liberty libraries.

Liberty defines only few power architecture/interface

characteristics like related supply on logic/pg pins.

To overcome gaps between physical

interpretations, potential conflict verification and

implementation – we need to understand

What are minimum boundary parameters – mandatory

to integrate, verify and reuse macros with the entire

system level design?

In Practice

 SM comes only with power management constraints

 HM comes with pre-defined UPF and

 Both are pre-verified at IP (block) level.

Hence – objectives with IPs for implementation and

verification and reuse are

(1) Connecting the IP to proper supplies,

(2) Ensuring power boundary,

(3) Protecting the boundary with proper strategies and

(4) Finally verify power states or power cycles with the

entire system level design becomes mandatory.

How to Resolve Macro Problems I

Hard & Soft Macros Integrated in SoC

How to Resolve Macro Problems II …cont

 Know the boundary condition clearly:

 Boundary 'create_power_domain PD -elements {.}

-is_atomic‘ Vs begin /end /define /apply_power

_model,

 Terminal boundary – hard stop of everything!

 Global supply net can’t cross a terminal boundary

 Parent context’s power intent have no affect across a

terminal boundary

 UPF of an ancestor context can’t contains any UPF

artifacts of the child side of terminal boundary

 e.g. power states, refinements of states, connection

 All IO Ports treated as driver/receiver supply

 Parent context (output driver/ input receiver supply)

 Macro context (input driver / output receiver supply)

 When UPF is missing!

 Anonymous power domain created around Macro

with primary supply from parents

 When Hard macro not specified in –elements{} list

of any power domain

 Anonymously created domain boundary implies all

terminal boundary conditions

How to Resolve Macro Problems III …cont

 Another important verification parameter is corruption

 set_simstate_behavior <ENABLE | SIMSTATE_ONLY |

PORT_CORR_ONLY | DISABLE>

 Corruption semantics based on set_simstate_behavior

ENABLE + Soft (or) + Hard Macro & Liberty

 Both - port & simstate corruption semantics applies

 When SIMSTATE_ONLY + PORT_CORR_ONLY -

both enable or

 When SIMSTATE_ONLY enable but

PORT_CORR_ONLY disable or

 set_simstate_behavior DISABLE -models

 Strategy inside macros – Retention, Isolation –location

fanout – Applies accordingly

 Hierarchical Macro domain – Not allowed

 For Anonymous domain - Tool implicit connects HM PG

pins to parent domain primary – domain primary

corruption applies

 Power domain of HM created with hard boundary

 Whether with create_power_domain or power model

defined within begin ~ end or define_power_model {}

and instantiated in a design with {UPF_is_hard_macro

TRUE} may also represent a soft macro.

 The rest – just follow the boundary condition

 Particularly for HM the terminal boundary conditions

makes it pure block box

 Which makes How to Resolve Macro Problems III

difficult

 HM named ‘Hmacro’ instantiated in

‘tb.top_inst.Hmacroinst’

 Power domain with define_power_model {}

 Reports results (where simulation consider power model

as HM cell)

 Power domain status, variables are also shown

Hard Macro Core

Soft Macro Core

PD_SoC

PD_Sub1

Hard Macro Core

Hard Macro Core

PD_Sub2Hard Macro Core

Soft Macro Core

Soft Macro Core

Hard Macro Core

PD_HM1

PD_SM1

PD_HM

PD_HM

PD_SM

PD_SM

PD_HM2

PD_HM22

Represent PD Boundary

Predominant Factors Affecting DVIF

The extents of power domain boundary Integration, Verification, Implementation

Terminal boundary Implementation

Ancestor-descendant relations Verification, Implementation

Power intent confinement Verification, Implementation

Driver-receiver or related supply contexts Integration, Verification, Implementation

Power states expectation Integration, Verification

Simulation state behavior Verification

Corruption semantics etc. Verification

Flat Vs Hierarchical design Integration, Verification, Implementation

