
How To Verify Encoder And Decoder Designs

Using Formal Verification

Jin Hou, Mentor-A Siemens Business, Fremont, CA, USA (jin_hou@mentor.com)

I. INTRODUCTION

Encoders and decoders are used a lot in communication systems such as telecommunication, networking, etc.

Encoders encrypt data before transmission, and decoders decrypt data at the receiver side. Traditionally encoder and

decoder circuits are verified with simulation. Verification engineers have to write lengthy simulation testbenches for

generating data vectors, which can be time-consuming. No matter how good the testbenches are, it is impossible to

cover all vectors in simulation. Considering the encoder and decoder that can correct random faults, it is even harder

for simulation to verify the error-correction function since it cannot cover all errors happening at any bit at any

random time. The traditional simulation method is not sufficient for verifying encoders and decoders.

This paper will discuss two new methods based on formal verification for verifying encoders and decoders. One

way is using formal property checking, and the other is using formal sequential logic equivalence checking (SLEC).

Formal verification is based on a mathematical representation and exhaustive algorithmic techniques. For using

formal verification tools, users only need to write simple setup scripts to run formal verification tools and don’t need

simulation testbenches. Formal tools can automatically consider all possible input values and sequences. By

applying the non-deterministic technique, formal tools can consider all random faults to verify the correction

function of encoders and decoders.

This paper will use the BCH encoder and decoder IP core in the Opencore public domain as an example to

demonstrate how to use two different formal methods to verify encoders and decoders. The BCH encoder and

decoder IP core can detect and correct up to 2-bit random errors. When random 1-bit or 2-bit errors happen on the

transmission line from ENC to DEC, it should detect the error and set output error_detected to 1, and correct the

error such that the output data dout should be the same as the original data din. The structure of the circuit is as

follows.

Figure 1. The structure of the BCH encoder and decoder design

II. HOW TO VERIFY BCH ENCODER AND DECODER USING PROPERTY CHECKING

For using property checking, users need to write assertions representing design functions. Property checking

verifies the assertions against the design using formal analysis. For verifying the encoder and decoder, verifying

them separately from each other is not good since it is hard to express the encryption function and decryption

function in assertions. Instead, verifying the overall functions of the circuit is much easier. The properties are listed

below.

- When there is no error, dout should be the same as din and error_detected should be 0.

- When 1-bit or 2-bits random errors are happening on the lines to DEC inputs, the errors can be detected,

and error_detected should be 1.

- When 1-bit or 2-bits random errors are happening on the lines to DEC inputs, the errors can be corrected,

and dout should be the same as din.

One important part of verifying the BCH encoder and decoder circuit is how to represent the random errors

happening on the data transmission lines to DEC inputs. Formal tools have a unique feature that they can

automatically drive random values to free inputs or undriven wires and also consider all values for them at once.

This unique feature is called as Non-Determinism (ND) technique. The ND technique is used to insert random

errors.

Figure 2. Verifying the BCH ECC design using property checking

An undriven wire foo is created for the purpose of controlling the error insertion. Besides, a tool directive netlist

cutpoint of Questa PropCheck that can force a value to internal signals is used to insert errors under the control of

foo. When a bit of foo is 1, one data transmission line is inserted an error by the tool directive. Each data

transmission line is controlled by a corresponding bit of foo. The script to insert random errors is in the

insert_errors.do file as follows.

Figure 3. The insert_errors.do file for injecting random errors

The netlist cutpoint directive forces the signal slice to the value of the driver only when the condition is true.

Figure 4 shows the corresponding change in the circuit when using netlist cutpoint. In the above script, the driver is

the opposite value of the original signal slice that means the error happens. The condition is foo[i] that selects the bit

of d_syn or d_din for injecting a fault. Since foo is an undriven wire, formal can consider all of its values at once.

Thus all random errors can be inserted into the transmission lines {d_syn, d_din} and analyzed by formal analysis.

set DATA_WIDTH 16
set ECC_WIDTH 10
set WIDTH [expr $DATA_WIDTH + $ECC_WIDTH]
Insert random errors to {d_syn, d_din}
for {set i 0} {$i < $WIDTH } {incr i} {
 if {$i < $DATA_WIDTH} {
 netlist cutpoint d_din\[$i\] -cond (foo\[$i\]) -driver ~din\[$i\]
 } else {
 netlist cutpoint d_syn\[[expr {$i-$DATA_WIDTH}]\] -cond (foo\[$i\]) \
 -driver ~e_syn\[[expr {$i-$DATA_WIDTH}]\]
 }
}

Figure 4. The effect of the netlist cutpoint directive

The properties of the encoder and decoder circuit can be written in SVA or Questa PropCheck tool directives.

The SVA version is shown below. The number of bits in foo that are 1 represents the number of errors inserted.

When $countones(foo) is 0, no error is inserted, and the error_detected signal should be 0. When $countones(foo) is

1 or 2, the error_detected signal should be 1. When $countones(foo) is less or equal to 2, the errors can be corrected

such that the dout signal should be the same value of din.

Figure 5. SVA assertions for verifying the BCH ECC design

The script to run Questa PropCheck is as follows. The insert_errors.do file has the tool directives to insert errors.

Figure 6. The script to run Questa PropCheck

Questa PropCheck took 20 seconds to finish run for verifying the ECC ciruit for the data width equal to 16 and

proved all three properties, i.e., all properties were true for all input data values and all random 1-bit and 2-bit errors

Figure 7. The results from Questa PropCheck

The tool could also generate sanity check waveforms to show that the properties were satisfied. Figure 8 shows

the automatic sanity check waveforms for one scenario of the property check_error_detection.

check_no_error: assert property (@($global_clock)
 $countones(foo)==0 |-> ~error_detected);

check_error_detection: assert property (@($global_clock)

 ($countones(foo)==1 || $countones(foo)==2) |-> error_detected);

check_error_correction: assert property (@($global_clock)
 $countones(foo)<=2 |-> dout==din);

vlog -sv -f qft_files/flist.vl
qverify -c -od log -do " \
do insert_errors.do; \
formal compile -d ecc_wrap;\
formal verify; \
exit"

Compile RTL source files.

Read in the tcl file for inserting errors

Build formal model, and run formal analysis

Figure 8. The sanity waveforms of check_error_detection

The waveforms show foo==c00000, that means two bits are 1, and two errors are inserted into the d_syn signal.

The source tab shows the Verilog code, and d_syn is not equal to e_syn due to the error injection. From the

waveforms and the source tab, we can see that error_detected is 1 meaning the ECC circuit can detect the errors,

and dout is equalent to din meaning the ECC design can correct the errors. The tool schematic tab also shows that

the ECC circuit is working correctly when two errors are inserted.

Figure 9. The schematic view associated with the sanity check of check_error_detection

The automatic sanity check provides one scenario of the error injection. To see more different error insertions,

the user can easily create new cover properties to cover new error insertion scenarios. For example, inside the GUI,

the user can click ‘New Property’ button to open the property editor and create the following cover property such

that the tool can insert two errors to the d_din signal.

Figure 10. Add cover property to see more error injections

After running the above cover property, the tool generated the following waveforms that inserted two errors to

the d_din signal.

Figure 11. The waveforms and source annotations of new error injection

From the example, we can see that formal property checking can verify encoder and decoder designs. Users need

to write executable properties and a simple tool script but don’t need to write simulation testbenches. The setup for

Questa PropCheck is simple. The formal analysis is exhaustive, and the proof results are for all combinational

values of data and random errors of 1-bit/2-bits.

III. HOW TO VERIFY BCH ENCODER AND DECODER USING SLEC

Formal method Sequential Logic Equivalence Checking (SLEC) is to verify the functional equivalence of two

design versions, i.e., verifying their outputs are always equivalent for any input sequences. When SLEC proves a

target (a pair of signals), the targeting pair are equivalent for all possible input scenarios. When SLEC finds one

scenario of non-equivalence of targeting pair, it reports the result of Fired and shows the scenario in waveforms.

We can use SLEC to compare two versions of the BCH encoder and decoder circuit shown in the following

Figure 12. The version spec has no error on the transmission lines to DEC inputs, and the version impl has random

1-bit or 2-bit errors on the transmission lines to DEC inputs. If the encoder and decoder work correctly, the design

should fix 1-bit and 2-bit random errors and detect the error. Thus dout should be equivalent to din. The dout signals

of the two design versions should be equivalent. spec.error_detected should be zero since spec has no error, and

impl.error_detected should be one since impl has 1-bit or 2-bit errors on the transmission lines to DEC and should

detect the errors. Thus spec.error_detected and impl.error_detected are not equivalent.

Figure 12. Verifying the BCH ECC design using SLEC

For using SLEC, how to represent all random 1-bit or 2-bit errors is essential. Similar to using property

checking, we can use an undriven wire foo to control the error insertion. When a bit of foo is 1, the tool directive

netlist cutpoint injects an error into one data transmission line of the version impl. Each bit of foo controls a

corresponding data transmission line of the version impl. Since foo is undriven wire, formal engines consider all of

its values at once. Thus formal analysis considers all random errors that can be inserted into the transmission lines.

Since the design only works for 1-bit and 2-bit random errors, to prevent false firings, an assumption to limit the

number of 1s in foo is needed. The assumption uses the tool directive netlist property to constrain $countones(foo) to

be 1 or 2. The script to insert random errors in the version impl is as follows.

Figure 13. The inject-errors.do file for injecting random 1-bit or 2-bit errors to the impl version

The script to run Questa SLEC for verifying the BCH ECC design is as follows.

Figure 14. The script to run Questa SLEC

We can see that the script is simple. Questa SLEC automatically ties name-matching inputs of the two versions

together to make the inputs equal. It also automatically creates SLEC targets for name-matching outputs. For the

BCH ECC design, the tool can automatically generate two targets: one for {spec.dout impl.dout} and one for

{spec.error_detectect impl.error_detected}. Since we also want to verify the equivalency between dout and din and

the equivalency between error_detected and constant values, we need to define the SLEC targets using the tool

directive slec map.

Questa SLEC took 7 seconds to finish run proving four targets and firing one target. The proofs are for all

combinations of random din and 1-bit/2-bit errors. The proofs are exhaustive. The result is shown below. We can see

that dout is equal to din with or without random 1-bit/2-bit error inserted, which means the design can correct the

errors; and error_detected is 0 in spec when there is no error and is 1 in impl when there are random errors, which

means the design can detect errors. Thus SLEC has proved the correctness of the encoder and decoder design.

Figure 15. The results from Questa SLEC

The counter example of the target {spec.error_detected impl.error_detected} is shown below.

Figure 16. The waveforms of the {spec.error_detected impl.error_detected} target

From the waveforms and the source tab, we can see that spec.din and impl.din are constrained to be equal by the

tool automatically. The impl version has an error inserted in d_syn. The design can detect the fault and set

impl.error_detected to 1. The design can also correct the error, and the dout outputs in both versions are equal to

din.

From the example, we can see that users don’t write SVA assertions when using SLEC, but may define mapping

targets when the mapping pair have different signal names. The setup is simple, and we can quickly run the tool to

verify the design.

SLEC has lots of different applications [1][3][4][6]. It can verify no bugs injected by low power clock gating,

design optimization, or bug fixes/ECO. It can also verify fault tolerance and safety mechanisms, backward

compatibility, etc. This paper has discussed one SLEC application. Due to the high degree of automation of SLEC

tools, it is worth to try SLEC in your design verification. SLEC is good for both design and verification engineers.

IV. CONCLUSIONS

We have discussed how to use formal property checking and SLEC to verify the BCH encoder and decoder. We

have seen the difference when using the two methods. We need assertions when using property checking tools,

while we don’t need assertions, but need mapping targets of signal pairs for equivalence checking when using SLEC

tools. Since Questa SLEC can automatically create targets for name-matching signal pairs, setup for using Questa

SLEC is faster without writing assertions. Both Propcheck and SLEC tool finished run in seconds, and proved the

design functions.

We have discussed how to use the formal Non-Determinism (ND) technique to consider all random errors. ND is

a powerful technique. Using ND effectively with formal tools can simplify the problem and increase the efficiency

of formal analysis[2].

For running formal tools, users don’t write lengthy simulation testbenches, they only need to write a few simple

tool directives. The setup for running formal tools is simple and fast. The big advantage of using formal verification

tools to verify encoders and decoders is that formal considers not only all scenarios of input sequences, but also all

scenarios of random faults, and can prove design correctness exhaustively.

V. REFERENCES

[1] Jin Hou, Ping Yeung, “Applications of Sequential Logic Equivalence Checking”, DVCon China 2018.

[2] Jin Hou, Mark Eslinger, Ping Yueng, Yuxin You., “Handling Inconclusive Assertions in Formal Verification.” DVCon China 2018

[3] Ping Yueng, Doug Smith, and Abdelouahab Ayari, “Whose fault is it formally? Formal techniques for Optimizing ISO 26262 Fault Analysis,”

DVCon San Jose 2018, Feb. 2018

[4] Travis Pouarz, Vaibhav Agrawal, “Efficient and Exhaustive Floating-Point Verification Using Sequential Equivalence Checking”, DCVon

San Jose 2017, Feb. 2017.

[5] M Achutha KiranKumar, et al., “Making Formal Property Verification Mainstream: An Intel® Graphics Experience,” DVCon 2017

[6] Adrian Traskov, Thorsten Ehrenberg, et al., “Fault Proof: Using Formal Techniques for Safety Verification and Fault Analysis”, DVCon

Europe 2016.

[7] Questa SLEC App https://www.mentor.com/products/fv/questa-slec

[8] Questa SLEC Course on Verification Academy. https://verificationacademy.com/courses/sequential-logic-equivalence-checking

https://www.mentor.com/products/fv/questa-slec
https://verificationacademy.com/courses/sequential-logic-equivalence-checking

