
How To Verify Encoder And Decoder Designs
Using Formal Verification

Jin Hou

Mentor-A Siemens Business

© Accellera Systems Initiative 1

Agenda

• Introduction

• How to verify BCH encoder and decoder using property checking

• How to verify BCH encoder and decoder using SLEC (Sequential Logic
Equivalence Checking)

• Conclusions

© Accellera Systems Initiative 2

Introduction

• The challenges for fully verifying encoder and decoder designs:

– How to cover all possible data coming into the encoder

– How to cover all possible random faults if the design should correct them?

• A case study: BCH encoder and decoder design from Opencore website.

– The function of BCH: Fix up to 2-bit random faults injected to the transmission lines from
the encoder to the decoder.

© Accellera Systems Initiative 3

Verifying BCH Design Using Property Checking

• Property checking flow:

• The functions of BCH
1. When there is no error, dout should be the same as din and error_detected should be 0.

2. When 1-bit or 2-bit random errors are happening on the lines to DEC inputs, the errors can be
detected, and error_detected should be 1.

3. When 1-bit or 2-bit random errors are happening on the lines to DEC inputs, the errors can be
corrected, and dout should be the same as din.

© Accellera Systems Initiative 4

Properties

RTL Questa
PropCheck

Counterexamples

Proven
Properties

Fired
Properties

Inserting Random Faults

• Define an undriven wire foo. When a bit of foo is 1, Questa PropCheck
directive netlist cutpoint inserts an error to one data transmission line.

• Formal verification automatically considers
all possible values for the undriven wire foo.

insert_errors.do

© Accellera Systems Initiative 5

set DATA_WIDTH 16

set ECC_WIDTH 10

set WIDTH [expr $DATA_WIDTH + $ECC_WIDTH]

for {set i 0} {$i < $WIDTH } {incr i} {

if {$i < $DATA_WIDTH} {

netlist cutpoint d_din\[$i\] -cond (foo\[$i\]) -driver ~din\[$i\] }

else {

netlist cutpoint d_syn\[[expr {$i-$DATA_WIDTH}]\] -cond (foo\[$i\])\

-driver ~e_syn\[[expr {$i-$DATA_WIDTH}]\] }}

Inject error

Inject error

Writing Properties In SVA

• Translate the properties to executable SVA assertions.

– foo controls the number of faults injected to the transmission lines between the
encoder and the decoder

© Accellera Systems Initiative 6

check_no_error: assert property (@($global_clock)

foo==0 |-> ~error_detected);

check_error_detection: assert property (@($global_clock)

($countones(foo)==1 || $countones(foo)==2) |-> error_detected);

check_error_correction: assert property (@($global_clock)

$countones(foo)<=2 |-> dout==din);

Verifying BCH Design With Questa PropCheck

• The script to run Questa PropCheck is as follows. The insert_errors.do
file inserts random errors.

• The verification result:

© Accellera Systems Initiative 7

Sanity Waveforms

• The sanity waveforms of the property check_error_detection

© Accellera Systems Initiative 8

The Schematic View

• The Schematic View shows the inserted faults.

© Accellera Systems Initiative 9

The Flow Of SLEC

• The flow of SLEC (Sequential Logic Equivalent Checking)

– The SLEC tool automatically maps the inputs of DUT0 and DUT1 and ties them
together

– The SLEC tool automatically maps the outputs of DUT0 and DUT1 and verifies
their equivalency.

© Accellera Systems Initiative 10

Verifying BCH Design Using SLEC

• The design version spec is the BCH design without faults

• The design version impl is the BCH design with random faults

© Accellera Systems Initiative 11

Automatic

mapping targets

Verifying BCH Design With Questa SLEC

• The script to run Questa SLEC to verify BCH design:

© Accellera Systems Initiative 12

Inserting Random Faults

• Inject-errors.do file:

© Accellera Systems Initiative 13

The Verification Results With Questa SLEC

• The verification results:

© Accellera Systems Initiative 14

Counterexample Of Non-equivalence

• The counterexample of the target {spec.error_detected impl.error_detected}

© Accellera Systems Initiative 15

Conclusions

• Both property checking and SLEC can exhaustively verify BCH encoder
and decoder design
– Property checking verifies assertions against the design.

– SLEC verifies the equivalency between the versions with/without injected faults.

– Formal algorithms consider all possible inputs and random faults.
• Simulation is lacking of this capability, and cannot exhaustively prove design functions.

• Setup is easy and fast for both formal methods
– No lengthy simulation testbenches.

• Formal verification methods property checking and SLEC can be applied
to other encoder and decoder designs.

© Accellera Systems Initiative 16

Questions

© Accellera Systems Initiative 17

