
How To Verify Encoder And Decoder Designs
Using Formal Verification

Jin Hou

Mentor-A Siemens Business

© Accellera Systems Initiative 1

Agenda

ÅIntroduction

ÅHow to verify BCH encoder and decoder using property checking

ÅHow to verify BCH encoder and decoder using SLEC (Sequential Logic
Equivalence Checking)

ÅConclusions

© Accellera Systems Initiative 2

Introduction

ÅThe challenges for fully verifying encoder and decoder designs:

ïHow to cover all possible data coming into the encoder

ïHow to cover all possible random faults if the design should correct them?

ÅA case study: BCH encoder and decoder design from Opencorewebsite.

ïThe function of BCH: Fix up to 2-bit random faults injected to the transmission lines from
the encoder to the decoder.

© Accellera Systems Initiative 3

Verifying BCH Design Using Property Checking

ÅProperty checking flow:

ÅThe functions of BCH
1. When there is no error, dout should be the same as din and error_detectedshould be 0.

2. When 1-bit or 2-bit random errors are happening on the lines to DEC inputs, the errors can be
detected, and error_detectedshould be 1.

3. When 1-bit or 2-bit random errors are happening on the lines to DEC inputs, the errors can be
corrected, and dout should be the same as din.

© Accellera Systems Initiative 4

Properties

RTL Questa
PropCheck

Counterexamples

Proven
Properties

Fired
Properties

Inserting Random Faults

ÅDefine an undrivenwire foo. When a bit of foo is 1, Questa PropCheck
directive netlist cutpoint inserts an error to one data transmission line.

ÅFormal verification automatically considers
all possible values for the undrivenwire foo.

insert_errors.do

© Accellera Systems Initiative 5

set DATA_WIDTH 16

set ECC_WIDTH 10

set WIDTH [expr $DATA_WIDTH + $ECC_WIDTH]

for {set i 0} {$ i < $WIDTH } { incr i } {

if {$ i < $DATA_WIDTH} {

netlist cutpoint d_din \ [$ i \] - cond (foo \ [$ i \]) - driver ~din \ [$ i \] }

else {

netlist cutpoint d_syn \ [[expr {$ i - $DATA_WIDTH}] \] - cond (foo \ [$ i \]) \

- driver ~e_syn \ [[expr {$ i - $DATA_WIDTH}] \] }}

Inject error

Inject error

Writing Properties In SVA

ÅTranslate the properties to executable SVA assertions.

ïfoo controls the number of faults injected to the transmission lines between the
encoder and the decoder

© Accellera Systems Initiative 6

check_no_error : assert property (@($ global_clock)

foo== 0 | - > ~ error_detected);

check_error_detection : assert property (@($ global_clock)

($ countones (foo)==1 || $ countones (foo)==2) | - > error_detected);

check_error_correction : assert property (@($ global_clock)

$countones (foo)<=2 | - > dout ==din);

Verifying BCH Design With Questa PropCheck

ÅThe script to run Questa PropCheckis as follows. The insert_errors.do
file inserts random errors.

ÅThe verification result:

© Accellera Systems Initiative 7

Sanity Waveforms

ÅThe sanity waveforms of the property check_error_detection

© Accellera Systems Initiative 8

The Schematic View

ÅThe Schematic View shows the inserted faults.

© Accellera Systems Initiative 9

The Flow Of SLEC

ÅThe flow of SLEC (Sequential Logic Equivalent Checking)

ïThe SLEC tool automatically maps the inputs of DUT0 and DUT1 and ties them
together

ïThe SLEC tool automatically maps the outputs of DUT0 and DUT1 and verifies
their equivalency.

© Accellera Systems Initiative 10

Verifying BCH Design Using SLEC

ÅThe design version specis the BCH design without faults

ÅThe design version impl is the BCH design with random faults

© Accellera Systems Initiative 11

Automatic

mapping targets

Verifying BCH Design With Questa SLEC

ÅThe script to run Questa SLEC to verify BCH design:

© Accellera Systems Initiative 12

Inserting Random Faults

ÅInject-errors.do file:

© Accellera Systems Initiative 13

The Verification Results With Questa SLEC

ÅThe verification results:

© Accellera Systems Initiative 14

