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Introduction

ÅThe challenges for fully verifying encoder and decoder designs:

ïHow to cover all possible data coming into the encoder

ïHow to cover all possible random faults if the design should correct them?

ÅA case study: BCH encoder and decoder design from Opencorewebsite.

ïThe function of BCH: Fix up to 2-bit random faults injected to the transmission lines from 
the encoder to the decoder.
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Verifying BCH Design Using Property Checking

ÅProperty checking flow:

ÅThe functions of BCH
1. When there is no error, dout should be the same as din and error_detectedshould be 0.

2. When 1-bit or 2-bit random errors are happening on the lines to DEC inputs, the errors can be 
detected, and error_detectedshould be 1.

3. When 1-bit or 2-bit random errors are happening on the lines to DEC inputs, the errors can be 
corrected, and dout should be the same as din.
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Inserting Random Faults

ÅDefine an undrivenwire foo. When a bit of foo is 1, Questa PropCheck
directive netlist cutpoint inserts an error to one data transmission line. 

ÅFormal verification automatically considers 
all possible values for the undrivenwire foo.

insert_errors.do
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set DATA_WIDTH 16

set ECC_WIDTH 10

set WIDTH [expr $DATA_WIDTH + $ECC_WIDTH]

for {set i 0} {$ i < $WIDTH } { incr i } {

if {$ i < $DATA_WIDTH} {

netlist cutpoint d_din \ [$ i \ ] - cond ( foo \ [$ i \ ] ) - driver ~din \ [$ i \ ] }

else {

netlist cutpoint d_syn \ [[expr {$ i - $DATA_WIDTH}] \ ] - cond ( foo \ [$ i \ ] ) \

- driver ~e_syn \ [[expr {$ i - $DATA_WIDTH}] \ ] }}

Inject error

Inject error



Writing Properties In SVA

ÅTranslate the properties to executable SVA assertions.

ïfoo controls the number of faults injected to the transmission lines between the 
encoder and the decoder 
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check_no_error : assert property (@($ global_clock ) 

foo== 0 | - > ~ error_detected );

check_error_detection : assert property (@($ global_clock ) 

($ countones (foo)==1 || $ countones (foo)==2) | - > error_detected );

check_error_correction : assert property (@($ global_clock ) 

$countones (foo)<=2 | - > dout ==din);



Verifying BCH Design With Questa PropCheck

ÅThe script to run Questa PropCheckis as follows. The insert_errors.do
file inserts random errors.

ÅThe verification result:
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Sanity Waveforms 

ÅThe sanity waveforms of the property check_error_detection
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The Schematic View

ÅThe Schematic View shows the inserted faults.
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The Flow Of SLEC

ÅThe flow of SLEC (Sequential Logic Equivalent Checking)

ïThe SLEC tool automatically maps the inputs of DUT0 and DUT1 and ties them 
together

ïThe SLEC tool automatically maps the outputs of DUT0 and DUT1 and verifies 
their equivalency.
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Verifying BCH Design Using SLEC

ÅThe design version specis the BCH design without faults

ÅThe design version impl is the BCH design with random faults 
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Verifying BCH Design With Questa SLEC

ÅThe script to run Questa SLEC to verify BCH design: 
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Inserting Random Faults

ÅInject-errors.do file:
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The Verification Results With Questa SLEC

ÅThe verification results:
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