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• Type A : Can your design get into a state from which it 
can never escape?

• Type B : Can your design get into a state from which 
you can stay as long as you like (by avoiding 
opportunities to escape)?
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Two Deadlock Cases to Consider

Type A deadlock
“Real Deadlock”

How is deadlock analysis done so far ?

Type B deadlock
“Maybe-escapable 
Deadlock”



Using Simulation For Deadlock Analysis
• Checker Implementation

– Often make use of watchdogs 
• FSM does not stay in state S for more than N cycles
• Wait no more than M cycles for an acknowledge

• Drawbacks
– How to recognize that a design is in deadlock state?

• Can only observe that nothing has happened (no progress) for a long time
• How long is too long?

– How to differentiate between deadlock types A & B ?
• True system lockup vs. potentially poor stimulus

– How to generate “right” stimulus to check deadlock situation?
• Simulation is incomplete anyway
• Writing/Generating stimuli for deadlock requires a number of specific, synchronized interactions
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Use SVA Safety Properties For Deadlock Analysis

cover (cstate == INCR_2X [* N])

assert (cstate == INCR_2X) 

Proven?

Use cover sequence as initialization

Adjust N and/or
cover directive

Deadlock found

Yes

No

cntdin INCR
cnt := cnt + din

INCR_2X
cnt := cnt + 2 * din

IDLE
cnt := cnt

cnt !=0

cnt ==0

din == 2

din != 2
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φ ≡ always property (s_eventually (state != INCR_2X))

• φ is Valid :  in all traces FSM can exit state INCR_2X

• φ is violated: There exists a trace where FSM is in state 
INCR_2X for almost all the time
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Maybe-escapable Deadlocks 

. . .LTL semantics (Tool) will not 
check if these routes exist            
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Example
//Check
assert property (s_eventually (state != INCR_2X))

//Fairness conditions:
assume property (s_eventually (din != ‘b0))
assume property (s_eventually (din == 2’b01))
???



Use SVA for Deadlock Analysis

• LTL semantics (Tool) will not check if escape routes exist 

• User has to add fairness conditions to guide the tool finding escape routes

• User is often facing a painful debug activity 
– very difficult
– time consuming 
– inefficient
– If user don’t succeed to find escape routes, tool will not check other paths and eventually miss 

real deadlocks
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LTL vs CTL 

• LTL: semantics based-on computation paths 
• It does not check for escapable routes

• If deadlock is reported, then it is a maybe-escapable deadlock

• CTL: semantics based computation trees
• It checks for escapable routes

• If deadlock is reported, then it is a real deadlock

. . .

. . .



LTL vs CTL 

• LTL: semantics consider paths 
• It does not check for escapable routes

• If deadlock is reported, then it is a maybe-escapable deadlock

• CTL: semantics consider branching trees
• It checks for escapable routs

• If deadlock is reported, then it is a real deadlock

. . .

. . .



Summary So Far For Deadlock Analysis

We need a new approach

Approach Rating Comment
Simulation Incomplete and very time consuming
LTL/SVA Safety Properties Incomplete and very time consuming
LTL/SVA Liveness Properties Incomplete and time consuming
CTL Properties Academic and no commercial tool support

 

 






Mentor’s Approach Finds Deadlock Issues Faster
• Combining LTL and CTL semantics for Liveness properties  

– LTL/SVA used explicitly to express deadlock properties
– CTL used implicitly to find real deadlock cases or escapable routes

• Approach implemented in Questa PropCheck
– No change in current flow
– Assertion writing and debugging are same as before (as for SVA)
– User does not have to infer/write CTL properties
– Automated engine orchestration to deal with inferred CTL properties

• Approach is complete
– Reporting of proofs for deadlock free cases
– Reporting of real deadlock cases
– Reporting of escapable deadlock cases 



Questa Formal Deadlock Approach

Check
Type 
A/B

Real 
Deadlock

A

Escapable 
Deadlock

B

Decide Deadlock 
Free

Proven

CEX

SVA Liveness 
Property

Design debug

Add constraints for 
legal escape routes



Example
//Check
assert property (s_eventually (st != INCR_2X))

//Fairness conditions:
assume property (s_eventually (din != ‘b0))
assume property (s_eventually (din == 2’b01))
???



Questa Formal Deadlock Analysis: Example 

No escape routes

Deadlock wafeform

Real Deadlock:
cnt will never be 0 to 
exit state INCR_2X



Escapable Deadlock

//Check
assert property (s_eventually (state != INCR_2X))
assert property (s_eventually (state != INCR))



Laurent Arditi, PhD
Arm Ltd

“ This debug work is much simpler than the one with the 

traditional method looking only at maybe-escapable 

deadlocks. Having the extra information that it is not 

an escapable deadlock, allows to reduce debug time a lot “



Real World Case Study: Arm’s Usage of 
Questa PropCheck Deadlock Analysis

• Instruction Fetch unit FSMs
– Local FSMs are resilient to incorrect or unexpected environment 

behaviours
– Maybe-escapable deadlocks are frequent and safe
– A few results showed unescapable deadlocks
– Proof time is a few minutes, with no overhead for also running 

the unescapable deadlock checks
• L1 data cache arbiter

– All assertions are proven
• Credit-based protocol

– Can prove that no credit is lost
– A few critical bugs found



Some Cases for Deadlock Analysis

• FSM Deadlocks
– No deadlock on some states

• Arbitration
– Every process often get grant (no starvation)

• Interfaces
– Server/master often get bus access
– Server/master is often ready to accept/send data

• Handshaking
– Often request acknowledged

• … 

• Applicable for any SVA livness property



Summary

• The risk of a design going into deadlock is nearly impossible to detect 
with RTL simulation; hard to do with traditional formal

• Detecting RTL deadlock is now easier with Mentor’s PropCheck 
using these advanced algorithms under-the-hood
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