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Two Deadlock Cases to Consider

* The most difficult bugs to find in designs are deadlocks

— But they are also the most critical!

* Type A : Can your design get into a state from which it
can never escape?
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Two Deadlock Cases to Consider

* The most difficult bugs to find in designs are deadlocks
— But they are also the most critical!

* Type A : Can your design get into a state from which it
can never escape?

* Type B : Can your design get into a state from which
you can stay as long as you like (by avoiding
opportunities to escape)?
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Two Deadlock Cases to Consider

always ff @(posedge clk or negedge rstn)
if (~rstn) st == IDLE;
alse
begin
case (st)
IDLE: st <= STATEI;
STATELl: st == STATEZ;

STATEZ: st == sel 7 STATE3 : STATEZ;
STATE3: st == sel 7 STATES : STATEB;‘§~\“-~\

Type A deadlock //d ——— Type B deadlock

and

“Real Deadlock” “Maybe-escapable
Deadlock”

\ 2
et g \
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Two Deadlock Cases to Consider

always ff @(posedge clk or negedge rstn)
if (~rstn) st == IDLE;
alse
begin
case (st)
IDLE: st <= STATEI;
STATELl: st == STATEZ;

STATEZ: st == sel 7 STATE3 : STATEE;,g\\~\~\~‘ Vi 1 !
_____,—vSTATEB: st == sel 7 STATEZ : STATEZ;
Type Adeadlock __—— _ endease ——— Type B deadlock
“Real Deadlock” “Maybe-escapable
Deadlock”

How is deadlock analysis done so far ?
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Using Simulation For Deadlock Analysis

* Checker Implementation
— Often make use of watchdogs
* FSM does not stay in state S for more than N cycles
* Wait no more than M cycles for an acknowledge
* Drawbacks
— How to recognize that a design is in deadlock state?
* Can only observe that nothing has happened (no progress) for a long time
* How long is too long?

— How to differentiate between deadlock types A & B ?
* True system lockup vs. potentially poor stimulus

— How to generate “right” stimulus to check deadlock situation?
e Simulation is incomplete anyway
* Writing/Generating stimuli for deadlock requires a number of specific, synchronized interactions 5000
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Using Simulation For Deadlock Analysis

* Checker Implementation
— Often make use of watchdogs
* FSM does not stay in state S for more than N cycles
* Wait no more than M cycles for an acknowledge
* Drawbacks
— How to recognize that a design is in deadlock state?
* Can only observe that nothing has happened (no progress) for a long ti
* How long is too long?

— How to differasid
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Use SVA Safety Properties For Deadlock Analysis

(e

Adjust N and/or
cover directive

SYSTEMS INITIATIVE

mma COVer (cstate == INCR 2X [* N]J])

Use cover sequence as initialization

v

assert (cstate == INCR 2X)

1

No

l Yes

Deadlock found

din

> cnt==0

|

[,/— din 1= 2
cnt

—
cnt ;= cnt + din

|
din == 2

{

cnt:=cnt+2* dinh

\ cnt 1=0
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Use SVA Safety Properties For Deadlock Analysis

mma COVer (cstate == INCR 2X [* N]J])
[ cnt :=cnt ]

Use cover sequence as initialization l/
din!=2

Adjust N and/or

. . cnt
cover directive - —
cnt :=cnt + din
1
din ==2
}
cnt:=cnt+2* dinh
\ cnt 1=0

accellera Deadlock found DV O
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Use SVA Liveness Properties For Deadlock Analysis

¢ = always property (s_eventually (state = INCR_2X))

* ¢isValid: in all traces FSM can exit state INCR_ 2X /{[ ent = cnt ]]

state !=f INCR_2X L din 1= 2
:0‘ - '.“ :" " .“ :‘- ..‘ :‘- L] ." :‘- L] ." :,' n“
.............. > R I - TR I S I - :
. U . N . o . ] . N . o
*enns’ L PN *enat’ Yenas’ * ¢ ‘0.,¢’ cnt ==0 .
cnt :=cnt +din

* ¢ is violated: There exists a trace where FSM is in state | B
ITNCR_2X for almost all the time \[ in =2

cnt:=cnt+2* din]\

\ cnt 1=0

IIIIIIIIIIIIIIIIIIIIIII
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Use SVA Liveness Properties For Deadlock Analysis

$ = always property (s_eventually (state = INCR_2X))

* ¢ is Valid : in all traces FSM can exit state INCR_2X

state !_f INCR_2X
o* "0 PY IS LY oo L PS el ]

"N * * * * * \d * *

. o . 4 . 4 . @ . * .
d [ L) - b . L ) L - d -
.............. > [ TP R T ey TP .
“ : . N . o . ] . N I‘ o

®an® oo’ Yenas’ L A - . vaas®

* ¢ is violated: There exists a trace where FSM is in state
ITNCR_2X for almost all the time

LTL semantics (Tool) will not

check if these routes exist

SYSTEMS INITIATIVE

cnt ==0

|

EER

L din 1=2
{ cnt := cnt + din ])

|
din==2

{

cnt:=cnt+2* din]\

\ cnt 1=0
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Use SVA Liveness Properties For Deadlock Analysis

$ = always property (s_eventually (state = INCR_2X))

* ¢ is Valid : in all traces FSM can exit state INCR_2X

state !_f INCR_2X
o* "0 PY IS LY oo L PS el ]

- * * * * * \d * *

. o . 4 . 4 . @ . * .
d [ L) - b . L ) L - d -
.............. > [ TP R T ey TP .
“ : . N . o . ] . N I‘ o

®an® e’ Yenas’ L A - . vaas®

* ¢ is violated: There exists a trace where FSM is in state
ITNCR_2X for almost all the time

LTL semantics (Tool) will not

check if these routes exist

SYSTEMS INITIATIVE

W Maybe-escapable Deadlocks

cnt ==0

|

EER

L din 1=2
[ cnt := cnt + din ])

|
din==2

i

cnt:=cnt+2* din]\

\ cnt 1=0
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Example

//Check
assert property (s_eventually (state != INCR 2X))
cnt :=cnt
Primary Clocks : Primary Clocks
4 top.clk _
Primary Resets : Primary Resets dint=2
Property Signals : Property Signals
] top.bind_top.clk _ ont ==0
top.bind_top.fsm . INCR . . cnt := cnt + din
Control Point Signal : Control Point Signals |
4 top.din 0 X | 0 | 0 din ==
™ top.cnt[3:0] 3 _ : 3 l

Loop LoopBack

cnt:=cnt + 2 *din

\ cnt 1=0
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Example

//Check
assert property (s_eventually (state != INCR 2X))
cnt :=cnt
Primary Clocks : Primary Clocks
4 top.clk _
Primary Resets : Primary Resets dint=2
Property Signals : Property Signals
] top.bind_top.clk _ _ ont ==0
top.bind_top.fsm : ) INCR | , cnt :=cnt + din
Control Point Signal : Control Point Signals |
4 top.din 0 X | 0 | 0 din ==
= top.cnt[3:0] 3 _ 3 l

Start Loop LoopBack

cnt:=cnt + 2 *din

\ cnt 1=0

//Fairness conditions:
assume property (s _eventually (din !'= 'b0))
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Example

//Check
assert property (s_eventually (state != INCR 2X))

Primary Clocks

Primary Clocks :
o e | | Ii E— Ii Ii

Primary Resets
Property Signals

Property Signals ;
. I Ei I I cnt ==

4] top.bind_top.clk |

« top.c Ik
Primary Resets

top.bin -::1_?_-::_.;__. fsm | INCR_2X IDELE NCR | INCR_2X

Control Point Signal Control Point Signals
4 top.din
<] .bind_top.cnt[3:0]

LoopBack

SYSTEMS INITIATIVE

[ cnt :=cnt ]

din!=2

cnt :=cnt + din

|
din ==

|

cnt:=cnt + 2 *din

\\M- cnt 1=0
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Example

//Check
assert property (s_eventually (state != INCR 2X))

Primary Clocks

—

Primary Resets
Property Signals

S

Control Point Signals

Primary Clocks :
« top.clk | E—
Primary Resets :
Property Signals :
4 top.bind_top.clk 1 |
top.bind_top.fsm
Control Point Signal
4 top.din
<] .bind_top.cnt[3:0]

—
—

//Fairness conditions:

assume property (s _eventually (din !'= 'b0))
2'b01))

assume property (s_eventually (din =

SYSTEMS INITIATIVE

INCR_2X

LoopBack

cnt ==0

[ cnt :=cnt ]

din!=2

cnt :=cnt + din

|
din ==

|

cnt:=cnt + 2 *din

\‘ﬁ cnt 1=0
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Example

//Check
assert property (s_eventually (state != INCR 2X)) [ ]
cnt :=cnt

Primary Clocks Primary Clocks
4 top.clk '7 li li li Ii li

Primary Resets : : Primary Resets

Property Signals ; Property Signals
4] top.bind top.clk _ cnt ==0
top.bind_top.fsm ¥ CR
Control Point Signal : § |
4 top.din 3 X i 0 7 : Z din ==

|

din!=2

cnt :=cnt + din

1 .bind_top.cnt[3:0]

Lu:: op LoopBack

cnt:=cnt + 2 *din

\‘*h- cnt 1=0
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Example

//Check
assert property (s_eventually (state != INCR 2X)) [ ]
cnt :=cnt

Primary Clocks Primary Clocks
4 top.clk '7 li li li Ii li
Primary Resets : : Primary Resets
Property Signals Property Signals
4] top.bind_top.clk | Ii Ii [ [ |7 cnt ==0
top.bind_top.fsm | INCR_2X CR X
Control Point Signal |
4 top.din 3 ¥ i 0 2 din ==
1 bind_top.cnt[3:0] 2 : ; ; 3 0 12 }

din!=2

cnt :=cnt + din

Lu:: op LoopBack .
i i cnt:=cnt + 2 *din

\ cnt 1=0

//Fairness conditions:
assume property (s _eventually (din !'= 'b0))
assume property (s _eventually (din == 2'Db01))
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Use SVA for Deadlock Analysis

* LTL semantics (Tool) will not check if escape routes exist
* User has to add fairness conditions to guide the tool finding escape routes

* User is often facing a painful debug activity
— very difficult
— time consuming
— inefficient

— If user don’t succeed to find escape routes, tool will not check other paths and eventually miss
real deadlocks

Koeler) Ve
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LTL vs CTL

e LTL: semantics based-on computation paths “a — ‘s
* It does not check for escapable routes e Sy R /e
@ O®° o

* If deadlock is reported, then it is a maybe-escapable deadlock

* CTL: semantics based computation trees

' n. ' “, .,-' (\‘
* It checks for escapable routes R
O @
O .............. b T el
* If deadlock is reported, then it is a real deadlock LS A
accellera DVCOIN
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LTL vs CTL

e LTL: semantics consider paths <a « A, >
* It does not check for escapable routes b 4 .6\5“ ‘f .. |

TL is 100 [ —

orted, then it is a real deadlock

CTL is not sub
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Summary So Far For Deadlock Analysis

Approach

Simulation ® 6 Incomplete and very time consuming
LTL/SVA Safety Properties ® 6 Incomplete and very time consuming
LTL/SVA Liveness Properties ® Incomplete and time consuming

CTL Properties ® Academic and no commercial tool support

We need a new approach

accellera DVLCON
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Mentor’s Approach Finds Deadlock Issues Faster

 Combining LTL and CTL semantics for Liveness properties

— LTL/SVA used explicitly to express deadlock properties

— CTL used implicitly to find real deadlock cases or escapable routes
 Approach implemented in Questa PropCheck

— No change in current flow

— Assertion writing and debugging are same as before (as for SVA)

— User does not have to infer/write CTL properties

— Automated engine orchestration to deal with inferred CTL properties
* Approach is complete

— Reporting of proofs for deadlock free cases

— Reporting of real deadlock cases

— Reporting of escapable deadlock cases

accellera DV
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Questa Formal Deadlock Approach

SVA Liveness <
Property

Decide

Add constraints for
legal escape routes

_
accellera Deadlock

SYSTEMS INITIATIVE

Proven
ﬁ

Deadlock

Free

Real

Deadlock

Design debug
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Examp|e [ ! ]J

//Check din1=2
assert property (s_eventually (st '= INCR 2X))
ent ==0 cnt ;= cnt + din
Primary Clocks Primary Clocks L
4 top.clk '7 li li li Ii li din T 2
Primary Resets : : Primary Resets
Property Signals Property Signals - e
« top.bind top.clk ' T B li cnt :=cnt + 2 * din
top.bind _top.fsm | INCR_2X D L = CR | .\ cnt 1=0
Control Point Signal ; |
4 top.din
1 .bind_top.cnt[3:0]
Lu::r:p
//Fairness conditions:
assume property (s _eventually (din !'= 'b0))
assume property (s _eventually (din == 2'Db01))
/‘ ? ? ? DESIGN AND VER%’QA?I’I(O)N”‘
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Questa Formal Deadlock Analysis: Example

‘Wave (bind_top.a_deadlock_incr?) - Current
File Edit View Options Tools Window

cnt :=cnt
o B0 QHAQEBAKM ATt Ff ¢ s ello * ™[ ZEdesE Diff5001ns - Freq2.000 =
+ SignalName ValuesC1 0 50 lD 150 200 250 300 3O 400 450 500 550 600 B50 70O
e a1 [ 0 | 1 T 2 1 3 ) din!=2
Primary Clocks Primary Clocks ! . | \
i < [ [ ] |

Primary Resets = Primary Resets: cnt ==
Praperty Signals Property Signals cnt:= ent + din

) k |

LOP C O s L NN A din ==

C{mtml Pomt Sagnai ; - - {

4 top din

cnt :=cnt + 2 * din

.\ cnt 1=0

Start oop LoopBack

0 50 ll][] lrU 200 250 300 350 400 450 500 550 600 550 .[

Pri Reset
“SPigpetis ™ Real Deadlock:
“ Compile @& off . New Property & Filter: Type here <Ctrl+E> B e & « WHER mm v, »® cnt W|” never be 0 to

Unco\;erable g =) ~ Dc  Name Groups Health Radius

lotal e* m@m X bind_top.a_deadlock_incr2 v 14 3@ clk | exrt State INCR_ZX

Vacuity Check Summary T f

Satisfied —

U tisfiabl

I::zznﬁuéaivee ‘ No escape ro tes |

Deadlock Check §
DZ:dlgEKed “ e DeadIOCK Wafe Orm (] DESIGNANDVER%’QA%’I(O)N”‘

accellera) § Gccicvis... DVLCON
Mot Deadlocked =] ¢

f
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Escapable Deadlock

//Check
assert property (s _eventually (state !'= INCR 2X)) [ cnt = cnt ]J
assert property (s _eventually (state != INCR))

Properties L din!=2
. Compile & o | " New Property
.Name ont==0 cnt :=cnt + din
@® B .bind_top.a_deadlock_incr I
©” mam X bind_top.a_deadlock_incr2 din == 2
Primary Clocks : Primary Clocks d
4 top.ck |
Primary Resets = Primary Resets cnt = cnt + 2 * din
Property Signals Property Signals '\
4 top.bind_top.clk | | cnt 1=0
top.bind_top.fsm INCR
Control Point Signal :
4] top.din
: : DESIGN AND VER%’QA%’QN”‘
Loop LoopBack scape DV |
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“This debug work is much simpler than the one with the
traditional method looking only at maybe-escapable
deadlocks. Having the extra information that it is not

an escapable deadlock, allows to reduce debug time a lot *

Laurent Arditi, PhD
Arm Ltd




Real World Case Study: Arm’s Usage of
Questa PropCheck Deadlock Analysis

* Instruction Fetch unit FSMs
— Local FSMs are resilient to incorrect or unexpected environment

behaviours % 2 A Virtual
® AUTOHA'I'ION
— Maybe-escapable deadlocks are frequent and safe L3 conrenes F’I‘gﬁfz'f?ugﬁ
uly
— A few results showed unescapable deadlocks
P Best Paper Designer Track Front- End
— Proof time is a few minutes, with no overhead for also running ——
Easy Deadlock Verification and Debug with Advanced Formal Verification
the unescapable deadIOCk ChECkS Authors: Laurent Arditi - Arm, Ltd., Valbonne, France,
° Ll data Cache arbiter Vincent Abikhattar—Arm, Ltd., Sophia—Antipolis, France,
Joe Hupcey III - Mentor, A Siemens Business, Fremont, CA
_ A” assertions are proven Jeremy Levitt - Mentor, A Siemens Business, Fremont, CA
e Credit-based protocol % ,4,‘ wwb Qﬁulm m ok
Can prove that no credit is lost Ce—— ama i

— A few critical bugs found
2020
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Some Cases for Deadlock Analysis

 FSM Deadlocks
— No deadlock on some states
* Arbitration
— Every process often get grant (no starvation)
* Interfaces
— Server/master often get bus access
— Server/master is often ready to accept/send data
* Handshaking
— Often request acknowledged

3@ Applicable for any SVA livness property DV
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Summary

* The risk of a design going into deadlock is nearly impossible to detect
with RTL simulation; hard to do with traditional formal

* Detecting RTL deadlock is now easier with Mentor’s PropCheck
using these advanced algorithms under-the-hood

Koeler) Ve
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