
How to Use Formal Analysis to Prevent
Deadlocks

Abdelouahab Ayari, Mentor, a Siemens Business
Mark Eslinger , Mentor, a Siemens Business
Joe Hupcey III, Mentor, A Siemens Business

Agenda

• Deadlock cases to consider
• Traditional approach to deadlock verification
• Challenges with traditional approach to deadlock verification
• Mentor’s enhanced deadlock verification solution
• Application Cases For Deadlock Analysis
• Summary

Two Deadlock Cases to Consider
• The most difficult bugs to find in designs are deadlocks

– But they are also the most critical!

• Type A : Can your design get into a state from which it
can never escape?

Two Deadlock Cases to Consider
• The most difficult bugs to find in designs are deadlocks

– But they are also the most critical!

• Type A : Can your design get into a state from which it
can never escape?

• Type B : Can your design get into a state from which
you can stay as long as you like (by avoiding
opportunities to escape)?

Two Deadlock Cases to Consider

Type B deadlock
“Maybe-escapable
Deadlock”

Type A deadlock
“Real Deadlock”

Two Deadlock Cases to Consider

Type A deadlock
“Real Deadlock”

How is deadlock analysis done so far ?

Type B deadlock
“Maybe-escapable
Deadlock”

Using Simulation For Deadlock Analysis
• Checker Implementation

– Often make use of watchdogs
• FSM does not stay in state S for more than N cycles
• Wait no more than M cycles for an acknowledge

• Drawbacks
– How to recognize that a design is in deadlock state?

• Can only observe that nothing has happened (no progress) for a long time
• How long is too long?

– How to differentiate between deadlock types A & B ?
• True system lockup vs. potentially poor stimulus

– How to generate “right” stimulus to check deadlock situation?
• Simulation is incomplete anyway
• Writing/Generating stimuli for deadlock requires a number of specific, synchronized interactions

Using Simulation For Deadlock Analysis
• Checker Implementation

– Often make use of watchdogs
• FSM does not stay in state S for more than N cycles
• Wait no more than M cycles for an acknowledge

• Drawbacks
– How to recognize that a design is in deadlock state?

• Can only observe that nothing has happened (no progress) for a long time
• How long is too long?

– How to differentiate between deadlock types A & B ?
• True system lockup vs. potentially poor stimulus

– How to generate “right” stimulus to check deadlock situation?
• Simulation is incomplete anyway
• Writing/Generating stimuli for deadlock requires a number of specific, synchronized interactions

Presenter
Presentation Notes

Use SVA Safety Properties For Deadlock Analysis

cover (cstate == INCR_2X [* N])

assert (cstate == INCR_2X)

Proven?

Use cover sequence as initialization

Adjust N and/or
cover directive

Deadlock found

Yes

No

cntdin INCR
cnt := cnt + din

INCR_2X
cnt := cnt + 2 * din

IDLE
cnt := cnt

cnt !=0

cnt ==0

din == 2

din != 2

Use SVA Safety Properties For Deadlock Analysis

cover (cstate == INCR_2X [* N])

assert (cstate == INCR_2X)

Proven?

Use cover sequence as initialization

Adjust N and/or
cover directive

Deadlock found

Yes

No

cntdin INCR
cnt := cnt + din

INCR_2X
cnt := cnt + 2 * din

IDLE
cnt := cnt

cnt !=0

cnt ==0

din == 2

din != 2

φ ≡ always property (s_eventually (state != INCR_2X))

• φ is Valid : in all traces FSM can exit state INCR_2X

• φ is violated: There exists a trace where FSM is in state
INCR_2X for almost all the time

Use SVA Liveness Properties For Deadlock Analysis

state != INCR_2X

φ ≡ always property (s_eventually (state != INCR_2X))

• φ is Valid : in all traces FSM can exit state INCR_2X

• φ is violated: There exists a trace where FSM is in state
INCR_2X for almost all the time

Use SVA Liveness Properties For Deadlock Analysis

state != INCR_2X

. . .LTL semantics (Tool) will not
check if these routes exist

φ ≡ always property (s_eventually (state != INCR_2X))

• φ is Valid : in all traces FSM can exit state INCR_2X

• φ is violated: There exists a trace where FSM is in state
INCR_2X for almost all the time

Use SVA Liveness Properties For Deadlock Analysis

state != INCR_2X

Maybe-escapable Deadlocks

. . .LTL semantics (Tool) will not
check if these routes exist

Example
//Check
assert property (s_eventually (state != INCR_2X))

Example
//Check
assert property (s_eventually (state != INCR_2X))

//Fairness conditions:
assume property (s_eventually (din != ‘b0))

Example
//Check
assert property (s_eventually (state != INCR_2X))

Example
//Check
assert property (s_eventually (state != INCR_2X))

//Fairness conditions:
assume property (s_eventually (din != ‘b0))
assume property (s_eventually (din == 2’b01))

Example
//Check
assert property (s_eventually (state != INCR_2X))

Example
//Check
assert property (s_eventually (state != INCR_2X))

//Fairness conditions:
assume property (s_eventually (din != ‘b0))
assume property (s_eventually (din == 2’b01))
???

Use SVA for Deadlock Analysis

• LTL semantics (Tool) will not check if escape routes exist

• User has to add fairness conditions to guide the tool finding escape routes

• User is often facing a painful debug activity
– very difficult
– time consuming
– inefficient
– If user don’t succeed to find escape routes, tool will not check other paths and eventually miss

real deadlocks

Presenter
Presentation Notes

LTL vs CTL

• LTL: semantics based-on computation paths
• It does not check for escapable routes

• If deadlock is reported, then it is a maybe-escapable deadlock

• CTL: semantics based computation trees
• It checks for escapable routes

• If deadlock is reported, then it is a real deadlock

. . .

. . .

LTL vs CTL

• LTL: semantics consider paths
• It does not check for escapable routes

• If deadlock is reported, then it is a maybe-escapable deadlock

• CTL: semantics consider branching trees
• It checks for escapable routs

• If deadlock is reported, then it is a real deadlock

. . .

. . .

Summary So Far For Deadlock Analysis

We need a new approach

Approach Rating Comment
Simulation Incomplete and very time consuming
LTL/SVA Safety Properties Incomplete and very time consuming
LTL/SVA Liveness Properties Incomplete and time consuming
CTL Properties Academic and no commercial tool support

 

 




Mentor’s Approach Finds Deadlock Issues Faster
• Combining LTL and CTL semantics for Liveness properties

– LTL/SVA used explicitly to express deadlock properties
– CTL used implicitly to find real deadlock cases or escapable routes

• Approach implemented in Questa PropCheck
– No change in current flow
– Assertion writing and debugging are same as before (as for SVA)
– User does not have to infer/write CTL properties
– Automated engine orchestration to deal with inferred CTL properties

• Approach is complete
– Reporting of proofs for deadlock free cases
– Reporting of real deadlock cases
– Reporting of escapable deadlock cases

Questa Formal Deadlock Approach

Check
Type
A/B

Real
Deadlock

A

Escapable
Deadlock

B

Decide Deadlock
Free

Proven

CEX

SVA Liveness
Property

Design debug

Add constraints for
legal escape routes

Example
//Check
assert property (s_eventually (st != INCR_2X))

//Fairness conditions:
assume property (s_eventually (din != ‘b0))
assume property (s_eventually (din == 2’b01))
???

Questa Formal Deadlock Analysis: Example

No escape routes

Deadlock wafeform

Real Deadlock:
cnt will never be 0 to
exit state INCR_2X

Escapable Deadlock

//Check
assert property (s_eventually (state != INCR_2X))
assert property (s_eventually (state != INCR))

Laurent Arditi, PhD
Arm Ltd

“ This debug work is much simpler than the one with the

traditional method looking only at maybe-escapable

deadlocks. Having the extra information that it is not

an escapable deadlock, allows to reduce debug time a lot “

Real World Case Study: Arm’s Usage of
Questa PropCheck Deadlock Analysis

• Instruction Fetch unit FSMs
– Local FSMs are resilient to incorrect or unexpected environment

behaviours
– Maybe-escapable deadlocks are frequent and safe
– A few results showed unescapable deadlocks
– Proof time is a few minutes, with no overhead for also running

the unescapable deadlock checks
• L1 data cache arbiter

– All assertions are proven
• Credit-based protocol

– Can prove that no credit is lost
– A few critical bugs found

Some Cases for Deadlock Analysis

• FSM Deadlocks
– No deadlock on some states

• Arbitration
– Every process often get grant (no starvation)

• Interfaces
– Server/master often get bus access
– Server/master is often ready to accept/send data

• Handshaking
– Often request acknowledged

• …

• Applicable for any SVA livness property

Summary

• The risk of a design going into deadlock is nearly impossible to detect
with RTL simulation; hard to do with traditional formal

• Detecting RTL deadlock is now easier with Mentor’s PropCheck
using these advanced algorithms under-the-hood

	How to Use Formal Analysis to Prevent Deadlocks
	Agenda
	Two Deadlock Cases to Consider
	Two Deadlock Cases to Consider
	Two Deadlock Cases to Consider
	Two Deadlock Cases to Consider
	Using Simulation For Deadlock Analysis
	Using Simulation For Deadlock Analysis
	Use SVA Safety Properties For Deadlock Analysis
	Use SVA Safety Properties For Deadlock Analysis
	Use SVA Liveness Properties For Deadlock Analysis
	Use SVA Liveness Properties For Deadlock Analysis
	Use SVA Liveness Properties For Deadlock Analysis
	Example
	Example
	Example
	Example
	Example
	Example
	Use SVA for Deadlock Analysis
	LTL vs CTL
	LTL vs CTL
	Summary So Far For Deadlock Analysis
	Mentor’s Approach Finds Deadlock Issues Faster
	Questa Formal Deadlock Approach
	Example
	Questa Formal Deadlock Analysis: Example
	Escapable Deadlock
	�
	Real World Case Study: Arm’s Usage of �Questa PropCheck Deadlock Analysis
	Some Cases for Deadlock Analysis
	Summary

