How to Use Formal Analysis to Prevent
Deadlocks

Abdelouahab Ayari, Mentor, a Siemens Business
Mark Eslinger , Mentor, a Siemens Business
Joe Hupcey lll, Mentor, A Siemens Business

Men'or'@ e 2020
accellera DVCOIN
................. A Siemens Business

Agenda

* Deadlock cases to consider

* Traditional approach to deadlock verification

* Challenges with traditional approach to deadlock verification
 Mentor’s enhanced deadlock verification solution

* Application Cases For Deadlock Analysis

* Summary

accellera DV O

IIIIIIIIIIIIIIIII

Two Deadlock Cases to Consider

* The most difficult bugs to find in designs are deadlocks

— But they are also the most critical!

* Type A : Can your design get into a state from which it
can never escape?

DESIGN AND VE%QA%’QN”
Koeler) Ve

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Two Deadlock Cases to Consider

* The most difficult bugs to find in designs are deadlocks
— But they are also the most critical!

* Type A : Can your design get into a state from which it
can never escape?

* Type B : Can your design get into a state from which
you can stay as long as you like (by avoiding
opportunities to escape)?

SYSTEMS INITIATIVE

Two Deadlock Cases to Consider

always ff @(posedge clk or negedge rstn)
if (~rstn) st == IDLE;
alse
begin
case (st)
IDLE: st <= STATEI;
STATELl: st == STATEZ;

STATEZ: st == sel 7 STATE3 : STATEZ;
STATE3: st == sel 7 STATES : STATEB;‘§~\“-~\

Type A deadlock //d ——— Type B deadlock

and

“Real Deadlock” “Maybe-escapable
Deadlock”

\ 2
et g \

Koeler) Ve

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Two Deadlock Cases to Consider

always ff @(posedge clk or negedge rstn)
if (~rstn) st == IDLE;
alse
begin
case (st)
IDLE: st <= STATEI;
STATELl: st == STATEZ;

STATEZ: st == sel 7 STATE3 : STATEE;,g\\~\~\~‘ Vi 1 !
_____,—vSTATEB: st == sel 7 STATEZ : STATEZ;
Type Adeadlock __—— _ endease ——— Type B deadlock
“Real Deadlock” “Maybe-escapable
Deadlock”

How is deadlock analysis done so far ?

Koeler) Ve

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Using Simulation For Deadlock Analysis

* Checker Implementation
— Often make use of watchdogs
* FSM does not stay in state S for more than N cycles
* Wait no more than M cycles for an acknowledge
* Drawbacks
— How to recognize that a design is in deadlock state?
* Can only observe that nothing has happened (no progress) for a long time
* How long is too long?

— How to differentiate between deadlock types A & B ?
* True system lockup vs. potentially poor stimulus

— How to generate “right” stimulus to check deadlock situation?
e Simulation is incomplete anyway
* Writing/Generating stimuli for deadlock requires a number of specific, synchronized interactions 5000

accellera DVLCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Using Simulation For Deadlock Analysis

* Checker Implementation
— Often make use of watchdogs
* FSM does not stay in state S for more than N cycles
* Wait no more than M cycles for an acknowledge
* Drawbacks
— How to recognize that a design is in deadlock state?
* Can only observe that nothing has happened (no progress) for a long ti
* How long is too long?

— How to differasid

NNNNNNNNNNNNNNNNNNNNNNN

accellera DVLCON

SYSTEMS INITIATIVE

Presenter
Presentation Notes

Use SVA Safety Properties For Deadlock Analysis

(e

Adjust N and/or
cover directive

SYSTEMS INITIATIVE

mma COVer (cstate == INCR 2X [* N]J])

Use cover sequence as initialization

v

assert (cstate == INCR 2X)

1

No

l Yes

Deadlock found

din

> cnt==0

|

[,/— din 1= 2
cnt

—
cnt ;= cnt + din

|
din == 2

{

cnt:=cnt+2* dinh

\ cnt 1=0

2020

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

Use SVA Safety Properties For Deadlock Analysis

mma COVer (cstate == INCR 2X [* N]J])
[cnt :=cnt]

Use cover sequence as initialization l/
din!=2

Adjust N and/or

. . cnt
cover directive - —
cnt :=cnt + din
1
din ==2
}
cnt:=cnt+2* dinh
\ cnt 1=0

accellera Deadlock found DV O

SYSTEMS INITIATIVE

Use SVA Liveness Properties For Deadlock Analysis

¢ = always property (s_eventually (state = INCR_2X))

* ¢isValid: in all traces FSM can exit state INCR_ 2X /{[ent = cnt]]

state !=f INCR_2X L din 1= 2
:0‘ - '.“ :" " .“ :‘- ..‘ :‘- L] ." :‘- L] ." :,' n“
.............. > R I - TR I S I - :
. U . N . o .] . N . o
*enns’ L PN *enat’ Yenas’ * ¢ ‘0.,¢’ cnt ==0 .
cnt :=cnt +din

* ¢ is violated: There exists a trace where FSM is in state | B
ITNCR_2X for almost all the time \[in =2

cnt:=cnt+2* din]\

\ cnt 1=0

IIIIIIIIIIIIIIIIIIIIIII

accellera DVLCON

NNNNNNNNNNNNNNNNNNNNNNN

Use SVA Liveness Properties For Deadlock Analysis

$ = always property (s_eventually (state = INCR_2X))

* ¢ is Valid : in all traces FSM can exit state INCR_2X

state !_f INCR_2X
o* "0 PY IS LY oo L PS el]

"N * * * * * \d * *

. o . 4 . 4 . @ . * .
d [L) - b . L) L - d -
.............. > [TP R T ey TP .
“ : . N . o .] . N I‘ o

®an® oo’ Yenas’ L A - . vaas®

* ¢ is violated: There exists a trace where FSM is in state
ITNCR_2X for almost all the time

LTL semantics (Tool) will not

check if these routes exist

SYSTEMS INITIATIVE

cnt ==0

|

EER

L din 1=2
{ cnt := cnt + din])

|
din==2

{

cnt:=cnt+2* din]\

\ cnt 1=0

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Use SVA Liveness Properties For Deadlock Analysis

$ = always property (s_eventually (state = INCR_2X))

* ¢ is Valid : in all traces FSM can exit state INCR_2X

state !_f INCR_2X
o* "0 PY IS LY oo L PS el]

- * * * * * \d * *

. o . 4 . 4 . @ . * .
d [L) - b . L) L - d -
.............. > [TP R T ey TP .
“ : . N . o .] . N I‘ o

®an® e’ Yenas’ L A - . vaas®

* ¢ is violated: There exists a trace where FSM is in state
ITNCR_2X for almost all the time

LTL semantics (Tool) will not

check if these routes exist

SYSTEMS INITIATIVE

W Maybe-escapable Deadlocks

cnt ==0

|

EER

L din 1=2
[cnt := cnt + din])

|
din==2

i

cnt:=cnt+2* din]\

\ cnt 1=0

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Example

//Check
assert property (s_eventually (state != INCR 2X))
cnt :=cnt
Primary Clocks : Primary Clocks
4 top.clk _
Primary Resets : Primary Resets dint=2
Property Signals : Property Signals
] top.bind_top.clk _ ont ==0
top.bind_top.fsm . INCR . . cnt := cnt + din
Control Point Signal : Control Point Signals |
4 top.din 0 X | 0 | 0 din ==
™ top.cnt[3:0] 3 _ : 3 l

Loop LoopBack

cnt:=cnt + 2 *din

\ cnt 1=0

2020

ll DESIGN AND VERIFICATION™
acce era CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Example

//Check
assert property (s_eventually (state != INCR 2X))
cnt :=cnt
Primary Clocks : Primary Clocks
4 top.clk _
Primary Resets : Primary Resets dint=2
Property Signals : Property Signals
] top.bind_top.clk _ _ ont ==0
top.bind_top.fsm :) INCR | , cnt :=cnt + din
Control Point Signal : Control Point Signals |
4 top.din 0 X | 0 | 0 din ==
= top.cnt[3:0] 3 _ 3 l

Start Loop LoopBack

cnt:=cnt + 2 *din

\ cnt 1=0

//Fairness conditions:
assume property (s _eventually (din !'= 'b0))

2020

ll DESIGN AND VERIFICATION™
acce era CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Example

//Check
assert property (s_eventually (state != INCR 2X))

Primary Clocks

Primary Clocks :
o e | | Ii E— Ii Ii

Primary Resets
Property Signals

Property Signals ;
. I Ei I I cnt ==

4] top.bind_top.clk |

« top.c Ik
Primary Resets

top.bin -::1_?_-::_.;__. fsm | INCR_2X IDELE NCR | INCR_2X

Control Point Signal Control Point Signals
4 top.din
<] .bind_top.cnt[3:0]

LoopBack

SYSTEMS INITIATIVE

[cnt :=cnt]

din!=2

cnt :=cnt + din

|
din ==

|

cnt:=cnt + 2 *din

\\M- cnt 1=0

2020

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Example

//Check
assert property (s_eventually (state != INCR 2X))

Primary Clocks

—

Primary Resets
Property Signals

S

Control Point Signals

Primary Clocks :
« top.clk | E—
Primary Resets :
Property Signals :
4 top.bind_top.clk 1 |
top.bind_top.fsm
Control Point Signal
4 top.din
<] .bind_top.cnt[3:0]

—
—

//Fairness conditions:

assume property (s _eventually (din !'= 'b0))
2'b01))

assume property (s_eventually (din =

SYSTEMS INITIATIVE

INCR_2X

LoopBack

cnt ==0

[cnt :=cnt]

din!=2

cnt :=cnt + din

|
din ==

|

cnt:=cnt + 2 *din

\‘ﬁ cnt 1=0

2020

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Example

//Check
assert property (s_eventually (state != INCR 2X)) []
cnt :=cnt

Primary Clocks Primary Clocks
4 top.clk '7 li li li Ii li

Primary Resets : : Primary Resets

Property Signals ; Property Signals
4] top.bind top.clk _ cnt ==0
top.bind_top.fsm ¥ CR
Control Point Signal : § |
4 top.din 3 X i 0 7 : Z din ==

|

din!=2

cnt :=cnt + din

1 .bind_top.cnt[3:0]

Lu:: op LoopBack

cnt:=cnt + 2 *din

\‘*h- cnt 1=0

2020

ll DESIGN AND VERIFICATION™
acce era CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Example

//Check
assert property (s_eventually (state != INCR 2X)) []
cnt :=cnt

Primary Clocks Primary Clocks
4 top.clk '7 li li li Ii li
Primary Resets : : Primary Resets
Property Signals Property Signals
4] top.bind_top.clk | Ii Ii [[|7 cnt ==0
top.bind_top.fsm | INCR_2X CR X
Control Point Signal |
4 top.din 3 ¥ i 0 2 din ==
1 bind_top.cnt[3:0] 2 : ; ; 3 0 12 }

din!=2

cnt :=cnt + din

Lu:: op LoopBack .
i i cnt:=cnt + 2 *din

\ cnt 1=0

//Fairness conditions:
assume property (s _eventually (din !'= 'b0))
assume property (s _eventually (din == 2'Db01))

/‘ ? ? ? DESIGN AND VER%’QA%’I(O)N”‘
HCCEIIera Qxﬁx AND EXHIB‘ITION

SYSTEMS INITIATIVE

@—

Use SVA for Deadlock Analysis

* LTL semantics (Tool) will not check if escape routes exist
* User has to add fairness conditions to guide the tool finding escape routes

* User is often facing a painful debug activity
— very difficult
— time consuming
— inefficient

— If user don’t succeed to find escape routes, tool will not check other paths and eventually miss
real deadlocks

Koeler) Ve

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Presenter
Presentation Notes

LTL vs CTL

e LTL: semantics based-on computation paths “a — ‘s
* It does not check for escapable routes e Sy R /e
@ O®° o

* If deadlock is reported, then it is a maybe-escapable deadlock

* CTL: semantics based computation trees

' n. ' “, .,-' (\‘
* It checks for escapable routes R
O @
O b T el
* If deadlock is reported, then it is a real deadlock LS A
accellera DVCOIN

SYSTEMS INITIATIVE

LTL vs CTL

e LTL: semantics consider paths <a « A, >
* It does not check for escapable routes b 4 .6\5“ ‘f .. |

TL is 100 [—

orted, then it is a real deadlock

CTL is not sub

SYSTEMS INITIATIVE

Summary So Far For Deadlock Analysis

Approach

Simulation ® 6 Incomplete and very time consuming
LTL/SVA Safety Properties ® 6 Incomplete and very time consuming
LTL/SVA Liveness Properties ® Incomplete and time consuming

CTL Properties ® Academic and no commercial tool support

We need a new approach

accellera DVLCON

NNNNNNNNNNNNNNNNNNNNNNN
SYSTEMS INITIATIVE

Mentor’s Approach Finds Deadlock Issues Faster

 Combining LTL and CTL semantics for Liveness properties

— LTL/SVA used explicitly to express deadlock properties

— CTL used implicitly to find real deadlock cases or escapable routes
 Approach implemented in Questa PropCheck

— No change in current flow

— Assertion writing and debugging are same as before (as for SVA)

— User does not have to infer/write CTL properties

— Automated engine orchestration to deal with inferred CTL properties
* Approach is complete

— Reporting of proofs for deadlock free cases

— Reporting of real deadlock cases

— Reporting of escapable deadlock cases

accellera DV

SYSTEMS INITIATIVE

Questa Formal Deadlock Approach

SVA Liveness <
Property

Decide

Add constraints for
legal escape routes

_
accellera Deadlock

SYSTEMS INITIATIVE

Proven
ﬁ

Deadlock

Free

Real

Deadlock

Design debug

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Examp|e [!]J

//Check din1=2
assert property (s_eventually (st '= INCR 2X))
ent ==0 cnt ;= cnt + din
Primary Clocks Primary Clocks L
4 top.clk '7 li li li Ii li din T 2
Primary Resets : : Primary Resets
Property Signals Property Signals - e
« top.bind top.clk ' T B li cnt :=cnt + 2 * din
top.bind _top.fsm | INCR_2X D L = CR | .\ cnt 1=0
Control Point Signal ; |
4 top.din
1 .bind_top.cnt[3:0]
Lu::r:p
//Fairness conditions:
assume property (s _eventually (din !'= 'b0))
assume property (s _eventually (din == 2'Db01))
/‘ ? ? ? DESIGN AND VER%’QA?I’I(O)N”‘
aceellera DVCON

SYSTEMS INITIATIVE

Questa Formal Deadlock Analysis: Example

‘Wave (bind_top.a_deadlock_incr?) - Current
File Edit View Options Tools Window

cnt :=cnt
o B0 QHAQEBAKM ATt Ff ¢ s ello * ™[ZEdesE Diff5001ns - Freq2.000 =
+ SignalName ValuesC1 0 50 lD 150 200 250 300 3O 400 450 500 550 600 B50 70O
e a1 [0 | 1 T 2 1 3) din!=2
Primary Clocks Primary Clocks ! . | \
i < [[] |

Primary Resets = Primary Resets: cnt ==
Praperty Signals Property Signals cnt:= ent + din

) k |

LOP C O s L NN A din ==

C{mtml Pomt Sagnai ; - - {

4 top din

cnt :=cnt + 2 * din

.\ cnt 1=0

Start oop LoopBack

0 50 ll][] lrU 200 250 300 350 400 450 500 550 600 550 .[

Pri Reset
“SPigpetis ™ Real Deadlock:
“ Compile @& off . New Property & Filter: Type here <Ctrl+E> B e & « WHER mm v, »® cnt W|” never be 0 to

Unco\;erable g =) ~ Dc Name Groups Health Radius

lotal e* m@m X bind_top.a_deadlock_incr2 v 14 3@ clk | exrt State INCR_ZX

Vacuity Check Summary T f

Satisfied —

U tisfiabl

I::zznﬁuéaivee ‘ No escape ro tes |

Deadlock Check §
DZ:dlgEKed “ e DeadIOCK Wafe Orm (] DESIGNANDVER%’QA%’I(O)N”‘

accellera) § Gccicvis... DVLCON
Mot Deadlocked =] ¢

f
SYSTEMS INITIATIVE | | Total ! =] =11 o)

oo o]

CONFERENCE AND EXHIBITION

oo o NEn]

Escapable Deadlock

//Check
assert property (s _eventually (state !'= INCR 2X)) [cnt = cnt]J
assert property (s _eventually (state != INCR))

Properties L din!=2
. Compile & o | " New Property
.Name ont==0 cnt :=cnt + din
@® B .bind_top.a_deadlock_incr I
©” mam X bind_top.a_deadlock_incr2 din == 2
Primary Clocks : Primary Clocks d
4 top.ck |
Primary Resets = Primary Resets cnt = cnt + 2 * din
Property Signals Property Signals '\
4 top.bind_top.clk | | cnt 1=0
top.bind_top.fsm INCR
Control Point Signal :
4] top.din
: : DESIGN AND VER%’QA%’QN”‘
Loop LoopBack scape DV |

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

“This debug work is much simpler than the one with the
traditional method looking only at maybe-escapable
deadlocks. Having the extra information that it is not

an escapable deadlock, allows to reduce debug time a lot *

Laurent Arditi, PhD
Arm Ltd

Real World Case Study: Arm’s Usage of
Questa PropCheck Deadlock Analysis

* Instruction Fetch unit FSMs
— Local FSMs are resilient to incorrect or unexpected environment

behaviours % 2 A Virtual
® AUTOHA'I'ION
— Maybe-escapable deadlocks are frequent and safe L3 conrenes F’I‘gﬁfz'f?ugﬁ
uly
— A few results showed unescapable deadlocks
P Best Paper Designer Track Front- End
— Proof time is a few minutes, with no overhead for also running ——
Easy Deadlock Verification and Debug with Advanced Formal Verification
the unescapable deadIOCk ChECkS Authors: Laurent Arditi - Arm, Ltd., Valbonne, France,
° Ll data Cache arbiter Vincent Abikhattar—Arm, Ltd., Sophia—Antipolis, France,
Joe Hupcey III - Mentor, A Siemens Business, Fremont, CA
_ A” assertions are proven Jeremy Levitt - Mentor, A Siemens Business, Fremont, CA
e Credit-based protocol % ,4,‘ wwb Qﬁulm m ok
Can prove that no credit is lost Ce—— ama i

— A few critical bugs found
2020

accellera DV O

SYSTEMS INITIATIVE

Some Cases for Deadlock Analysis

 FSM Deadlocks
— No deadlock on some states
* Arbitration
— Every process often get grant (no starvation)
* Interfaces
— Server/master often get bus access
— Server/master is often ready to accept/send data
* Handshaking
— Often request acknowledged

3@ Applicable for any SVA livness property DV

SYSTEMS INITIATIVE

Summary

* The risk of a design going into deadlock is nearly impossible to detect
with RTL simulation; hard to do with traditional formal

* Detecting RTL deadlock is now easier with Mentor’s PropCheck
using these advanced algorithms under-the-hood

Koeler) Ve

NNNNNNNNNNNNNNNNNNNNNNN
IIIIIIIIIIIIIIIII

	How to Use Formal Analysis to Prevent Deadlocks
	Agenda
	Two Deadlock Cases to Consider
	Two Deadlock Cases to Consider
	Two Deadlock Cases to Consider
	Two Deadlock Cases to Consider
	Using Simulation For Deadlock Analysis
	Using Simulation For Deadlock Analysis
	Use SVA Safety Properties For Deadlock Analysis
	Use SVA Safety Properties For Deadlock Analysis
	Use SVA Liveness Properties For Deadlock Analysis
	Use SVA Liveness Properties For Deadlock Analysis
	Use SVA Liveness Properties For Deadlock Analysis
	Example
	Example
	Example
	Example
	Example
	Example
	Use SVA for Deadlock Analysis
	LTL vs CTL
	LTL vs CTL
	Summary So Far For Deadlock Analysis
	Mentor’s Approach Finds Deadlock Issues Faster
	Questa Formal Deadlock Approach
	Example
	Questa Formal Deadlock Analysis: Example
	Escapable Deadlock
	�
	Real World Case Study: Arm’s Usage of �Questa PropCheck Deadlock Analysis
	Some Cases for Deadlock Analysis
	Summary

