

How to test the whole firmware/software

when the RTL can’t fit the emulator

Horace Chan

Microchip Technology,

8555 Baxter Place,
BC, Canada, V5A 4V7

horace.chan@microchip.com, 604-415-6000

Byron Watt

Microchip Technology
8555 Baxter Place,

BC, Canada, V5A 4V7

byron.watt@microchip.com, 604-415-6000

Abstract-Pre-silicon firmware and software (FW/SW) testing is a necessity for all silicon companies. One of the

biggest challenge is when the RTL cannot fit inside the emulator. In verification, it is a common practice to black box

unused logic in the RTL to reduce gate count. However, adopting this approach in emulation has unique challenges due

to the difference in the architecture of an UVM testbench compared to the actual FW/SW. In this paper, we will present

our strategy on how to run the full FW/SW on blackboxed RTL in the emulator using a Hybrid Software Simulator

(HSWSIM). The paper will compare the benefit of our strategy over using existing solutions, such as virtual platform.

Then the paper will describe the architecture of the HSWSIM and outline its two use models, one to test user space FW

code and the other to test kernel space FW code. The final section of the paper presents the results of using HSWSIM to

bring up the FW/SW in our latest generation chip.

I. INTRODUCTION

Running pre-silicon FW/SW testing using the emulator has many successful stories in various publications. [1,3]

demonstrated Android boot up in emulation. [2] proved the production software went through MISRA-C checks in

emulation and hence saved a year of development time post silicon. [4,5] applies software driven verification in

emulation to address RTL bugs early on the product cycle without writing complex scenarios in the UVM testbench.

[6] enabled early development of HW and FW in the same environment to have bugs found and fixed within hours.

[7] allows comprehensive power and performance testing in emulation with the production software. [8]

demonstrated Linux boot up in the embbeded CPU and had all the major features of the SoC working prior to

silicon.

 The most prominent benefit of emulation is shifting left the project schedule by allowing testing of the FW/SW

much earlier. The FW/SW team can start developing and testing production FW/SW many months before the

silicon comes back from the fab. Running production FW/SW code with the RTL uncovers unexpected hardware

bugs that slip through the verification coverage. Allowing the project team to discover and fix hardware bugs before

the chip tape-out is a huge time and cost saver compared to the alternative of taping out another revision of the chip.

To meet the time to market window and deliver a bug free design, it is no longer an option not to have pre-silicon

FW/SW testing. The major challenge is how to test the FW/SW in emulation efficiently.

Other than the initial setup of the emulation flow, i.e. compiling the RTL into the emulator, one of the biggest

challenge in pre-silicon FW/SW testing is when the chip is bigger than the capacity of the emulator. Technically

speaking, you can always buy a bigger emulator that fits designs up to a few billion gates. Given the high cost of the

emulators, this is not always a practical solution. In this paper, we are presenting a strategy to cope with the

problem when the RTL is too big for the emulator, and yet it is required to test the whole FW/SW as one piece.

Our approach is inspired by an idea used in verification for ages; when the RTL is too big for the simulator, the

testbench often blackboxes RTL logic that is not required by the test to reduce the size of the snapshot. Due to the

fundamental difference in how a UVM testbench (UVMTB) is constructed and how the FW/SW is built, there are

some unique challenges in adopting the blackboxing strategy. We will first review existing approaches on solving

the RTL size problem and outline their drawbacks. Then we will present the workflow of our Hybrid Software

Simulator (HSWSIM) and its benefits. We will go over the two use modes of the HSWSIM: 1) how to test non-

timing critical FW code running in the Linux user space; 2) how to test the FW code running in the Linux kernel

mailto:horace.chan@microchip.com
mailto:byron.watt@microchip.com

space and how to stress test the performance of the FW. Finally, we will discuss future improvements planned and

share our success story on pre-silicon FW/SW testing.

II. CHALLENGES IN HYBRID EMULATION

B. Testing FW/SW on the Emulator

Figure 1 illustrates a generic scenario of testing FW/SW on the emulator, which mimics how a single chip is used

in the production environment. Here are some key features of the scenario:

1) A x86 Linux server controls multiple chips via PCIe bus in the production environment

2) The PCIe bus is replaced by the PCIe speed bridge in the emulation environment

3) The embedded CPU inside the chip is also running Linux

4) The SW running on the host Linux communicates with the FW running inside the embedded Linux via TCP

sockets or PCIe mailbox.

5) The end-user has no direct access into the FW. The end-user interacts with the FW through the public API of

the SW running on the host Linux

Depending on the different feature sets in testcases in the FW/SW test plan, we synthesize and PnR (place and

route) the RTL into multiple emulation snapshots of the embedded device with unused logic blackboxed. The

biggest problem is that the ARM core would crash if the FW accesses any address space located inside the

blackboxed RTL. Since the AXI/AHB slave logic is missing from the blackbox, there is no AHB/AXI response to a

pending request, therefore it completely hangs the AXI bus and stalls the CPU. In verification, it is easy to avoid

writing to those address since we construct the UVMTB from ground up and have full control on the executions of

the UVM configuration sequences. Moreover, it is relatively easy to hook up a dummy AXI/AHB slave behavior

model in place of the black box in the simulation environment. However, those two solutions are not readily

available to the production FW/SW running in emulation.

 C. Existing Solutions

We have considered existing solutions to work around the limited emulation capacity vs the full design size. We

tried the first two approaches (summarized below) in the past, however they didn’t address our requirements and left

us with a bad experience on pre-silicon FW/SW testing. We evaluated the third and fourth approaches early in the

project cycle and decided the HSWSIM approach (which we will describe later) best fits our needs:

1. Testing the FW at block level only

In our previous project, we tested the block level FW in isolation with its corresponding RTL block. This

approach allows us to catch block level RTL and FW bugs early, however we would have to defer the full

integration testing of the FW until the silicon came back. Given that most complex bugs are usually

discovered in the integration testing of the RTL and the FW, this approach didn’t meet our goal on code

quality and the committed delivery schedule.

2. Use of #ifdef or makefile parameters to partition the FW

In our previous project, we tried to compile the FW to match the blackboxed RTL snapshots. It was a very

involved task that required adding hacks and patches into the FW code. We spent lots of unproductive hours

in adding #ifdef into the code, creating mock function to bypass register access into the blackboxed address

space and adding many special parameters in the makefile to compile the FW correctly. This approach is

highly intrusive to the FW code base. It creates a maintenance nightmare later in the project cycle and it is

proven to be unscalable to a larger design

Emulator

SW

HW
Host x86 server

PCIe

EP

Embedded

CPU cores

RAM

UART

peripherals

PCIe Speed Bridge

GIC

NIC

AXI

AXI

Subsystem A

Subsystem DSubsystem B

Subsystem C

(black boxed)

black boxed RTL black boxed RTL

AXI

Customer API

x86 Linux

Host SW driver

Embedded Linux

FW

Common
TCP

socket
Module A Module B Module C Module D

Kernel Modules

X

X

Figure 1. Illustration of testing FW/SW on Emulator

3. Inserting dummy AXI/AHB slave components in the blackboxed RTL

In the beginning of this project, when we compiled the emulation snapshot, we tried to insert dummy

AXI/AHB slave into the blackboxed RTL just like how it is done in the verification testbench. There are two

major drawbacks in this approach. First, blackboxing a block of RTL at compile time might be trivial, but it

is much more work to create individual blackboxed SystemVerilog modules with embedded dummy

AXI/AHB slave functionally. Second, a dummy AXI/AHB slave can only return zero value on a data read,

yet we often have to fake some minimum register responses from the blackboxed RTL module, for example

when the FW is polling a busy bit. Using a dummy AXI/AHB slave does not solve the problem of how it

interacts with the firmware.

4. Use of a Virtual Platform

Virtual Platform is a proven approach for pre-silicon FW/SW testing as highlighted in the previous papers

[3,5]. Depending on the specific test scenario and the availability of SystemC behavioral models, it could be

the right choice for a different project. However, in our experience, we found that it is too time consuming to

set up the QEMU emulator proxy and create the SystemC behavioral models or the SCEMI transactors from

scratch. Also, it does not provide any additional value in helping us to debug our FW. Giving that most of

our FW code is running in the Linux user space, and in the beginning of the project where we focus on

correct functionality instead of stress the FW performance, we found it more convenient to debug the FW

running on the x86 Linux host instead of running it in the embedded CPU. Our approach still allows us to

test the FW in embedded CPU later in the project cycle without incurring the overhead of setting up a virtual

platform environment.

.

III. HYBRID SOFTWARE SIMULATOR

A. Architecture

Figure 2 outlines the architecture of the Hybrid Software Simulator (HSWSIM). We have a set of scripts to

generate the HSWSIM, the SystemVerilog implementation of the registers and the C header files for the FW from

the register description files (e.g. IP-XACT). We already have the scripts to generate the required files from

previous projects, so it is only incremental work to update the scripts to support the emulation environment. In

previous project, we used a pure software simulator to test the basic functionality of the FW code without having the

FW interact with the RTL. The pure software simulator supports a shadow register bank to keep track of the state

of all the registers in the device. The shadow registers support modeling of the RTL behavior by triggering a

callback function when any arbitrary value is written to specific addresses. [6] implements the shadow registers in

a dedicated hybrid register server that supports emulator-aware register mirroring. Our solution didn’t implement

register mirroring due to its complexity and it only provides marginal benefits in certain debug scenarios.

The existing FW header file generation script already outputs bit level register field access functions in a hardware

abstraction layer (HAL), such that register access of the FW do not rely on any hardcoded value in the source code.

Using hardcoded defined values is a bad coding practice in general. To support emulation, we updated the HAL to

redirect the FW register access to the HSWSIM via a TCP socket. Another benefit of abstracting the FW code from

the actual hardware register implementation allows better debug control. We can easily change the verbosity of

register access log through the built-in logging feature available within the low-level access function.

IP-XACT

Register

Description

Generation

Scripts

RTL register

Implementations

(*.sv)

FW header files (*.h)

write_reg()

read_reg()

set_field()

get_field()

etc

SW SIM view

(*.c)

Embedded view

(*.c)

Device in Emulator

Hybrid SW Simulator

Shadow Registers

Address Filter / Translator

Behavior Models

compile

TCP

Socket

AXI

(Device Internal)

PCIe - AXI

(Host to Device)

Figure 2. Hybrid Software Simulator Code Generation

It is minimal amount of work to enhance the existing pure software simulator to support hybrid software/emulator

simulation. The x86 Linux host already has a connection to the device through the PCIe bus, so that the x86 Linux

host has the same visibility into the device address space as the embedded CPU. The only difference is that the

embedded CPU uses a different address mapping than the PCIe address window. The HSWSIM has two main

functions when it receives a FW register access from the TCP socket. First it needs to determine whether the

address being accessed is blackboxed in the emulator. If it is blackboxed, the HSWSIM behaves like the pure

software simulator for this given address and it will terminate the access at the shadow register bank and/or trigger

the behavioral model functions. If the address is accessible in the emulator, the HSWSIM will translate the

embedded CPU address mapping to the PCIe address mapping and forward the register access to the PCIe bus. [4]

uses a similar partition in register access in the real hardware model and in the simulator behavior model. It uses

direct memory mapping between the emulator and the software simulator, where we use TCP sockets to

communicate between the FW and HSWSIM. The major benefit of the using TCP sockets to facility register access

between FW and HSWSIM is that the HSWSIM is agnostic to where the FW is executed. The FW might be running

in the x86 host Linux or in the embedded Linux and the HSWSIM couldn’t tell the difference.

B. Use Modes

The HSWSIM has two different use modes, depending on which part of the FW is under test, we select the use

mode that is most convenient to debug the FW code.

Figure 3 shows the use mode when testing the FW code running in the Linux user space. The goal of the testcase

in this early phrase of FW development is to confirm correct functionality of the FW when it interacts with the RTL.

The FW code running in user space are mostly non-timing critical functions, therefore the extra latency introduced

by register access over the PCIe bus does not affect the correct operation of the FW/SW. In this use mode, both the

host side SW layer and the user space SW are running on the x86 Linux host in two separate processes. The

production FW/SW communicates with each other using PCIe memory-based mailbox. The HSWSIM simulates the

PCIe mailbox with a TCP mailbox. When the FW accesses a register via the HAL layer, the register access is first

examined by HSWSIM, it will filter out register access into the blackboxed address space in the emulator. There is

only a tiny bare-metal layer program running in the embedded CPU. It boots up the PCIe bus and then puts the

embedded CPU to sleep.

HW

Host Linux

FW (User Space)

Hybrid SW Simulator

Host SW Driver

Host x86 server

Device in Emulator

Embedded Linux

TCP

socket

Nothing is running

here

PCIe

SystemVerilog

UVM TB

Verification

Configuration

Sequences

AXI VIP

(DPI-C)

TCP

socket

ASIC simulation

FW/SW Testcase

SIM HAL

TCP mailbox

SIM HAL

Figure 3. Use Mode on Testing FW (User Space)

There are two major advantages in this approach in debugging the user space FW code. First, running the FW

code on the x86 Linux host is a lot more convenient to debug than running it in the embedded CPU. The cross-

platform debug turnaround time is slow in the latter setup. After fixing a bug in the C code, not only we have to

recompile the FW executable, we need to package the binary along with the embedded Linux into a memory image,

then upload it to the flash memory model in the emulator. When the FW is running in the embedded CPU, the

choice of the debugger is limited. It can be a plain text-based gdb client or a full-blown memory-hungry GUI-based

debugger built on top of Eclipse. When the FW is running in the x86 Linux host, the developers are free to choose

their favorite IDE as the GDB front-end attached to the running FW process. Second, in this early phase of FW

development, the documentation on how to configure the device is often not up to date. The UVM configuration

sequence in the verification testbench is the only golden reference for the FW development team. We can run a

modified verification testbench (VerTB) that converts AXI transactions into register accesses into the emulator via

the HSWSIM. By mixing and matching bits and pieces of configuration code in the FW and the VerTB, we were

able to pin point the configuration errors in the FW much more quickly.

Figure 4 shows the use mode to test kernel space FW code running in the embedded CPU and stress test the

performance of the FW. In this phase of FW development, the user space FW code is already debugged and well

tested. We can just run the same FW code in the embedded CPU and expect the same result as it is running on the

x86 Linux host. The additional FW code is mostly tiny interrupt service routines running in the kernel space of the

embedded Linux and the PCIe driver for embedded Linux itself. The FW/SW testcase and the host SW layer are

running on the host x86 Linux like in the production environment. The host SW layer communicates with the FW

via a PCIe memory-based mailbox and PCIe interrupts. Most of the FW is running the same way as it is in the

production environment, except when the FW code accesses a blackboxed register address. When that happens, the

HAL layer of the FW will filter the register access and pass it over to the HSWSIM running on the x86 host Linux

instead of passing it down to the AXI bus.

HW

Host

Linux

FW (User Space)

Hybrid SW Simulator

Host SW Driver

Host x86 server

 Device in Emulator

Embedded

Linux

FW (Kernel Space)

AXI

 PCIe Speed Bridge

Module

In Device

Module

Black Boxed

FW/SW Testcase

PCIe HAL

PCIe

mailbox

 AXI/SIM HAL AXI HAL

AXI

TCP socket

Figure 4. Use Mode on Testing FW (Kernel Space)

Debugging the kernel space FW in this use mode is pretty much the same as debugging it in the actual silicon.

We used the same debugging techniques, such as outputting printk to the UART interface, hooking up the

DSTREAM probe to the JTAG interface and capturing the PC trace in DS-5 studio. We didn’t use any emulator

specific debugging techniques, such as dumping the RTL waveform of the CPU or the AXI bus, since all the

problems we encountered are found in FW layer. Bringing up the kernel space FW code is a very time-consuming

task, fortunately it is only a very small fraction of the code in the FW.

V. RESULTS AND FUTURE ADVANCEMENT

One of the biggest drawback of the HSWSIM is the relative slow speed of register accesses. The execution time

of the FW when the it is running in the x86 Linux host is about 10 times slower than when the FW is running in the

embedded CPU inside the emulator. The major bottleneck in the register accesses is the PCIe latency. Since a

typical FW/SW testcase runs less than a minute on average, it is still acceptable even when the run time slows down

to 10 minutes. When the FW is running in the embedded CPU, the access time of the the blackboxed register space

in the HSWSIM is very slow. It is about 50 times slower due to the TCP communication overhead on top of the

PCIe bus latency. When testing the kernel space FW code, there is only a few register accesses to the blackboxed

registers in the HSWSIM, thus the 50x slowdown is not noticeable. In a few occasions, when the kernel space FW

testcase runs too slow, we need to restructure the test to eliminate unnecessary access into the blackboxed register

space. The PCIe bus in the next generation chip will be upgraded from PCIe Gen2 to Gen3. Once done, it should

greatly speed up the register accesses of the HSWSIM.

We have published our pre-silicon achievements in [8]. The design is running at 5MHz in the emulator and Linux

boots up in less than 5 minutes. The FW fully brought up all the major silicon features in the emulator. As a bonus,

we found three RTL bugs before tape-out. After the silicon came back, we booted up Linux and had the FW

running on day 1. After debugging the FW code across the analog, mixed-signal, asynchronous clocks domains,

which are not testable in the emulation platform, we brought up the first major feature on day 3. The digital portion

of the FW code that is already tested in emulation is essentially bug free. All the major features were up and

running by the end of the first week and the SW was released to the customer in less than a month. Thanks to

amount of time we spent testing the FW/SW in the emulator before the chip came back, it was the smoothest

FW/SW bring up in the company’s history for a Rev A device.

REFERENCES

[1] J.Cao, “Pre-silicon Software Development with Protium/Palladium”, CDNLive 2017 Silicon Valley
[2] M.Meghana, S.Ramachandran, “Accelerating Time to Market of a Robust Functional Safe Device with Palladium Platform”, CDNLive

2017 India
[3] W.Kim, H.Park, S.Choi, S.Kim, “Early Software Development and Verification Methodology Using Hybrid Emulation Platform”,

DVCON 2017 (Silicon Valley)

[4] F.Thoen, “A pre-Silicon Emulation Platform for Early Software Development of Multi-Mode Modem SoCs”, SNUG 2018
[5] D.Bhattacharya, A.Khan, “Hybrid Approach to Testbench and Software Driven Verification on Emulation”, DVCON 2018 (Silicon Valley)

[6] B.Cheng, H.Huang, “Improve Firmware Design Schedule by Combining ASIC Simulator and Veloce Emulator Environment”, Mentor
U2U2018 Silicon Valley

[7] T.Masood, “Multi-level modeling techniques for pre-silicon software development & design verification”, Mentor U2U 2018 Silicon Valley

[8] H.Chan “Pre-Silicon SW/FW Testing with Protium S1 – A Case Study”, CDNLive 2018 Silicon Valley

