
How to Succeed Against Increasing Pressure:
Automated Techniques for Unburdening

Verification Engineers
James Pascoe, Pierre Kuhn
STMicroelectronics R&D Ltd.
1000 Aztec West, Bristol, UK

+44 (0)1454 46 { 2377 | 2427 }
{ james.pascoe | pierre.kuhn-ext } at st.com

Steve Hobbs
Cadence Design Systems Ltd.
Bagshot Road, Bracknell, UK

+44 (0)1344 8653147
stephenh at cadence.com

Abstract—The Release Management System (RMS) is a
methodology that has been developed by STMicroelectronics (ST)
in collaboration with Cadence. The motivation for this work is to
identify and develop automated techniques to relieve verification
engineers from routine yet time consuming tasks. In particular,
the RMS features formal unreachability analysis1 and a novel
‘gatekeeper’ flow that determines optimal sets of regressions to
run on designer commits. This paper describes the RMS and
focuses on two of its features, namely, the gatekeeper and the
unreachability flows. The intention is to enable the reader to
implement these ideas in their own environment. To this end, we
supply sample scripts in Appendices A and B.

Index Terms—Unreachability analysis, gatekeeper flow, formal
verification, continuous integration, automated verification.

I. INTRODUCTION

The scope of verification is changing. Verification teams
are under increasing pressure to perform tasks that (until
recently) were not considered part of the verification process.
In the CPU/GPU team at ST2, verification engineers are
responsible for design integration, release management and
providing customer support. These requirements are additional
to the group’s existing commitments and are not mitigated
by increases in timescale or resource. Furthermore, anecdotal
evidence suggests that these observations are not specific
to ST. Moreover, there is a growing trend for verification
engineers to provide services that are not directly related
to their core mission. Ultimately, these activities consume
resource and impact on verification quality.

This paper addresses a manifestation of this problem (at ST)
by describing the Release Management System (RMS). The
RMS is an automated build service that includes features for
improving verification efficiency. The RMS philosophy is to
automate as much as possible, to perform event-triggered error
checking and to produce commonly requested commodity

1The formal aspects of the RMS are implemented using the Incisive En-
terprise Verifier (IEV). The RMS does not exhibit any particular dependence
on IEV - other proof engines can be used.

2CPU/GPU is a multi-site team that produces processor sub-systems for
use in ST’s products.

data. Thus, the RMS automates tasks such as integrating devel-
oper commits, performing coverage analyses and conducting
qualification runs. This paper describes the RMS and focuses
on two of its features, namely, a novel approach to gatekeeping
and a flow to evaluate the reachability of coverage states.

II. BACKGROUND AND MOTIVATION

The CPU part of the CPU/GPU team consists of approx-
imately ninety engineers that are situated in Bristol (UK),
Grenoble (France) and Noida (India). The CPU team develops
ARM based processor sub-systems for use in mobile comput-
ing and consumer based SoCs. Since Q2 2011, the CPU team
have been developing (and hardening) a sub-system for a suite
of mobile computing platforms. The design work is conducted
in Bristol and Grenoble, while verification is performed across
all three sites. The Bristol verification team is responsible for
block-level and formal work, whilst Grenoble performs Low
Power verification and Noida leads the system level testing.

As the project has progressed, the role of the verification
team has grown to encompass a number of additional respon-
sibilities. For example, the Bristol team is now responsible for
merging individual developer commits into consolidated and
regressed global releases. Furthermore, the team in Grenoble
now provide a de facto customer interface and are responsible
for a range of integration and support issues. In addition,
our colleagues in Noida are frequently required to produce
commodity data such as coverage reports, qualification runs
and regression statistics. These activities, while necessary
for the project, are time consuming, mundane and are not
mitigated by additional resource.

A preliminary study showed that for a typical month3, the
group was spending around 35% of its effort on activities
that were not directly related to verification. In particular, the
following observations were made:

1) Over 90% of manually merged developer commits re-
quired no human intervention i.e. could be merged
automatically;

3In this context, ‘typical’ refers to the period where the project is in
steady-state. These measurements were made in June 2012.

2) Verification engineers were frequently debugging regres-
sion failures that were due to inadequate designer testing
prior to commit;

3) Despite significant effort, code coverage only improved
marginally;

4) When provided with clear technical feedback, designers
improved the quality of their commits;

5) Requests for coverage analyses, qualification runs and
regression reports were ad-hoc and disruptive;

6) The proportion of ‘dead’ code and the reachability of
coverage states was not known.

To address these points, the CPU/GPU team have devel-
oped the Release Management System (RMS). The RMS
philosophy is to automate as much as possible, to be imple-
mentable using commonly available tools and to provide a
pragmatic interface that can be driven by engineers, managers
and scripts. The RMS automates the merging of designer
commits. Integrator interaction is only required to resolve
conflicts. Furthermore, the RMS implements a ‘gatekeeper’
flow that was developed with Cadence. This flow performs
integrity checks on commits as they are submitted. Feedback
is provided to designers when problems arise – the idea being
to prevent build errors and regression failures from impacting
the main-line. In addition, the RMS automates the collection
and delivery of coverage, qualification and regression data.
Coverage data is processed with an unreachability flow (also
developed with Cadence) to provide a true representation of
the coverage that is achievable through testing. Collectively,
this data provides the basis for the decision making process.

III. THE RELEASE MANAGEMENT SYSTEM

The RMS operates in a similar manner to a Continuous
Integration (CI) server [1]. Continuous integration is a software
practice that improves delivery times by reducing integration
delays. Developers are encouraged to make small frequent
commits which are merged with main-line code and tested
in quick succession. Thus, merges tend to be simple and
problems with erroneous commits are detected quickly.

The literature shows that there are numerous freely available
CI packages. During the literature review for this paper, the
authors counted 33 distinct frameworks. Five of the most
popular packages are shown in Table I.

While the RMS draws inspiration from this work, its archi-
tecture is optimised to support automated processes such as the
gatekeeper flow and the reachability analysis. User’s interact
with the RMS through email. This interface was selected

Name License References
CruiseControl BSD Style License [2], [3]

Jenkins/Hudson Creative Commons / MIT [4], [5]
BuildBot GNU Public License [6], [7]

BuildMaster Proprietary [8], [9]
LuntBuild Apache 2.0 [10], [11]

TABLE I
POPULAR PACKAGES FOR CONTINUOUS INTEGRATION

because it is familiar and can be operated by both humans
and scripts. In addition, the design teams were already using
email to send labels to the Bristol integrator. The RMS server
periodically polls a mailbox. When an RMS email is received,
procmail is used to parse the commands and launch jobs.
The RMS server runs under Fedora Core 16.

One use case (which has improved both developer efficiency
and code quality) is that designers can now submit labels as
they leave the office. When they return, a new release and
a coverage database are waiting. Alternatively the RMS can
reject a label (typically due to a regression failure) and so
provides details for the developer to address.

A. Gatekeeper Flow

One problem with integrating developer labels is in deter-
mining the ‘correct’ set of regressions to run. At ST, designers
would unknowingly request main-line integration of labels
which were later found to contain errors. Although developers
were running ‘smoke’ tests before submission, it was often
the case that these tests did not exercise the modified code
and so were providing a false sense of correctness. Similarly,
developers were unwilling to run the full regressions due to the
length of time taken. Thus, a ‘gatekeeper’ flow was developed
to identify an ‘optimal’ set of regressions i.e. a set of tests
that will exercise the modifications whilst being short enough
to run interactively.

The functionality of the flow is implemented by a Python
script called targeted_regr.py (see Appendix A). This
script collects data from ClearCase (i.e. the source control sys-
tem), previous regressions and the compiled design database
(see Figure 2). This allows the script to determine which Ver-
ilog modules are impacted by the source code modifications.
The regression tests are then ranked for their overall coverage
contribution to the affected modules. This allows the script
to determine the most relevant tests to run. Furthermore, the
regression results include information about the past run times
for each test. Thus, it is possible to constrain the targeted
regression to an approximate time limit.

The gatekeeper flow leverages the capabilities of the Ca-
dence tool-set, however, the script utilises small helper classes
to abstract away from the underlying tools. This simplifies
maintenance and permits components to be interchanged with

Re−run
VSIF

Test
List

Re−run
VSIF

Test
List

SCM
DB

Project
config

ncsim
Snapshot

VSOF
Regression

vManager

targeted_regr.pycleartool

ncls

Fig. 2. Targeted Regression Script showing Inputs, Interactions and Outputs

Send label to
integrator

Repeat for
next label

Send email
to team

Send email
to designer

Yes

T
es

ts
 F

ai
l

Identify and roll back label

Noida

Bristol

Grenoble

Pass

No

C
le

ar
C

as
e

la
be

ls

T
es

ts
 F

ai
l

M
er

ge
 F

ai
le

d

B
ui

ld
 F

ai
le

d

Run Certitude Unreachability flow Run full regressions

Publish results

Reject label

All labels merged?

RMS mailbox −
Linux

Procmail
interface

Merge onto main−line Build all variants Run Gatekeeper flow

Fig. 1. The Release Management System (RMS) – Showing the Interrelationship between the Gatekeeper and the Unreachability flows

ease. For example, although the team uses ClearCase, any
other source control tool can be applied via the project’s
configuration file. The number of command-line options are
minimised to promote genericity and simplicity. Thus, the
static and project specific options are stored in a config-
uration file which can be checked into the project reposi-
tory. The configuration file is implemented using Python’s
ConfigParser module as this provides a simple, extensible
and well documented format. The configuration file specifies:

1) The location of the simulation snapshot;
2) The location of previous regression results;
3) The ranking accuracy (i.e. the trade-off between regres-

sion time and test precision);
4) The maximum number of tests in the regression;
5) The maximum amount of CPU time for the regression;
6) The version control suite to use (e.g. ClearCase, SVN).
When the flow is invoked, targeted_regr.py interro-

gates the source repository to retrieve the list of files that
are being committed by the designer. Any files matching
the user-specified extensions (Verilog by default) are noted.
Next, the simulator’s compiled database is checked to as-
certain which modules are directly affected by each of the
modified source files. Using the Cadence Incisive simulator
this can be achieved using the ncls -source command.
The ncls command logs every compiled design entity and
its corresponding source files, which targeted_regr.py
stores into a Python dictionary. This facilitates a simple look-
up from the changed files back to the module or modules
which need to be re-tested.

Once the list of modules is known, a vManager vPlan file is
generated. This maps all coverage types (structural and func-
tional) on a module-by-module basis to the vPlan. The vPlan is
passed to vManager along with the regression database (i.e. a
VSOF). The regression database enables the regression tests to
be ranked against the generated vPlan. vManager was adopted
in preference to other coverage analysers because vManager
supports a powerful yet simple API that allows ranked tests to
be filtered according to attributes from the tests. In this context,
filtering is based on either one or two attributes, namely, an
index into the test list (for limiting the numbers of tests in
the run) and cumulative CPU time (to limit the overall run-

time). Either limit is optional and is specified in the project
configuration file.

vManager also provides benefits in terms of ranking preci-
sion (e.g. LOW, MEDIUM or HIGH). This facilitates a trade-
off between the accuracy of the results and the time taken to
perform the ranking. Note that ranking accuracy is specified
in the project configuration file. In addition, vManager also
provides the ability to generate a re-run control file (VSIF)
which includes the information required to manually launch
subsequent regressions based on the randomisation seeds,
attributes and scripts from the automated run. This mechanism
is particularly useful in the context of constrained random
tests. Currently, the CPU team uses a mixture of directed tests
(written in C/ASM) and Specman-e, so this flexibility is useful
for re-running both types of test in the gatekeeper regression.

Once targeted_regr.py has generated the list of re-
gressions, control is passed back to the RMS. Before integrat-
ing any labels, the RMS runs the full regression suite on the
current release. This provides a source of reference data which
is used to detect new failures. Each commit is then merged
(in turn) onto the main-line. As each commit is merged, the
gatekeeper tests (for that commit) are run and the results are
compared to the reference data from the full regression. Any
new failures result in the merger being rolled back and details
are emailed to the designer.

B. Unreachability Analysis

Each new RMS release is accompanied by a coverage
report. This allows designers and verification engineers to
frequently monitor progress towards targets. However, not all
uncovered items are reachable through functional testing and
so the RMS implements an automated reachability analysis to
identify and exclude these states. The reachability analysis is
particularly useful for identifying redundant RTL.

The reachability analysis is implemented using formal tools.
Uncovered items in the coverage database are translated into
automatic assertions or ‘covers’. These assertions are then
‘proved’ by formalverifier which generates a list of
coverage marks. These marks are passed to the coverage tool4

which excludes the unreachable states from the final results.
4In the CPU team, we use the Incisive Metrics Center (IMC).

Proven unreachables − accepted and ignored

(INCA_libs)
Simulation snapshot

(Optional)
Simulation waveform

coverage data (UCD)
Simulation merged

HTML
Coverage

Marked
Coverage

Data
(UCD)

Verifier
Reports

Incisive
Metrics
Center

(Analysis)

Enterprise
Incisive Text and

(IEV)

Fig. 3. Key Steps in the Unreachability Analysis Flow

As with most ASIC developers, ST requires 100% structural
coverage. This means that every code block has to be executed,
every expression has to be triggered and every net must be
toggled. Coverage holes are addressed through improvements
in testing or through design reviews. While perfectly valid,
design reviews can be time consuming and can lack rigour
in the face of time pressure. Thus, the reachability analysis
reduces the number of uncovered states and so makes the
review process easier.

The first step is to reduce the number of holes that require
analysis. Techniques such as Constant Object Marking (COM)
and exclude lists can be used to identify design elements
that are not expected to be covered. Constant Object Marking
is an automatic structural analysis that is applied to toggle
coverage by the simulator’s coverage elaboration engine prior
to simulation. Based on knowledge of the design structure, the
elaborator can exclude signals which are tied-off to constant
values. This can be useful for certain design styles where a
fixed port set has unused optional signals that are tied-off at
a higher level. However, COM typically does not provide a
large reduction in toggle coverage holes. Furthermore, COM
does not work well for other metrics e.g. block or expression
coverage as these tend to be too complex for a complete
structural analysis in the simulator. Users may augment COM
exclusions by specifying certain naming conventions for sig-
nals to be excluded e.g. BIST or DFT signals which are
typically tested outside of the main verification flow. While
useful, both of these approaches are of limited benefit and are
not sufficiently complete or robust to fully compensate for the
problems described above.

To address these requirements, Cadence has developed a
powerful and automated technique that utilises formal property
checking to analyse each structural coverage hole. While
formal analysis cannot always produce a conclusive proof, this
technique significantly reduces the number of holes that the
designer must investigate manually. Early prototypes of the
flow were tested and used by ST from the outset (circa 2005)
[12]. Following the official launch of the unreachability flow
in 2011, many ST projects have adopted the technology.

The flow works by taking a merged coverage database (from
a normal RTL regression) and extracting formal properties for
each coverage hole. Properties are represented in an internal

format but are analogous to PSL or SVA cover properties. To
maximise automation, the formal tool builds its model of the
design using the compiled simulation database and shares the
same front-end as the irun command. Thus, setup is a case of
passing the merged coverage file and the simulation snapshot
to the tool (see Figure 3). For each coverage hole, a single
property is generated. These properties are then subjected to
a formal proof using a variety of algorithms. In addition, the
user can accelerate the proof by using multiple CPUs and
algorithms in parallel.

Properties that pass indicate areas of code that can be
reached by the formal engine. In this case, the tool can provide
a waveform which shows an example trace. This can be useful
to determine whether the proof is under-constrained i.e. the
formal engine is visiting states that are actually unreachable
in the design due to a lack of initialisation. More typically, a
designer will be interested in analysing the failing properties
as these indicate areas of unreachable or ‘dead’ code.

Once the formal verification has been completed, IEV
generates a new coverage database file containing exclusion
markers that are distinct from the user defined ‘ignore’ mark-
ers. This allows the designer to load the new database into
the coverage analysis tool and apply the unreachable markers
to the final report. While it is possible to apply all of the
markers in one step, it is generally expected that each marker
will be reviewed and appropriate action taken. For example the
designer may re-factor the RTL to remove the redundancy.

A key advantage of automating this flow is that the reacha-
bility analysis can start earlier in the design cycle. Even if the
formal analysis cannot prove every property, the designer has
a smaller set of holes to analyse. This is particularly useful as
many designers are not comfortable with formal techniques.
The unreachability flow improves productivity by providing
useful data with no requirement to understand the formal
theory. Users can obtain quick (though possibly incomplete)
results because unlike traditional formal property checking,
the unreachability flow is designed to reduce manual analysis
rather than provide exhaustive functional verification. For the
purpose of illustration, selected real-world project results are
given in Table II. Although the results have been anonymised,
they suggest that designs of any size can be tackled. Note
that in the final example, the same design was analysed with

and without initialisation. This demonstrates how a properly
initialised design may exhibit more unreachable coverage
items due to the extra constraints that are implicit in the
initialisation. Thus, there are fewer holes to analyse manually.

Design State bits Simulation % Proven Initialised(approx.) Holes Unreachable
1 2000 2116 18% Uninitialised
2 5000 1073 15% Initialised
3 11000 19 84% Uninitialised
4 30000 369 12% Uninitialised

5 40000 773 8% Uninitialised
40000 773 10% Initialised

TABLE II
EXAMPLE STATISTICS FOR SELECTED UNREACHABILITY ANALYSES

Note that care must be taken to interpret the results from the
unreachability flow correctly. As with main-stream property
checking, under and over-constraint also apply to unreacha-
bility analyses. Under-constraint may lead to dead code being
marked as reachable either due to initialisation that is too
permissive (e.g. state elements having unknown values) or
by failing to constrain external inputs to valid behaviour. By
contrast, over-constraint can result in reachable items being
marked as unreachable. This means that the designer will
be required to perform more manual analysis than is strictly
necessary. However, this may be faster than expending extra
effort to constrain the analysis more accurately.

In our experience, under and over-constraint, in the context
of unreachability analysis, is typically due to the incorrect
initialisation of the design i.e. starting the proof from a state
other than (the correct) reset. One technique to address this is
to sample all state values immediately after reset. These values
can then be used to initialise the proof.

IV. RESULTS

The RMS, gatekeeper and unreachability flows have been
deployed in the development of a CPU sub-system at ST. This
sub-system has been developed for an SoC platform that is
targeted at high performance mobile devices and consists of a
combination of ARM and ST IP.

The results from the RMS deployment are encouraging.
Qualitatively, the RMS has significantly reduced the load on
three key engineers. This has meant that engineers who were
previously consumed by integration activities are now able
to focus on verification. In addition, the gatekeeper flow has
meant that designers are running more appropriate tests and
verification engineers are performing fewer debug cycles.

The unreachability analysis has proved popular and other
ST teams have adopted the flow. The results show that there
is very little dead code in the sub-system. This is due (in
part) to the ARM IP which contains virtually no redundancy.
Table III shows the number of unreachable blocks, expressions
and toggles in the sub-system for five releases. These releases
occurred at the end of the development phase i.e. just prior
to the final deliveries. The values in parentheses indicate
the absolute values as a percentage of the total number of

Release Information Unreachable States (% of total)
Tag Date Labels Block Expression Toggle

13.5.0 13/08/12 11 412 (0.30) 221 (0.86) 526 (0.14)
13.7.0 29/08/12 15 331 (0.24) 32 (0.24) 528 (0.08)
14.0.0 05/09/12 8 331 (0.24) 32 (0.24) 528 (0.08)
14.4.0 26/09/12 8 332 (0.24) 32 (0.24) 528 (0.08)
14.5.0 04/10/12 10 332 (0.24) 32 (0.24) 528 (0.08)

TABLE III
PROJECT DATA FOR SELECTED RELEASES

states for each category. The results are encouraging and show
that almost all of the states are reachable through testing. In
addition, the 13.5.0 release was one of the first releases to
use the flow. The results from that run identified a number of
erroneous cover items that were subsequently excluded.

V. CONCLUSION

This paper has provided three contributions, namely, in-
depth descriptions of the RMS, gatekeeper and unreachability
flows. The intention is to provide the reader with enough
understanding so that they can deploy these ideas in their own
environments. To this end, we have provided sample scripts
for the gatekeeper and unreachability flows in Appendices A
and B. Details of the RMS are available from the authors.

The flows presented here have not only delivered benefits
in terms of tangible effort savings, but have also had positive
effects on the team’s culture. For example, the engineers in
Bristol were significantly more engaged by working on the
RMS than they were performing repetitive activities. Ulti-
mately, this project has promoted a spirit of engineering that
extends to not only the deliverables, but also to the way in
which we work.

REFERENCES

[1] J. L. Gray and G. McGregor, “A 30 Minute Project Makeover Using
Continuous Integration,” in Proc. of Design and Verification Conference
(DVCon), 2012.

[2] M. Parker, Pragmatic Project Automation: How to Build, Deploy, and
Monitor Java Apps. The Pragmatic Programmers, 2004.

[3] J. Schmetzer, “An Introduction to CruiseControl (PowerPoint Slides),”
http://www.exubero.com/ccintro/ccintro-s5.html, 2012, last accessed:
25th November 2012.

[4] J. C. H. Page, “Home Page,” http://jenkins-ci.org/, 2012, last accessed:
21st November 2012.

[5] M. Moser and T. O’Brien, The Hudson Book. Oracle Inc., 2011.
[6] The BuildBot Team, “The BuildBot 0.8.7 Online Documentation,”

http://buildbot.net/buildbot/docs/current/index.html, 2012, last accessed:
21st November 2012.

[7] E. Software, “The BuildBot Homepage,” http://trac.buildbot.net, 2012,
last accessed: 25th November 2012.

[8] Inedo, “BuildMaster Overview,” http://inedo.com/buildmaster/overview,
2012, last accessed: 21st November 2012.

[9] J. Fisk, “Beginners Guide to Continuous Integration with Sharepoint,”
http://www.slideshare.net/jamesafisk/continuous-integration-6636466,
2010, last accessed: 21st November 2012.

[10] The LuntBuild Developers, “Build Automation and Management User’s
Guide,” http://luntbuild.javaforge.com/manual/guide/manual.html, 2012,
last accessed: 21st November 2012.

[11] ——, “Luntbuild - Build Automation and Management User’s Guide,”
http://luntbuild.javaforge.com/manual/guide/manual.html, 2007, last ac-
cessed: 21st November 2012.

[12] G. Faux and J. Müller, “Using Formal Analysis to Improve Dynamic
Code Coverage,” in CDNLive EMEA, April 2008.

APPENDIX A
targeted_regr.py – GATEKEEPER FLOW

! / u s r / b i n / py th on
#
Author : S t e v e Hobbs (s tephenh@cadence . com)
Date : J u l y 4 t h 2012
#
import s y s
import r e
import os
from o p t p a r s e import O p t i o n P a r s e r
import l o g g i n g
import s u b p r o c e s s
import C o n f i g P a r s e r

c l a s s module :
""" Helper class to represent a Verilog module.

Currently just wraps around a list of file
names.

"""
def i n i t (s e l f , name) :

s e l f . name=name
s e l f . s o u r c e s = []

def a d d s o u r c e (s e l f , f i l e) :
i f f i l e not in s e l f . s o u r c e s :

s e l f . s o u r c e s . append (f i l e)

def depends on (s e l f , f i l e) :
i f f i l e in s e l f . s o u r c e s :

re turn True
re turn F a l s e

def dump (s e l f) :
re turn "Module ’"+ s e l f . name+"’\n\t"+"\n\t" .

j o i n (s e l f . s o u r c e s)

c l a s s d e s i g n A c c e s s :
""" Provides abstracted API for interrogating the

compiled design database.
"""
def i n i t (s e l f , c d s l i b , h d l v a r) :

s e l f . c d s l i b = c d s l i b
s e l f . h d l v a r = h d l v a r
s e l f . modules ={}
s e l f . c u r r e n t S c o p e =None
s e l f . n c l s ()

def has module (s e l f , name) :
""" Returns True if the named module exists in

the design database """
re turn name in s e l f . modules

def add module (s e l f , name) :
s e l f . c u r r e n t S c o p e = name
s e l f . modules [name] = module (name)

def dump (s e l f) :
re turn "\n" . j o i n ([s e l f . modules [m] . dump () f o r m

in s e l f . modules])

def a d d f i l e (s e l f , f i l e) :
i f s e l f . c u r r e n t S c o p e != None :

s e l f . modules [s e l f . c u r r e n t S c o p e] . a d d s o u r c e (
f i l e)

def g e t a s s o c i a t e d m o d u l e s (s e l f , f i l e) :
""" Returns a list of module names that depend

on the specified file
"""
m l i s t = [m f o r m in s e l f . modules . keys () i f

s e l f . modules [m] . depends on (f i l e)]
re turn m l i s t

def n c l s (s e l f) :
""" Interrogate the Cadence simulator database

"""
cmd = [’ncls’ , b i t s 6 4 , ’-CDSLIB’ , s e l f . c d s l i b ,

’-HDLVAR’ , s e l f . h d l v a r , ’-SOURCE’ ,
’-ABSOLUTE_PATH’ ,’-VERILOG’ ,
’-NOCOPYRIGHT’ ,’-NOLOG’]

l o g g e r . debug (’ncls command is: ’+’ ’ . j o i n (cmd)
)

n c l s = s u b p r o c e s s . Popen (cmd , s t d o u t = s u b p r o c e s s
. PIPE)

f o r l i n e in n c l s . s t d o u t :
D e t e c t n c l s warn ings and e r r o r s and l o g

them
s = l o g g i n g .DEBUG
e = r e . s e a r c h (’*([EWF]),[A-Z]+:’ , l i n e)
i f e != None :

i f e . group (1) == ’W’ :
s = l o g g i n g .WARNING

e l i f e . group (1) == ’E’ :
s = l o g g i n g .ERROR

e l i f e . group (1) == ’F’ :
s = l o g g i n g . CRITICAL

l o g g e r . l o g (s , ’ncls: ’+ l i n e . r s t r i p ())

m = r e . s e a r c h (’module\s+(\w+).(\w+):(\w+)’ ,
l i n e)

i f m != None :
s e l f . add module (m. group (2))
c o n t i nu e

m = r e . s e a r c h (’(\S+?)\s+\[lines:’ , l i n e)
i f m != None :

s e l f . a d d f i l e (m. group (1))
c o n t i nu e

m = r e . s e a r c h (’Source files:’ , l i n e)
i f m != None :

c o n t i nu e
s e l f . c u r r e n t S c o p e = None

c l a s s v p l a n :
""" Helper code to create the vPlan file for

ranking """
def i n i t (s e l f) :

s e l f . name=’targeted_regr’
s e l f . modules = []

def add modules (s e l f , modules) :
f o r m in modules :

s e l f . modules . append (m)

def g e t f i l e n a m e (s e l f) :
re turn s e l f . name+’.vplan’

def g e t t o p p e r s p e c t i v e (s e l f) :
re turn ’top’

def w r i t e (s e l f) :
l o g g e r . i n f o (’Creating vPlan ’+ s e l f .

g e t f i l e n a m e ())
vp = open (s e l f . name+’.vplan’ ,’w’)
vp . w r i t e (’section "’+ s e l f . name+’" {\n’)
do modules
f o r m in s e l f . modules :

vp . w r i t e (’section "’+m+’" {\n’)
vp . w r i t e (’ coverage "metrics" {\n’)
vp . w r i t e (’ items_pattern : "(hdl,type)’+

m+’.*";\n’)
vp . w r i t e (’ }; // ’+m+’\n’)
vp . w r i t e (’}; // ’+m+’\n’)

c l o s e v p l a n
vp . w r i t e (’}; // ’+ s e l f . name+’\n’)
vp . w r i t e (’perspective "’+ s e l f .

g e t t o p p e r s p e c t i v e () +’" {\n’)

vp . w r i t e (’ top_section : "’+ s e l f . name+’";\n’)
vp . w r i t e (’};’)

def t r y r e m o v e (f i l e) :
""" Helper to catch and warn on removing a file

from disk """
t r y :

os . remove (f i l e)
e xc ep t (OSError) :

l o g g e r . warn ing ("Could not remove file ’"+ f i l e +
"’")

Parse command−l i n e argument s
p a r s e r = O p t i o n P a r s e r ()
p a r s e r . a d d o p t i o n (
"-l" , "--log" , d e s t ="logName" , a c t i o n =’store’ ,

t y p e =’string’ ,
h e l p ="Specify the log file name" , me tava r ="FILE" ,

d e f a u l t =’targeted_regr.log’)
p a r s e r . a d d o p t i o n (
"-c" , "--config" , d e s t ="config" , a c t i o n =’store’ ,

t y p e =’string’ ,
h e l p ="Specify a configuration file" , me tava r ="FILE

" , d e f a u l t =’targeted_regr.cfg’)
p a r s e r . a d d o p t i o n (
"-v" , "--verilog" , d e s t ="verilog" , a c t i o n =’append’

, t y p e =’string’ ,
h e l p ="Process a Verilog file" , me tava r ="FILE")

p a r s e r . a d d o p t i o n (
"-m" , "--module" , d e s t ="modules" , a c t i o n =’append’ ,

t y p e =’string’ ,
h e l p ="Process list FILE" , me tava r ="MODULE")

p a r s e r . a d d o p t i o n (
"-d" , "--debug" ,
a c t i o n ="store_true" , d e s t ="debug" , d e f a u l t = F a l s e ,
h e l p ="print debugging messages")

(o p t i o n s , a r g s) = p a r s e r . p a r s e a r g s ()

C o n f i g u r e l o g g i n g
l o g g e r = l o g g i n g . g e t L o g g e r (’tr’)
l o g g e r . s e t L e v e l (l o g g i n g .DEBUG)
fh = l o g g i n g . F i l e H a n d l e r (f i l e n a m e = o p t i o n s . logName ,

mode=’w’)
fh . s e t L e v e l (l o g g i n g .DEBUG)
ch = l o g g i n g . S t r e amHand le r ()
ch . s e t L e v e l (l o g g i n g . INFO)
l o g g e r . addHand le r (fh)
l o g g e r . addHand le r (ch)

i f o p t i o n s . debug == True :
l o g g e r . s e t L e v e l (l o g g i n g .DEBUG)

Use C o n f i g P a r s e r o b j e c t t o read c o n f i g f i l e
c o n f i g = C o n f i g P a r s e r . S a f e C o n f i g P a r s e r ()
c o n f i g . r e a d (o p t i o n s . c o n f i g)

c d s l i b = c o n f i g . g e t (’incisive’ , ’cdslib’)
l o g g e r . debug (’cdslib=’+ c d s l i b)
h d l v a r = c o n f i g . g e t (’incisive’ , ’hdlvar’)
l o g g e r . debug (’hdlvar=’+ h d l v a r)
b i t s = c o n f i g . g e t (’incisive’ , ’bits’)
i f s t r (b i t s) =="64" or s t r (b i t s) =="64bit" :

b i t s 6 4 ="-64BIT"
e l s e :

b i t s 6 4 =""
l o g g e r . debug (’bits=’+ b i t s 6 4)

v s o f = c o n f i g . g e t (’regression’ , ’vsof’)
l o g g e r . debug (’vsof=’+ v s o f)
r ankAccuracy = c o n f i g . g e t (’ranking’ , ’accuracy’)
l o g g e r . debug (’ranking accuracy=’+ rankAccuracy)
r a n k F i l e = c o n f i g . g e t (’regression’ , ’rankfile’)
l o g g e r . debug (’rankfile=’+ r a n k F i l e)
doRun = c o n f i g . g e t b o o l e a n (’regression’ , ’run’)

l o g g e r . debug (’run=’+ s t r (doRun))
m a x t e s t s = c o n f i g . g e t i n t (’regression’ , ’max_tests’)
l o g g e r . debug (’max_tests=’+ s t r (m a x t e s t s))
max time = c o n f i g . g e t i n t (’regression’ , ’max_time’)
l o g g e r . debug (’max_time=’+ s t r (max time))
scmtype = c o n f i g . g e t (’scm’ , ’tool’)
l o g g e r . debug (’scm tool=’+ scmtype)
s c m s t a t u s = c o n f i g . g e t (scmtype , ’status’)
l o g g e r . debug (’scm status=’+ s c m s t a t u s)
v l o g e x t = c o n f i g . g e t (’incisive’ , ’vlogext’)
l o g g e r . debug (’vlogext=’+ v l o g e x t)
r e r u n v s i f = c o n f i g . g e t (’incisive’ , ’rerun_vsif’)
l o g g e r . debug (’rerun_vsif=’+ r e r u n v s i f)
r e run scheme = c o n f i g . g e t (’incisive’ , ’rerun_scheme’

)
l o g g e r . debug (’rerun_scheme=’+ re run scheme)

S a n i t y c h e c k s as e a r l y as p o s s i b l e :
i f os . p a t h . e x i s t s (v s o f) :

l o g g e r . i n f o ("Regression VSOF is present")
e l s e :

l o g g e r . c r i t i c a l ("Regression VSOF ’"+ v s o f +
"’ is missing, there are no regression results

to rank")
e x i t (1)

B u i l d l i s t o f modules t o be ranked / r e g r e s s i o n
t e s t e d

t a r g e t M o d u l e s ={}
F i r s t , any e x p l i c i t l y men t ioned modules
i f o p t i o n s . modules != None :

f o r m in o p t i o n s . modules :
l o g g e r . i n f o ("User requested ranking for module

’"+m+"’")
t a r g e t M o d u l e s [m]= True

e l s e :
l o g g e r . i n f o ("No Verilog modules were specified at

the command line")

d e s i g n = None
Then any modules t h a t are d e p e n d a n t s o f any

V e r i l o g f i l e s t h a t changed
l o g g e r . i n f o ("User specified Verilog files to be

checked")
Use n c l s t o g e t d e s i g n i n f o i n t o memory
d e s i g n = d e s i g n A c c e s s (c d s l i b , h d l v a r)
l o g g e r . debug (d e s i g n . dump ())

i f o p t i o n s . v e r i l o g != None :
f o r f in o p t i o n s . v e r i l o g :

l o g g e r . i n f o ("Finding module dependencies for
file ’"+ f +"’")

f o r m in d e s i g n . g e t a s s o c i a t e d m o d u l e s (f) :
l o g g e r . i n f o ("Module ’"+m+"’ is affected by

’"+ f +"’")
t a r g e t M o d u l e s [m]= True

e l s e :
l o g g e r . i n f o ("No Verilog files were specified at

the command line")

Query t h e SCM t o o l i f no modules or f i l e s were
s p e c i f i e d on t h e command l i n e

i f (o p t i o n s . v e r i l o g == None) and (o p t i o n s . modules ==
None) :

l o g g e r . i n f o ("No Verilog files or modules were
specified; interrogating SCM tool")

found = F a l s e
l o g g e r . debug ("Running SCM status command: "+

s c m s t a t u s)
scm = s u b p r o c e s s . Popen (s c m s t a t u s , s h e l l =True ,

s t d o u t = s u b p r o c e s s . PIPE)
scm . w a i t ()
exp r ="(\S+?\.("+ v l o g e x t +"))"
l o g g e r . debug ("expr="+ expr)

f o r l i n e in scm . s t d o u t :
l o g g e r . debug (scmtype +’: ’+ l i n e . r s t r i p ())
m = r e . s e a r c h (expr , l i n e)
i f m != None :

i f d e s i g n == None :
l o g g e r . debug (” Going t o g e t d e s i g n i n f o

from t h e c o m p i l e d l i b r a r y ”)
d e s i g n = d e s i g n A c c e s s (c d s l i b , h d l v a r)
f = m. group (1)
i f f [0] != ’/’ :

l o g g e r . debug ("Got a relative path ’"+ f +"
’ from SCM; prefixing it to get
absolute path")

f = os . g e t e n v (’PWD’) +’/’+ f
l o g g e r . i n f o ("Finding module dependencies

for file ’"+ f +"’")
f o r m in d e s i g n . g e t a s s o c i a t e d m o d u l e s (f) :

l o g g e r . i n f o ("Module ’"+m+"’ is affected
by ’"+ f +"’")

t a r g e t M o d u l e s [m]= True
found = True

i f found == F a l s e :
l o g g e r . warn ing ("SCM did not report any changed

Verilog files")

Check t h a t a l l s p e c i f i e d modules e x i s t i n t h e
d e s i g n

f o r m in t a r g e t M o d u l e s . keys () :
i f d e s i g n . has module (m) :

l o g g e r . i n f o ("Module "+m+" exists in the design
database")

e l s e :
l o g g e r . e r r o r ("Module "+m+" does not exist in

the design database")
d e l t a r g e t M o d u l e s [m]

Ensure a t l e a s t one module has been s p e c i f i e d f o r
rank ing ,

once a l l p r u n i n g e t c has happened .
i f l e n (t a r g e t M o d u l e s . keys ()) == 0 :

l o g g e r . c r i t i c a l ("No (valid) Verilog modules were
found or specified, therefore no ranking can
be done")

e x i t (2)

l o g g e r . i n f o ("Final list of modules: "+’ ’ . j o i n (
t a r g e t M o d u l e s . keys ()))

B u i l d vPlan f o r r a n k i n g
vp = v p l a n ()
l o g g e r . i n f o ("Building vPlan ’"+vp . g e t f i l e n a m e () +"’

for ranking")
vp . add modules (t a r g e t M o d u l e s . keys ())
vp . w r i t e ()

B u i l d r a n k i n g s c r i p t on−the− f l y
ecom = open (’rank.ecom’ , ’w’)
ecom . w r i t e (’// Auto-generated - DO NOT EDIT\n’)
ecom . w r i t e (’set notify -severity=IGNORE

REGISTERING_ATTR_DEFINITION_FILE;\n’)
ecom . w r i t e (’set notify -severity=IGNORE

DUPLICATE_ATTRIBUTE_DEFINITION;\n’)
ecom . w r i t e (’set notify -severity=IGNORE

VM_MSG_VPLAN_MISSING_CVR_ITEMS;\n’)
ecom . w r i t e (’setup;\n’)
ecom . w r i t e (’var my_context :vm_context;\n’)
ecom . w r i t e (’var vsof:= vm_manager.read_session("’+

v s o f +’");\n’)
ecom . w r i t e (’my_context = vm_manager.create_context({

vsof}, "Default");\n’)
ecom . w r i t e (’my_context.read_vplan("’+vp . g e t f i l e n a m e

() +’");\n’)
ecom . w r i t e (’my_context.set_perspective_by_name("’+vp

. g e t t o p p e r s p e c t i v e () +’");\n’)

ecom . w r i t e (’var tr_rank := my_context.
create_vplan_attribute("tr_rank", GRADE, "/
targeted_regr");\n’)

ecom . w r i t e (’my_context.rank_with_accuracy(tr_rank ,
’+ rankAccuracy +’);\n’)

ecom . w r i t e (’my_context.add_filter(vm_manager.
get_attribute_by_name("rank_id"), ">=", "0");\n’
)

ecom . w r i t e (’print my_context.get_groups();\n’)
i f max time > 0 :

Implemen t l i m i t on run−t i m e
ecom . w r i t e (’var ccpu_attr := vm_manager.

get_attribute_by_name("cumulative_cpu_time")
;\n’)

ecom . w r i t e (’my_context.add_attribute(ccpu_attr);\
n’)

ecom . w r i t e (’my_context.add_filter(ccpu_attr,
"<=", "’+ s t r (max time ∗60)+’");\n’)

ecom . w r i t e (’var curr_runs := my_context.get_groups()
;\n’)

ecom . w r i t e (’print curr_runs;\n’)
ecom . w r i t e (’var name_attr := vm_manager.

get_attribute_by_name("full_title");\n’)
ecom . w r i t e (’var names := curr_runs.apply(it.

get_attribute_value(name_attr));\n’)
ecom . w r i t e (’print names;\n’)
ecom . w r i t e (’var f := files.open("’+ r a n k F i l e +’","w","

Text file");\n’)
i f m a x t e s t s > 0 :

Implemen t l i m i t on number o f t e s t s
ecom . w r i t e (’for each in names {if (index<’+ s t r (

m a x t e s t s) +’) {files.write(f,it)}};\n’)
e l s e :

ecom . w r i t e (’for each in names {files.write(f,it)
};\n’)

ecom . w r i t e (’files.close(f);\n’)
ecom . w r i t e (’my_context.create_rerun_vsif("’+

r e r u n v s i f +’", vm_manager.obtain_rerun_scheme("’
+ re run scheme +’"));\n’)

ecom . c l o s e ()
t r y r e m o v e (r e r u n v s i f)
t r y r e m o v e (r a n k F i l e)

Use vManager t o rank t h e t e s t s a g a i n s t t h e
s e l e c t e d modules

cmd = [’vmanager’ , ’-batch’ , ’-command’ , ’@rank.ecom
’]

l o g g e r . debug ("Running vManager with: "+’ ’ . j o i n (cmd)
)

l o g g e r . i n f o ("Ranking tests. This may take some time,
please be patient!")

iem = s u b p r o c e s s . Popen (cmd , s t d o u t = s u b p r o c e s s . PIPE)
iem . w a i t ()
f o r l i n e in iem . s t d o u t :

Capture vManager o u t p u t t o t h e l o g
l o g g e r . debug (’iem: ’+ l i n e . r s t r i p ())

i f o p t i o n s . debug != True :
t r y r e m o v e (’rank.ecom’)

i f os . p a t h . g e t s i z e (r a n k F i l e) > 0 :
l o g g e r . i n f o ("Ranked test results are ready in

file ’"+ r a n k F i l e +"’")
e l s e :

l o g g e r . e r r o r ("Ranking produced an empty test list
.\n"+

"Try checking that you have recorded coverage
for the following modules:\n\t"+

"\n\t" . j o i n (t a r g e t M o d u l e s . keys ()))
e x i t (3)

i f doRun == True :
Run a r e g r e s s i o n d i r e c t l y , i f r e q u e s t e d
l o g g e r . i n f o ("Starting regression")

ecom = open (’rerun.ecom’ , ’w’)
ecom . w r i t e (’// Auto-generated - DO NOT EDIT\n’)
ecom . w r i t e (’set notify -severity=IGNORE

REGISTERING_ATTR_DEFINITION_FILE;\n’)
ecom . w r i t e (’set notify -severity=IGNORE

DUPLICATE_ATTRIBUTE_DEFINITION;\n’)
ecom . w r i t e (’set notify -severity=IGNORE

VM_MSG_VPLAN_MISSING_CVR_ITEMS;\n’)
ecom . w r i t e (’start_session -vsif ’+ r e r u n v s i f +’\n’

)
ecom . c l o s e ()
cmd = [’vmanager’ , ’-batch’ , ’-command’ , ’@rerun.

ecom’]
l o g g e r . debug ("Running vManager with: "+’ ’ . j o i n (

cmd))
iem = s u b p r o c e s s . Popen (cmd , s t d o u t = s u b p r o c e s s .

PIPE)
iem . w a i t ()
f o r l i n e in iem . s t d o u t :

l o g g e r . debug (’iem: ’+ l i n e . r s t r i p ())
i f o p t i o n s . debug != True :

t r y r e m o v e (’rerun.ecom’)
e l s e :

l o g g e r . i n f o ("Finished preparing test list. User
must now start the regression manually")

e x i t (0)

Listing 1. Gatekeeper Flow (Python)

APPENDIX B
unreachability_analysis.sh – BASH SCRIPT

! / b i n / bash

d a t e = ‘ d a t e +"%d%b%Y" ‘
dutModule=<your DUT module>
d u t L i b r a r y=<your DUT l i b r a r y >
s n a p s h o t =${ d u t L i b r a r y } . i e v u n r s n a p s h o t
covdb=<p a t h t o your c o v e r a g e d a t a b a s e >
c d s h d l=<p a t h t o your cds . l i b and h d l . v a r f i l e s >

i f [! −d $covdb] ; then
echo "Failed to find the coverage directory ’

$covdb’. Aborting."
e x i t

f i

W r i t e a new c o v e r a g e s c r i p t f i l e
c a t > c o v f i l e <<EOF
s e l e c t c o v e r a g e −a l l − i n s t a n c e <your i n s t a n c e name>
d e s e l e c t c o v e r a g e −a l l − i n s t a n c e <d e s e l e c t i o n s >
EOF

Re−e l a b o r a t e t h e s n a p s h o t
n c e l a b \
−a c c e s s +rwc \
−NOWARN DLCPTH \
−c o v e r a g e a l l \
−c o v f i l e c o v f i l e \
−co vd u t $dutModule \
−nowarn MRSTAR \
− t i m e s c a l e 1 ns / 1 ps \
−u p d a t e \
−nowarn CUDEFB \
${ d u t L i b r a r y } . ${dutModule} \
−s n a p s h o t $ s n a p s h o t \
$ c d s h d l

i f [$? −ne 0] ; then
echo "Failed ncelab stage, aborting"
e x i t

f i

echo n c l s −snap $ c d s h d l

B u i l d t h e model and t h e u n r e a c h a b i l i t y a s s e r t i o n s
f o r m a l b u i l d \
−messages \
$ s n a p s h o t \
$ c d s h d l \
−n o h a l \
−e n t e r p r i s e \
−c o v e r a g e a l l \
−c o v u n i t module \
−covdb $covdb \
−nowarn PRMFSM \
−nowarn PRTCON \
−nowarn BADFSM \
−nowarn EXTFSM \
−nowarn NONGEN \
+ f v i p s

i f [$? −ne 0] ; then
echo "Failed formalbuild stage, aborting"
e x i t

f i

run F o r m a l V e r i f i e r and produce t h e r e f i n e m e n t s
c a t > f o r m a l v e r i f i e r c o m m a n d s . t c l <<EOF
prove
e x i t
EOF

f o r m a l v e r i f i e r \
$ s n a p s h o t \
$ c d s h d l \
−e n t e r p r i s e \
−c o v e r a g e a l l \
−c o v u n i t module \
−i n p u t f o r m a l v e r i f i e r c o m m a n d s . t c l \
−s v l i b <your l i b u v m d p i . so pa th> \
−covdb $covdb

i f [$? −ne 0] ; then
echo "Failed formalverifier stage, aborting"
e x i t

f i

i f [−r i e v i g n o r e d c o v e r a g e . c f] ; then
echo "Found the coverage marks file."

e l s e
echo "Failed to find iev_ignored_coverage.cf,

formalverifier must have failed. Aborting."
e x i t

f i

Run IMC and g e n e r a t e t h e c o v e r a g e r e p o r t s
c a t > i m c r e a c h a b i l i t y c o m m a n d s . t c l <<EOF
l o a d $covdb
c o n v e r t i c f i e v i g n o r e d c o v e r a g e . c f −o u t

i e v i g n o r e d c o v e r a g e . t c l
source i e v i g n o r e d c o v e r a g e . t c l
s ave −r e f i n e m e n t i e v i g n o r e d c o v e r a g e . v r e f i n e
l o a d −r e f i n e m e n t <p a t h t o your r e f i n e m e n t f i l e >
r e p o r t −d e t a i l −html −o u t marked coverage ${ d a t e } −

source on −o v e r w r i t e
e x i t
EOF

imc −b a t c h − i n i t i m c r e a c h a b i l i t y c o m m a n d s . t c l

i f [$? −ne 0] ; then
echo "Failed imc reporting stage, aborting"
e x i t

f i

Listing 2. Unreachability Analysis Script (Bash)

