
How to Succeed Against Increasing Pressure:
Automated Techniques for Unburdening
Verification Engineers

James Pascoe (STMicroelectronics)

Steve Hobbs (Cadence)

26 February 2013

Overview
• Who are we:

• The ‘CPU’ part of ‘CPU/GPU’ in TR&D (ST Bristol)
• Steve is the local Cadence FAE 
• We develop ARM based sub-systems for a range of SoCs

• Organisation:
• System-level functional verification (Noida)
• Block-level activities (Bristol)
• Low-power and DFT verification (Grenoble)

• Automation techniques:
• Release Management System (RMS)
• Gatekeeper flow
• Reachability flow

2

26/02/2013DVCon 2013 – DoubleTree, San Jose

Subsystem 3

26/02/2013DVCon 2013 – DoubleTree, San Jose

Context
• The scope of verification is increasing:

• Verification engineers in Bristol act as integrators for the rest of the team
• Merging developer commits onto the main-line
• Lots of time spent debugging faulty commits
• Verification engineers were spending > 35% on non-verification activities!

• Grenoble team provides a customer interface
• Developing IP-XACT descriptions of components
• Providing integration support to SoC teams
• Fielding questions on technologies not related to verification

• Noida team is frequently required to produce commodity data
• Coverage reports, qualification runs, regression data …
• Requests are ad-hoc and disrupt the day-to-day workflow
• High potential for automation

4

26/02/2013DVCon 2013 – DoubleTree, San Jose

Approach
• Developed a Release Management Server (RMS)

• Extensible infrastructure for driving bespoke flows
• Automated merging of developer commits
• Commodity data on request

• Gatekeeper flow
• Developers do not want to run full regressions for each modification
• Smoke tests do not always exercise the actual modification
• Gatekeeper flow provides a meaningful list of tests to run before a commit

• Unreachability analysis
• Not all states are reachable in functional mode
• Unreachability analysis excludes unreachable states from coverage data
• Indicates areas of dead code and increases accuracy in coverage data

5

26/02/2013DVCon 2013 – DoubleTree, San Jose

Release Management System

The Problem
• Bristol team are required to produce global releases

• Designers email ClearCase labels to integrators (verification engineers)
• Tight timescales lead to poorly tested labels
• Integrators merge labels into ClearCase and run regressions
• Verification engineers spend lots of time debugging commits

• Noida team is increasingly asked for commodity data
• Requests for coverage reports, qualification runs and regression data
• Frequency of requests has increased during the project
• Highly disruptive to day-to-day work flow

• Observations
• At peak times the number of labels and requests is high
• Majority of labels and requests can be fulfilled with no human involvement
• Over time, code quality remained flat

7

26/02/2013DVCon 2013 – DoubleTree, San Jose

Release Management Server
• Similar principle to a Continuous Integration server (e.g. Jenkins)

• Developers email commands to the RMS:
• MERGE GNB_EAGLE_SS_V14.15.3_pascoej_incisiv_update
• COVERAGE –unreachability YES
• CERTITUDE –run NOW

• Server executes following algorithm:

8

26/02/2013DVCon 2013 – DoubleTree, San Jose

Release Management Server
• Implementation details

• Built around widely available tools (Fedora Core 17)
• Procmail polls a well defined mailbox
• Perl scripts perform actions
• RMS integrates with existing project build infrastructure
• Provides a platform for running custom flows

• Results
• Developers were more willing to fix problems when given counter examples
• Encouraged frequent smaller merges rather than big monolithic merges
• On-demand access to commodity data unburdened the Noida team
• Engineers enjoyed building the RMS
• Allowed three key verification engineers to work on verification 

9

26/02/2013DVCon 2013 – DoubleTree, San Jose

The Gatekeeper Flow

Gatekeeping
• How can we improve the quality of labels?

• Poorly tested developer commits waste verification effort. However …
• Running full regressions on each label takes too long
• Smoke tests do not always exercise the modifications

• Gatekeeper flow
• Provides a set of smoke tests that are meaningful for each label
• Uses ClearCase to determine which modules have been affected
• Analyses simulation snapshot to determine which tests are suitable

• Observations
• Developers like and are happy to use the flow
• Test failures are detected more quickly and are more relevant
• Python script is included in the paper

11

26/02/2013DVCon 2013 – DoubleTree, San Jose

Example Deployment
• Flow is designed to be portable:

• Script leverages helper classes to abstract away from specific toolsets etc.
• Project specific details are contained in a project config file
• Current deployment at ST is as follows:

12

26/02/2013DVCon 2013 – DoubleTree, San Jose

Reachability Analysis

Reachability Flow
• Coverage data is useful to monitor progress

• However, not all states are reachable through functional testing (e.g. DFT)
• The RMS includes an automated flow to exclude these states
• Useful for highlighting areas of `dead-code’

• Reachability flow
• Implemented using formal tools (i.e. formalverifier)
• Uncovered items in the coverage database are translated into ‘cover’ assertions
• Assertions are ‘proved’ by formalverifier
• Generates a list of coverage marks
• Marks are passed to coverage tool which excludes unreachable states

• Observations
• ARM IP contains almost no dead code
• Reachability flow meant that redundant code did not accumulate

14

26/02/2013DVCon 2013 – DoubleTree, San Jose

Operation
• Reachability flow:

• Based on the Cadence tool-chain
• Uncovered items in the coverage database are translated into ‘cover’ assertions
• Assertions are ‘proved’ by formalverifier
• Results in a list of coverage marks
• Marks are passed to a coverage tool
• Coverage tool excludes unreachable states from published results
• Script is in the paper

15

26/02/2013DVCon 2013 – DoubleTree, San Jose

Conclusions

Conclusions
• Overall, the project has been successful

• Allowed three verification engineers to focus on verification
• Gatekeeper flow has improved code quality
• Reachability analysis has improved accuracy and eliminated dead-code
• Commodity data now available on request

• Interesting cultural benefits
• Engineers enjoyed developing the automated solutions

• More interesting than `handle turning’
• Designers will address bugs in labels when provided with counter examples

• RMS provides good feedback
• Encourages better working patterns

• Engineers are making more frequent smaller commits rather than big merges
• Provided a sense of engineering the way that we work

• Not just what we deliver! 

17

26/02/2013DVCon 2013 – DoubleTree, San Jose

Questions

	�How to Succeed Against Increasing Pressure:�Automated Techniques for Unburdening�Verification Engineers
	Overview
	Subsystem
	Context
	Approach
	�Release Management System
	The Problem
	Release Management Server
	Release Management Server
	�The Gatekeeper Flow
	Gatekeeping
	Example Deployment
	�Reachability Analysis
	Reachability Flow
	Operation
	�Conclusions
	Conclusions
	�Questions

