

How to Stay Out of the News with ISO26262-Compliant Verification

Charles Battikha (chuck_battikha@mentor.com) Doug Smith (doug_smith@mentor.com)

- Taking New Products into the Automotive Market... Welcome to Functional Safety
- From Analysis to Fault Campaigns
- Break
- How Formal Reduces Fault Analysis for ISO 26262
- Requirement Tracing in the ISO26262 World

Entering the Automotive Market...

 Reviewing the challenges and requirements in the Automotive Market & ISO26262 Standard

Complexity of Automotive Systems

LINES OF CODE

S-MB10 6 radar beams

8 cameras 12 parking sensors 144 electronic control units 500 LEDs 734 wire harnesses 2,400 wires 5,000 meters of cables

		IBITION	F	un	ctional Safety = Tak	ble	S	ta	ke	es		
Se	everity Injuries	+ Pro	obability posure C2	T	Driver Control = ASIL Set by OEM	Rate of t year of in MODEL YEAR 2013	raffic fat	alities per			, by mode 2013	el year and RATE — 3-5.9 deaths
	E1	QM	QM	QM	Goal is the create a <i>highly</i>	12 11			_			
	E2	QM	QM	QM	assured design by removing	'10 '09					•	— 6-8.9
S1	E3	QM	QM	A	unreasonable risk	'08 '07						
	E4	QM	A	В		'06 '05						— 9-11.9
	E1	QM	QM	QM	-	'04 '03						
0.0	E2	QM	QM	A	-	'02						
S2	E3	QM	A	В	-	'01 2000						
	E4	A	В	С	-	'99 '98						- 12-14.9
	E1	QM	QM	A		'97 '96						
	E2	QM	A	В		'95						
S3	E3	A	В	С	ASIL D S3=Life-threatening, fatal injuries	'94 '93						
	E4	В	С	D	 → E4=High probability of exposure 	'92 '91						
					C3=Difficult for driver to control	'90 Source: WS	5J analysis; I	Experian Info	ormation Solu	utions	The Wa	II Street Journal

Source: WSJ analysis; Experian Information Solutions

The Wall Street Journal

Functional Safety Tradeoffs

Integrator Cost (Components) Integrator Development Effort

IP / IC Cost (Area) IP / IC Power (Area) IP / DC Development Effort Increased ASIL

2018

SIGN AND VERIFIC

JNITED STATE

IC/IP with ISO Compliance and higher ASIL ratings reduces effort, cost, and complexity for integrators. Increased Cost & Development Examples:

- Reviews, Audits, Assessments
- Additional Logic in Safety Mechanisms
- Additional Rigor & Deliverables

ISO26262 – The known

Established IC/IP Developers likely have strong development & verification processes:

- Development process well documented
- ... & shown to be followed
- Create and maintain artifacts
- Requirements tracing
- Source Control
- Change Management
- Documentation Control

ISO26262 – The unknown

IC/IP developers new to the automotive market will find:

- Safety Culture
- Safety Requirements
- Safety Mechanisms
- Safety Analysis
- FMEA / FMEDA / DFA / FTA
- Fault Metrics
- Fault Insertion Campaign
- Safety Manual
- Tool Qualification

"V" Development & Verification

Requires Two Testing Approaches

Systematic Failures Introduced in product development

- Incorrect Requirements
- Inaccurate/incomplete specs
- RTL Errors
- Timing Errors

Random Failures Introduced by the environment

- Vibration
- Moisture/Dirt
- Noise
- EMI
- Electro-migration

λ_{s}	Safe Faults; Does not effect the Safety Requirements
λ_{SPF}	Single Point Fault ; Fault violating a Safety Requirements. Not covered by a Safety Mechanism. <u>Should be addressed</u> .
λ _{rf}	 Residual Faults; Faults not detected by an intended Safety Mechanism and lead to a violation of Safety Requirements. Single Point Faults and Residual Fault are not differentiated from a fault analysis perspective. Diagnostic Coverage measures effectiveness of safety mechanism in detecting Residual Faults – permanent and transient.

λ _{DPF,DP}	Dual-Point Faults – Detected/Perceived; Combination of independent faults
	that may lead to a violation of Safety requirements.
λ _{dpf,l}	Dual-Point Faults – Latent ; Faults not detected by safety mechanisms that would lead to a dual-point failure. Considered to be a fault in primary safety mechanism that is undetectable.

Diagnostic Coverage

POST & Interrupt Driven BIST as SM

FTTI determines:

2018

DESIGN AND VERIFICATION

UNITED STATES

- 1. If POST only sufficient
- 2. Frequency of BIST

Structural Analysis

Represents no coverage of SM / against function.

Represents potential coverage of SM against function.

 $A1 = combination(F_{RF} F_{SAFE})$ $A2 = combination(F_{DP,DET} F_{RF} F_{SAFE})$

Likely residual fault distribution: $F_{RF,A1} >> F_{RF,A2}$ Creates a max ceiling for DC.

Goal: Reduce area of A1 before starting fault campaign.

2018 ESIGN AND VERIFICATIO JNITED STATES

Dependent Fault Analysis (DFA)

But easy in an IC to create DFI...

- Use COI to find unintended overlap which implies shared resources
- Cutpoints & black-boxes stop COI tracing when function is protected

- ISO26262 *is* Functional Safety
- Requires many companies to create a Safety Culture
- Requires strong development and verification processes
- Requires analysis to address random hardware faults
- Reaching higher ASIL ratings will increase effort and costs

From Analysis to Fault Campaigns

Charles Battikha (chuck_battikha@mentor.com)

- Recap of Safety Analysis
- Usage of Metrics
- Analysis
- Fault Injection Campaign
- Summary

Safety Analysis

- Qualitative Analysis
 - Effects & Causes \rightarrow FMEA, FTA
 - Dependent Failure Analysis
- Quantitative Analysis
 - Metrics \rightarrow FMEDA, FTA
 - Analysis of Random Faults
- Fault Injection Testing
 - Verification of Safety Mechanisms
 - Metrics

Usage of Metrics

- PMHF Targets distributed top-down
- SPFM/LFM –Bottom-up, abstracts details of diagnostic coverage within the IC/IP

FMEA & FTA

- Analysis Process to Identify
 - Failure Modes in a function
 - Effects of the failure
 - Potential Causes of the failure
- Information allows definition of
 - Safety Mechanisms
 - Reaction to failure / Safe States
 - Safety Requirements
- FMEA versus FTA versus FMEDA

FMEDA – General Structure

Α	В	С	D	E	F	G	Н	I	J		К	L	М				
#	Block	Safety Related Element (Y/N)?	Failure Mode	Failure Mode Ratio (%)	Effect of Failure M		Potential to violate a Safety Goal in absence of safety mechanism (Y/N?)	Is there a safety mechanism in plac to control failure mode (Y/N)?		system to e failure olating the (e.g. SM1,	Failure mode (diagnostic) coverage (%)	λ _{spf}	λ _{RF} Po ir				
1	Primary Bridge	Y	Incorrect data written into transmit or configuration register(s)	15%	Incorrect or no SPI Transmission	3.50	Y	Y	SM	5	80%	0.000	0.105				
			Incorrect (N	I	0	P	Q	R	S	Т		U					
			in combinat other inde	Potential to vilate a SG, in combination w/ one other independent failure (Y/N)? Y		in combination w/ one other independent		in combination w/ one other independent		Safety mechanism(s) allowing to prevent the failure mode fro being latent ?		λ _{safe}	λ _{mp,L}	λ _{mpf,c}		stification /	[/] Rationale
			Ŷ			SM3	70%	0.000	0.126	0.294							

Residual Failure Rate = Failure Mode % * Block's Lambda * (1- Safety Mechanism Diagnostic Coverage)

FMEDA - Safe

Safe Failure Rate = Case 1: Failure Mode % * Block's Lambda = Case 2: Failure Mode % * Block's Lambda * Safety Mechanism Diagnostic Coverage

FMEDA - Safe

Safe Failure Rate = Case 1: Failure Mode % * Block's Lambda = Case 2: Failure Mode % * Block's Lambda * Safety Mechanism Diagnostic Coverage

MPF, Detected Failure Rate

= Failure Mode % *

Block's Lambda *

Diagnostic Coverage of both Safety Mechanisms.

Where does Diagnostic Coverage come from? Answer: ISO 26262 Part 5 Annex D & Part 11 OR Fault Campaign OR Expert Judgement

А	В	с		D	E	F	G	н		I.	L		К	L	м
#	Block	Safety Related Element (Y/N)?	Failu	ıre Mode	Failure Mode Ratio (%)	Effect of Failure M	ode λ(FIT)	Potential to violate a Safety Goal in absence of safety mechanism (Y/N?)	mechani to cont	e a safety sm in place rol failure e (Y/N)?	Safety Piech allowing the provent the mode from vio afety goals (SM2	ystem to failure lating the e.g. SM1,	\mathbf{N}	λ_{SPF}	λ _{RF} Po ir
1	Primary Bridge	Y		ata written into r configuration	15%	Incorrect or no SPI Transmission	3.50	Y		¥	SM5	>	80%	0.000	0.105
			Incorrect (N		0	P	Q	F		S	Ţ	\smile	U	
				Potential to v in combinati other inde failure (on w/ one pendent		Safety mechanism(s) allowing to prevent the failure mode fro being latent ?	(diagnostic) coverage w m latent	λ _s ,		λ _{MP,L}	λ _{MPE}			
				Y		Y	SM3	70%	0.0	Safety Mechanisms that are star well understood can rely solely standard / documented source					on the
										Posi	ition ten	ds to	o vary wi	th cus	tomers.

Increase Confidence

Design Hardening

- Beyond providing/validation of Metrics, Fault Campaigns provide
 - Verification of safety mechanisms
 - Insight into improving coverage
- Need insight into where faults fall

		Faults o	utside the cone of	influence of any safety critical pa	th	
ļ	9	- s	afe Faults (252)			
			dat_i[14]			
			dut.i_run_bist_i			
			dut.s_wbspi.first_edg	e		
			dat_i[15]			
			miso			
Safet	ty critical p	oath name:		TSR-1		
Safet	y critical exp	pression:		dat_o		
Safet	y detection	expression:		p_error		
Total				2221		
			ifety mechanism) (0) ed by safety mechani	sm) (8)		
Unve	Single-poi Residual f Dual poin Fault	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211)	sm) (8)		
	Single-poi Residual f Dual poin Fault Id	ault (not cover	ed by safety mechani d/perceived) (211) Signal Name			
	Single-pol Residual f Dual poin Fault Id	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da	ıt_o[0]		
	Single-poi Residual f Dual poin Fault Id 0 1	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d	t_o[0] ata[0]		
	Single-pol Residual f Dual poin Fault Id	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d dut.p_wbspi.shift.d	t_o[0] ata[0] ata[32]		
	Single-poil Residual f Dual point Fault Id 0 1 2	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d	t_o[0] ata[0] ata[32] ata[64]		
	Single-pol Residual f Dual poin Fault Id 0 1 2 3	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d dut.p_wbspi.shift.d	t_o[0] ata[0] ata[32] ata[64] ata[96]		
	Single-poi Residual f Dual poin Fault Id 0 1 2 3 4	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d	t_o[0] ata[0] ata[32] ata[64] ata[96] r[0]		
	Single-pol Residual f Dual poin Fault Id 0 1 2 3 4 5	ault (not cover t fault (detecte	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d	r[0] ata[32] ata[96] r[0]		
	Single-poil Residual f Dual poin Fault Id 0 1 2 3 4 5 6	ault (not cover t fault (detecte Property - - - - - - - - -	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.dividei dut.p_wbspi.dividei	r[0] ata[32] ata[96] r[0]		
	Single-pol Residual f Dual poin Fault Id 0 1 2 3 4 5 6 7	ault (not cover t fault (detecte Property - - - - - - - - -	ed by safety mechani d/perceived) (211) Signal Name dut.p_wbspi.wb_da dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d dut.p_wbspi.shift.d	t_o[0] ata[0] ata[32] ata[64] ata[96] r[0] h_reg[0]		

Fault Details

Aggregating / Mapping Coverage

DC_{RF,Block1} DC_{LF,Block1}

Management & Tracing

- Challenges:
 - Managing the Size/Complexity of FMEDA Spreadsheet
 - Supporting internal reviews and audits
 - Supporting external assessments

Fault campaign process (1)

2018

DESIGN AND VERIFICATION~

UNITED STATES

Fault campaign process (2)

Safety Definitions

Section	Title	Description	Safety Path Expression	Primary Safey Mechanism Expression	Secondary Safey Mechanism Expression	Fault Detection Time	Multi-Point Fault Detection	Link
1	SR-1	top_module						
1.1	SR-1.1	Permanent Fault leading to wrong results in Register.	dat_o & (stb && cyc)	p_error	s_error	5	5	TEST_ATTRIBL
1.2	SR-1.2	Permanent Fault leading to wrong results in Register.	ack & (stb && cyc)	p_error	s_error	5	5	TEST_ATTRIBL
1.3	SR-1.3	Permanent Fault leading to wrong results in Register.	interrupt	p_error	s_error	5	5	TEST_ATTRIBL
1.4	SR-1.4	Permanent Fault leading to wrong results in Register.	ss	p_error	s_error	5	5	TEST_ATTRIBL
1.5	SR-1.5	Permanent Fault leading to wrong results in Register.	sclk	p_error	s_error	5	5	TEST_ATTRIBL
1.6	SR-1.6	Permanent Fault leading to wrong results in Register.	mosi	p_error	s_error	5	5	TEST_ATTRIBL

Fault Campaigns

: @ 0

2 Diff 200 1ps

¢\$ 200

XXXXX* 40000*

XXXXX* 40000*

ver.spec.dut.pkt_rx_dal per.impl.dut.pkt_rx_dal sper.spec.dut.pkt_rx_e sper.impl.dut.pkt_rx_e

sutrx eq0.pkt pend

Tracking

F

Verifica	tion Man Testplar				nk 1	Гуре		Coverag	e (Goal	%	6 of Goal	Status		Weigh	∎× t L			Coverage
0	🖃 🔆 te	estplan				Tes	tplan	5	0%		-	50%				1		K	
1	- ÷	SR-1				Tes	tplan	5	0%		-	50%				1		<u> </u>	
1.1	ŧ	🔆 🙀 SR	-1.1			Tes	tplan	10	0%	100	%	100%				1			UCDB
1.2	÷	🕁 SR	-1.2			Tes	tplan		0%	100	%	0%	-			1	L		
	A	В	С	D	E	F	G	н	1	1	К	L	м	N	0	Р	Q	R	
	Part Analys	is (Use Blocks fi	rom Elementary L	evel)											Ca	lculated or fro	m Elementry L	evel	
	Part (Reference	Sub-Part (Reference)	Elementary sub- parts (Block Name) (Reference)	Elementary sub-parts (instance name)	Safety Related Block (Y/N)?	Permanent / Transient	Memory / Logic	Failure Mode	λ (FIT) (May be from Elementry Level)	From Elementry Level	Safe Faults (%)	Safety Mechanism(s) allowing the system to prevent the failure mode from violating the safety goals (e.g. None, SM1, SM2)	Diagnostic Coverage (%)	Diagnostic Coverage from Fault Campaign (Comparison)	Permanent Logic λ _{SPF} + λ _{RF}	Transient Logic λ _{SPF} + λ _{RF}	Memory Permenant λ _{SPF} + λ _{RF}		
	IC IC	example_top example_top		p_wbspi p_wbspi	Y	Р		anent Fault in Block ient Fault in Block X	4.476 4.476	Y		See Elementary Level See Elementary Level		_	0.036	0.002	0.000	0.000	
	IC	example_top	spi_top	s_wbspi	Ŷ	P	L Perma	anent Fault in Block	4.476	N	100%	None	0%		0.000	0.000	0, 0		Template Annotat
	IC	example_top example_top		p_vs_s_spi_co p_vs_s_wb_co		P		anent Fault in Block anent Fault in Block	0.265 0.468	Y	▼	See Elementary Level See Elementary Level			0.000	0.000	0.000	0.000	Templat
ĐΑ																			

- Qualitative Analysis with a FMEA/FTA & Quantitative Analysis with a FMEDA are standard practices
- FMEDA is a key document to allows integrators of IC/IP to understand functional safety metrics
 - Especially important when considering configuration / feature options
- Connecting information from Fault Injection Campaigns to the FMEDA
 - Validates early predictions of Diagnostic Coverage and Hardware Architectural Metrics
 - With challenging architectures, the only means to determine coverage
- Fault Injection Campaigns serve as verification of safety mechanisms

Break

How Formal Reduces Fault Analysis for ISO 26262

Doug Smith Doug_Smith@mentor.com Verification Consultant Mentor Consulting

ICs are harder

- Potentially lots of
 - Safety critical functions
 - Safety mechanisms
 - Secondary safety mechanisms

- Large designs \rightarrow thousands of random faults to inject!
- How to categorize faults shared between shared logic?
- Need tests that allow faults to propagate and be detected
- Large simulation time to test software safety mechanisms
- May have large fault detection time intervals

Try breaking up the problem!

- Not allowed $\,\, \ensuremath{\mathfrak{S}}$
- Must show independence with Dependent Fault Analysis (DFA)

COI fault analysis

Minimum sequential distance Not FTTI! Not FTTI!

• Fault Detection Interval (FDI)

• Violation if $MSD_{SM} - MSD_{SF} > FDI$

```
E.g.,

FDI = 2

6 - 3 > 2

Residual or Latent Fault
```

∴, Too long to propagate.... safety goal violation!

Safety function fault propagation

No propagation -> Safe fault!

Safety mechanism fault propagation

No propagation -> undetectable fault!

Traditional formal

• Input constraints and assumptions

asm_drive_data	:	assume property (pkt_val	->	pkt_data == data);
asm_pkt_stable	:	assume property (pkt_val	->	<pre>\$stable(packet)</pre>);
asm_payload_stable	:	assume property (pkt_val	->	<pre>\$stable(payload)</pre>);
asm_pkt_kind_stable	:	assume property (pkt_val	->	<pre>\$stable(pkt_type)</pre>);

- Issues
 - Need input requirements
 - Labor intensive
 - Not automated
 - Typically incomplete formal tries everything!

Sequential Equivalency Checking

Original design

Conditional cutpoint

netlist cutpoint {impl.dut.tx_data_fif00.fif00.genblk2.mem0.rdata[2]} \
 -cond {impl.fi fault[1]} -driver 1'b0

• SLEC target

slec map spec.safecheck.safety0 \
impl.safecheck.safety0 -cond { impl.safecheck.fi fault 1] }

Parallel fault analysis

Thousands of parallel fault targets analyzed by formal

Proving a fault propagates

SLEC

Structural analysis

- Quick and easy
- But do all faults really propagate?

Fault analysis

Need failure analysis ...

- Simultaneous propagation to output and safety mechanism?
 - Within time window?

Failure analysis

Example undetected failure

3	💠 VT 🔍 🤻 🔍 🅱 🏹 🎹 🗊	ᡄᢣᡄᠽ	ीम है कि जि	200 :	¢ C2 0	韋 Diff 200	1ps 🚽	Freq 5000	000000.	000 Hz		🔀 🛃 📲
	Signal Name	Values-C1	0 50 1	00 150 2	00 250 300	350 400	450 500	550 60	0 650	700	750 8 <mark>0</mark> 0	850
3	Primary Clocks					Prim	ary Clocks					
	🕺 _wrapper.spec.clk_xgmii_rx	1										
3	Property Signals					Prope	erty Signals					
Ð	slec_wrapper.impl.fi.fault	0	XXXXX*	40000*	¥ /			0				
Ð	₿apper.spec.dut.pkt_rx_data	0					0					
Ð		0				0				X	400000000	0000*
	▶wrapper.spec.dut.pkt_rx_err	0										
	wrapper.impl.dut.pkt_rx_err	0										
]	Control Point Signals					Control	Point Signa	ls			Safe necha	ety
Ð	slec_wrapper.impl.fi.fault	0	XXXXX*	40000*	X			0		7		niem
	er.impl.dut.rx_eq0.pkt_pending	1								n	necha	11311
	r.spec.dut.rx_eq0.pkt_pending	0			1						fai	S

Building confidence

Structural analysis

Fault analysis

Failure analysis

Diagnostic coverage

• DC = % of safety element covered by safety mechanism

A range for diagnostic cov Potential Latent

Potential RF	Structura	l analysis	Fault an	alysis	Failure a	nalysis		
Potential	Unverified	Verified	Unverified	Verified	Unverified	Verified		
Safe	286	286	0	299	0	301		
Residual	8	0	0	12	0	17		
Dual-point in Safey Function	219	0	215	0	134	84		
Dual-point in Safety Mechanism	2013	0	1704	28	1554	132		
Latent	0	0	0	296	0	307		
DC _{Residual}	91.0%	99.7%	91.0% -	99.5%	94,0% -	6 - 99.3%		
DC _{Latent}	20.3%	- 100%	20.8% -	88.2%	26.3%	87.8%		
Continuous refinement								

SAFECH

Project

Fault Sun

Fault Deta

Transcript

Example report

K A	All Faults (All Safety Critical Paths)						
	Fault Type	Previous A	Analysis	Current Analysis			
y		Unverified	Verified	Unverified	Verified		
	Safe faults (outside cone of influence)	0	287	0	287		
	Safe faults (fault detected by a safety mechanism)	0	0	0	120		
	Single-point faults (no safety mechanism)	0	0	0	0		
	Residual fault (not covered by safety mechanism)	8	0	8	0		
	Dual point fault (detected/perceived) in safety function	202	0	192	0		
	Dual point fault (detected/perceived) in the safety mechanism	2035	0	1841	0		
	Dual point fault latent	0	0	0	84		
	Subtotal	2245	287	2041	491		
	Total	2532 2532					
	Number of randomly sampled faults	2245 (88.7%)					
	Design bits		2245 (unsafe	e) / 2532 (all)			
	Residual Diagnostic Coverage		92.10% -	100.00%			
	Latent Diagnostic Coverage		23.97%	- 96.68%			

• Formal can run on gates, but ...

- RTL more likely pessimistic
- Gates likely mask faults

$$DC_{RTL} = N_{RF-RTL} / N_{RTL}$$

$$DC_{Gates} = N_{RF-Gates} / N_{Gates}$$

 \therefore , DC_{Gates} > DC_{RTL}

RTL to gates equivalency

RTL Structural analysis

Gates Structural analysis

DC _{Residual}	91% - 99.7%
DC _{Latent}	20% - 100%

DC _{Residual}	94% 97%
DC _{Latent}	18% - 98%

• If RTL more pessimistic, gates are unnecessary ...

Potential limitations using formal ...

- Large number of formal targets
- Long formal run times
- Large number of inconclusives
- Results biased towards formal friendly designs and design areas

Random sampling

- Confidence interval
 - Allows picking random samples
- Solves
 - Large numbers of formal targets
 - Large numbers of inconclusives
 - Unmanageable results

Fault Coverage (in samples)

Agrawal & Kata, D&T 1990

Intermediate targets

- Possibilities
 - Write temp targets
 - Automatic goal-posting formal engines
 - Seed formal with waveforms
 - Find activity around faults

Automated flow

Safety Definitions

Section	Title	Description	Safety Path Expression	Primary Safey Mechanism	Secondary Safey Mechanism	Fault Detection	Multi-Point Fault	Link
				Expression	Expression	Time	Detection	
1	SR-1	top_module						
1.1	SR-1.1	Permanent Fault leading to wrong results in Register.	dat_o & (stb && cyc)	p_error	s_error	5	5	TEST_ATTRIB
1.2	2 SR-1.2	Permanent Fault leading to wrong results in Register.	ack & (stb && cyc)	p_error	s_error	5	5	TEST_ATTRIB
1.3	8 SR-1.3	Permanent Fault leading to wrong results in Register.	interrupt	p_error	s_error	5	5	TEST_ATTRIB
1.4	SR-1.4	Permanent Fault leading to wrong results in Register.	ss	p_error	s_error	5	5	TEST_ATTRIB
1.5	5 SR-1.5	Permanent Fault leading to wrong results in Register.	sclk	p_error	s_error	5	5	TEST_ATTRIB
1.6	5 SR-1.6	Permanent Fault leading to wrong results in Register.	mosi	p_error	s_error	5	5	TEST_ATTRIB

Handoff to simulation and emulation

Formal Fault Campaign

Fault campaign from the top down

dut.rx_eq0.pkt_pendi

FMEDA

FMEDA A B C D E F G H	I J K L M N O P Q R	Fc	ormal Fault Campaign
Part Sub-Part (Reference) Elementary sub- parts (Block from Elementary sub- parts) Elementary sub-parts (Instance name) Safety Related Block (Instance Block T L Partmanent Fault in Block 1C coample_top spl_top p_wtspl Y T L Permanent Fault in Block 1C coample_top spl_top p_wtspl Y P L Permanent Fault in Block 1C coample_top spl_top p_wtspl Y P L Permanent Fault in Block 1C coample_top spl_top p_wtspl Y P L Permanent Fault in Block 1C coample_top spl_top p_wts_twb_co Y P L Permanent Fault in Block 1C coample_top spl_compare p_ws_tspl_co Y P L Permanent Fault in Block 1C coample_top spl_compare p_ws_tspl_co Y P L Permanent Fault in Block 1C coample_top error_handler err_h1 Y P L Permanent Fault in Block 1C coample_top bist_handler	Y See Elementary Level 0.036 0.002 0.000 0.000 4.476 N 100% None 0% 0.000 0.000 0.000 0.000 4.476 N 100% None 0% 0.000 0.000 0.000 0.000 4.476 Y See Elementary Level 0.000 0.000 0.000 0.000 4.0272 Y See Elementary Level 0.000 0.000 0.000 0.000 4.034 Y See Elementary Level 0.000 0.000 0.000 0.000 4.034 Y See Elementary Level 0.000 0.000 0.000 0.000	Safety info	t FDI
	Back-annotate		Fault list Testbenches Reports UCDB
Tracking V			Simulation/Emulation
Verification Management Tracker ====================================	e Coverage Goal % of Goal Status Weight L	Diagnostic	Fault Campaign
1 ⊡ 🔆 SR-1 Te 1.1 ⊕ 🏠 SR-1.1 Te	estplan 50% - 50% 1 estplan 50% - 50% 1 estplan 100% 100% 100% 1	coverage	File Edit Yew Options Tools Window Start % % % % % % % % % % % % % % % % % % %
1.2	estplan 0% 100% 0% 1	UCDB	Property Signals Prop

Fault campaign from the bottom up

Diagnostic

Safety Definitions

iection	Title	Description	Safety Path Expression	Primary Safey Mechanism Expression	Secondary Safey Mechanism Expression	Fault Detection Time	Multi-Point Fault Detection	Link
1	SR-1	top_module						
1.1	SR-1.1	Permanent Fault leading to wrong results in Register.	dat_o & (stb && cyc)	p_error	s_error	5	5	TEST_ATTRIBL
1.2	SR-1.2	Permanent Fault leading to wrong results in Register.	ack & (stb && cyc)	p_error	s_error	5	5	TEST_ATTRIBL
1.3	SR-1.3	Permanent Fault leading to wrong results in Register.	interrupt	p_error	s_error	5	5	TEST_ATTRIBL
1.4	SR-1.4	Permanent Fault leading to wrong results in Register.	SS	p_error	s_error	5	5	TEST_ATTRIBL
1.5	SR-1.5	Permanent Fault leading to wrong results in Register.	sclk	p_error	s_error	5	5	TEST_ATTRIBL
1.6	SR-1.6	Permanent Fault leading to wrong results in Register.	mosi	p_error	s_error	5	5	TEST_ATTRIBL

Fault Campaign

Tracking

F

																			0
⋩ Verificat	tion Mar	ageme	ent Track	er 🚃	_	_					_				+	a ×	k -	С	overage
▼ Sec#	Testplar	n Sectio	on / Cove	erage Lir	nk 1	Туре		Coverage	ge (Goal	%	6 of Goal	Status		Weight	t L			
0	🖃 🔆 🖈 te	estplan				Test	tplan		50%		-	50%				1		æ	8 P
1		SR-1					tplan	5	50%		-	50%				1		L V	a P
1.1		🔬 SF	8-1.1			Test	tplan	10	00%	100)%	100%				1			UCDB
1.2	. ė	🙀 SF	R-1.2			Test	tplan		0%	100)%	0%	-			1	L		
	A	В	С	D	E	F	G	н	1	J	к	L	М	N	0	Р	Q	R	a 10
1	Part Analy	is (Use Blocks	from Elementary L	evel)											Ca	lculated or fro	m Elementry L	evel	
	Part (Reference	Sub-Part) (Reference)	Elementary sub- parts (Block Name) (Reference)	Elementary sub-parts (instance name)	Safety Related Block (Y/N)?	Permanent / Transient	Memory / Logic	Fallure Mode	λ (FIT) (May be from Elementry Level)	From Elementry Level	Safe Faults (%)	Safety Mechanism(s) allowing the system to prevent the failure mode from violating the safety goals (e.g. None, SM1, SM2)	Diagnostic Coverage (%)	Diagnostic Coverage from Fault Campaign (Comparison)	Permanent Logic λ _{SPF} + λ _{RF}	Transient Logic λ _{SPF} + λ _{RF}	Memory Permenant λ _{SPF} + λ _{RF}		
EDA	IC IC	example_top example_top		p_wbspi p_wbspi	Y	Р		anent Fault in Block ient Fault in Block X	4.476 4.476	Y		See Elementary Level See Elementary Level			0.036	0.002	0.000	0.000	
		example_top		s_wbspi	Y	P	1	anent Fault in Block	4.476	N	100%	None	0%		0.000	0.000	0.00		Template +
	IC IC		spi_compare wb_comapre	p_vs_s_spi_co p_vs_s_wb_co		P P		anent Fault in Block anent Fault in Block	0.265 0.468	Y	V	See Elementary Level See Elementary Level			0.000	0.000 0.000	0.000	0.000	back-annotat
	IC	example_top	reg_compare	p_vs_s_reg_co	Y	Р	L Perma	anent Fault in Block	0.272 0.034	Y		See Elementary Level			0.000	0.000	0.000	0.000	hack-annotate

- Formal provides ...
 - Quick and easy fault categorization for worst-best case DC
 - No environment setup required no testcases
 - High-level of confidence in results can't beat a proof!
 - Ties in with simulation and emulation
 - A great front-end for the entire fault campaign process

Requirement Tracing in the ISO26262 World

Charles Battikha (chuck_battikha@mentor.com)

Why Requirements matter...

- Example: NASA's Mars Climate Orbiter
 - Sent crashing into Mars by NASA
 - The Orbiter spoke to NASA in metric...
 But the engineers on the ground were replying in non-metric English

"What is being designed, built, and verified is based on requirements and thus *intended*"

Safety Requirements

Safety Goal met? = Complete List + Each True

Achieving ASIL rating means meeting all requirements

Why are requirements hard to write?

- Human Language is inherently vague and imprecise
- Relying on engineer's writing skills....
- Trouble separating WHATs from HOWs
 - Desire to jump into the details...
- Believe spending time writing requirement will cause delays
 - Good enough...
 - Let's get on with it...

I AM AN ENGENEER ENGENERE ENGENERE I'M GOOD WITH MATH.

Requirements: Common Problems

- Errors of Omission
 - What was intended, was not actually stated; Important information left out
- Errors of Commission
 - Information is wrong; Information is contradictory
- Errors of Clarity
 - Requirements stated in ways that lead to confusion, misunderstanding
 - Creation of assumptions
- Errors of Understanding
 - Ambiguous, words get in the way
 - Each person internalizes and applies their own definitions

Writing Safety Requirements 26262 8-6

- Natural languageInformal notation
- ASIL A/B
- - Semi-formal notation (syntax defined)
- ASIL C/D
- Formal notations (syntax & semantics defined)

Defining Requirements

26262 8-6

ONLY ONLY

- Define WHAT not HOW
- Should be:
 - Complete / Atomic
 - Consistent
 - Comprehensible
 - Realistic / Feasible
 - Verifiable
 - Valid / Correct
 - Necessary

Requirements Writing

Desired format of requirements: <Function/Object> shall <Action><Condition> <Testable Result> <Reaction Time>

- Each requirement should be written with a standard style and contain the following components:
 - Action: Operation design will perform. Atomic and unambiguous.
 - **Condition**: Under what conditions is the action performed.
 - Testable Result: What will occur. Should be specific.
 - Reaction Time: A bounding time. For instance, a 'within' time frame.
 - Time should in the proper context. Stay away from implementation details.

Requirements should be testable - can be viewed as preliminary test cases.

Value of Tracing

Top Down Trace – Find unallocated and/or unimplemented requirements

Bottom Up Trace – Find unnecessary, unneeded, unwanted functions or features

	System Requirements	Hardware Design Requirements	Verification Plan	Test Bench Implementation	Testing Artifacts						
Bottom Up Trace – Find undocumented testing											

Testing Artifacts

- Requirements must trace into the testing artifacts
 - Shown to have been actively tested and shown to pass
 - For simulations, typically UCDB and/or Test Log Files
 - Artifacts from a "Run for the Record" regressions used for final reports.

2018 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES

Directed Testing & Requirements

- Directed Tests are often used for 1-1 match of requirement to test
- However, typical Directed Tests driven to satisfy requirements tend to have shortcomings:
 - Not complete in testing across the full design
 - Down stream errors are not checked
 - Are limited to specific times, situations

Random Testing & Requirements

- Random Testing and UVM Test Benches allow a smaller set of Test Cases to address multiple requirements concurrently.
- Random testing of requirements & checking for passing is the AND of:
 - Test Case Passing
 - Appropriate Stimulus Generated
 - Appropriate Prediction Generated
 - Results are checked and match
- Checks distributed work across test cases, predictors, and scoreboards
 - AND function can be addressed by Functional Coverage

Tracking in a Test Bench

- Logging for traceability occurs where testing of a requirement is done
- Typically is an 'else' in an error check
- Simple Functional Coverage is okay IF run for record must achieve 100% passing test cases

```
if (expected_crc != actual_crc)
    `uvm_error("DUT generated bad CRC")
becomes
// [Implements: VREQ_nnn]
if (expected_crc != actual_crc)
    `uvm_error("DUT generated bad CRC")
else begin
    `uvm_info("DUT generated good CRC")
Add to specific VREQ to covergroup
end
```

[DES_REQ_nnn] When sending a message out on the channel, the design shall calculate a CRC in accordance with

```
• • •
```

[VREQ_nnn] The Test Bench shall have a checker on DUT channel output that ensures all messages generated by the design have a correct CRC....

Tracking in a Test Bench

- If failing test cases can occur in run for the record,
 - Passing test cases may have set functional coverage
 - Create passing / failing covergroups
 - Coverage of failing conditions trumps good covergroup.
 - Parsing log files can accomplish similar tracking

```
// [Implements: VREQ_nnn]
if (expected_crc != actual_crc) begin
    `uvm_error("DUT generated bad CRC")
    Add specific VREQ to bad covergroup
end else begin
    `uvm_info("DUT generated good CRC")
    Add specific VREQ to good covergroup
end
```

Tracking in a Test Bench

- UVM Test Benches distribute work so checking may be too simplistic for tracing
 - Scoreboards may simply compare expected data against actual data
 - May not be possible to isolate checks to a specific requirement
- Usually the 'predictor' can be associated with a requirement
 - A requirement would then be considered passing if:
 - The Predictor made appropriate prediction

2018

- Test Case has passed (no scoreboard miscompares)
- Coverpoints created to AND these conditions

2018 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION UNITED STATES

Predictor to Requirement Mapping

- For some designs, it may be possible to create a more direct predictor/checker mapping to requirements
 - Tradeoff of complexity in checkers versus complexity in tracking

Assertions -> Requirements

Assertions can also be assigned per requirement.

A proved assertion is positive coverage.

```
// formal randomly picks a bit(s) to flip.
asm_mask: assume property ( $countones(one_error_mask) == 1 );
// Check ECC repair is correct
req_nnnn: assert property ( fixed_data[7:0] == data );
```

```
-- XOR mark to flip 1 bit
one_error_data <= one_error_mask XOR encoded_data;
fixed_data <= ecc_correction_function(one_error_data);</pre>
```

```
function [12:0] ecc_calc( data, ... );
wire logic p1 = 1 ^ data[0] ^ data[1] ^ ...
wire logic p2 = ...
...
return ({data[7],data[6],data[5],data[4],p8,data[3], ... } );
endfunction
// Check ECC calculation
req xyz: assert property ( encoded data == ecc calc(data, ... ));
```


Requirements Management

After release to production. **Changes may**

Requirements Tracing Tools

- A centralized view that connects the development process and results
- Traceability at all stages of development

2018

ESIGN AND VERIFICA

JNITED STATES

- Quickly understand the impact of a change across the project
- Reflects the current status of the project using live data

- ISO26262 defines:
 - Top down flow of safety requirements
 - Requires precise language for requirement definition
 - Traceability
 - Change Management and Source Control
- Poor requirements creates an unstable base to build on
- Tracing should be done into verification artifacts

Questions?

Contact Information

Charles Battikha (chuck_battikha@mentor.com) Doug Smith (doug_smith@mentor.com)

https://www.mentor.com/mentor-automotive

White paper - "How Formal Reduces Fault Analysis for ISO 26262" http://go.mentor.com/4QQrY