
How to Stay Out of the News
with ISO26262-Compliant

Verification

Charles Battikha (chuck_battikha@mentor.com)
Doug Smith (doug_smith@mentor.com)

Agenda
• Taking New Products into the Automotive Market…

Welcome to Functional Safety

• From Analysis to Fault Campaigns

• Break

• How Formal Reduces Fault Analysis for ISO 26262

• Requirement Tracing in the ISO26262 World

Entering the Automotive Market…

• Reviewing the challenges and requirements in the Automotive Market &
ISO26262 Standard

Automotive Market Drivers

Smart Sensors

Sensor Fusion

Vehicle Networking

V2X Connectivity

ADAS

The Autonomous CarElectrification

Surround View

Surround View

Eye/Face
Tracking

Blind Spot
Detection

Pa
rk

 A
ss

is
t

R
ea

r C
ol

lis
io

n

Su
rro

un
d

Vi
ew

Park
Assist

Cross Traffic
Alert

Traffic Sign
Recognition

Lane Departure
Warning

Adaptive Cruise Control

Emergency Braking
Pedestrian Detection
Collision Avoidance

Enterprise
Data

Analytics

High-end cars will contain more
than $6,000 worth of electronics
in five years, driving a $160
billion automotive electronics
market in 2022”

Luca De Ambroggi
Principal analyst Automotive electronics

IHS Markit

Complexity of Automotive Systems
LINES OF CODE

source: Roland Berger

6 radar beams
8 cameras
12 parking sensors
144 electronic control units
500 LEDs
734 wire harnesses
2,400 wires
5,000 meters of cables

source: CarsGuide

Hubble Space Telescope
Mars Curiosity Rover

F=35 Fighter Jet

5M

Smartphone OS12M

25M

Luxury car
software

100M

Functional Safety = Table Stakes

Goal is the create a highly
assured design by removing

unreasonable risk

ASIL D
S3=Life-threatening, fatal injuries
E4=High probability of exposure
C3=Difficult for driver to control

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Severity
of Injuries

Probability
Exposure

Driver
Control

ASIL+ + = Set by OEM

Functional Safety Tradeoffs

IC/IP with ISO Compliance and
higher ASIL ratings reduces effort,

cost, and complexity for integrators.

Integrator Cost (Components)
Integrator Development Effort

IP / IC Cost (Area)
IP / IC Power (Area)

IP / DC Development Effort
Increased ASIL

Increased Cost & Development Examples:
• Reviews, Audits, Assessments
• Additional Logic in Safety Mechanisms
• Additional Rigor & Deliverables

ASIL Decomposition

ASIL
B(D)

ASIL
B(D)

ASIL D

Redundancy creates:
• Complexity
• Verification effort
• Area & cost penalty

IC/IP Categories

IC/IP
Provider (Tier2)

IC/IP
Integrator

(OEM, Tier1)

IC/IP Developed
outside

ISO26262

Part 8 Clause 13

• Safety Analysis
• Next project must be

ISO 26262 Compliant

Safety Element
out of Context

(SEooC)

• Safety Analysis

Assumptions

Item Developed
in Context

Requirements

• Safety Analysis

Existing IC/IP
“Proven in Use”

Part 8 Clause 14

• Field Data Supported

ISO 26262 allows tailoring to match
project specifics to the standard.

ISO26262 – The known
Established IC/IP Developers
likely have strong development &
verification processes:

• Development process well
documented

• … & shown to be followed
• Create and maintain artifacts
• Requirements tracing
• Source Control
• Change Management
• Documentation Control

ISO26262 – The unknown
IC/IP developers new to the
automotive market will find:

• Safety Culture
• Safety Requirements
• Safety Mechanisms
• Safety Analysis
• FMEA / FMEDA / DFA / FTA
• Fault Metrics
• Fault Insertion Campaign
• Safety Manual
• Tool Qualification

“V” Development & Verification
Flow Down Safety
Requirements

System Requirements

Board Requirements

Chip Requirements

IP/Block Requirements Unit/Block Verification

IC Integration & Verification

Board Integration & Verification

Item Integration & Verification

Safety Goals

Bottom Up Integration
and Verification

Validation

Requires Two Testing Approaches

Random Failures
Introduced by the environment

• Vibration
• Moisture/Dirt
• Noise
• EMI
• Electro-migration

Product
Development

Flow
Specs

&
Reqs

Systematic Failures
Introduced in product development

• Incorrect Requirements
• Inaccurate/incomplete specs
• RTL Errors
• Timing Errors

SoC/IP

Fault Types
λS Safe Faults; Does not effect the Safety Requirements
λSPF Single Point Fault; Fault violating a Safety Requirements. Not covered by a

Safety Mechanism. Should be addressed.
λRF Residual Faults; Faults not detected by an intended Safety Mechanism and lead

to a violation of Safety Requirements.
Single Point Faults and Residual Fault are not differentiated from a fault analysis
perspective.
Diagnostic Coverage measures effectiveness of safety mechanism in detecting
Residual Faults – permanent and transient.

λSPF + λRF SPFM (ASIL Goal)

Fault Types
λDPF,DP Dual-Point Faults – Detected/Perceived; Combination of independent faults

that may lead to a violation of Safety requirements.
λDPF,L Dual-Point Faults – Latent; Faults not detected by safety mechanisms that

would lead to a dual-point failure. Considered to be a fault in primary safety
mechanism that is undetectable.

λDPF,L LFM (ASIL Goal)

Fault 2

Safety
Mechanism

Safety Related
Function

Fault 1
Detection of
Fault 2 masked
by Fault 1

Safety
Mechanism

Fault in Primary Safety
Mechanism not found by
HW/SW BIST

Fault 2Fault 1
Time

Detection Time Interval

Diagnostic Coverage

Safety Mechanism
Does Not

Detect Fault
Detects

Fault

Sa
fe

ty

O
ut

pu
t Not

Affected
F1

FSAFE

F2
FSAFE

Affected F0
FRF

F3
FSAFE,DET FDPF,DP

Safety Critical Block

Function

Safety
Mechanism

Secondary
Safety

Mechanism

Safety Related
Output

Primary Safety
Mechanism
Notification

Secondary Safety
Mechanism
Notification

DC: Proportion of the failure rate
that is detected or controlled by
implemented safety mechanisms.

DCRF = (1 -
F0

) x 100
F1 F2F0 F3+ + +

DCDPF, L = (1 -) x 100
F0

F1 F2F0 F3+ + +

Verification of Random Hardware Faults
Model Random

Faults

Diagnostic
Coverage

SPFM, LMF,
PMHF

Report Metrics

Measure Effects of
Random Faults

Safe
?

Design
Hardening

Compare against FMEDA

Meet ASIL Requirements?
Meet minimum DC?

• Power On Self Test
• Interrupt-driven BIST
• ECC
• CRC / Checksums
• Watchdog Timers
• Voting
• Main versus Redundant

Compare
• Software/Firmware Diagnostics
• Etc.

Verify Safety
Mechanism

POST & Interrupt Driven BIST as SM
Power Off

Run POST

“Key On”

Safe State

POST Fail

Normal
Operations

POST Pass

Run BIST

Interrupt or at
Prescribed Time

BIST Fail

BIST Pass

Normal
State Flow Save State

Restore
State

Logic BIST
Execution

Stop
Operations

Resume
Operations

Run BIST

Reporting
FTTI determines:
1. If POST only sufficient
2. Frequency of BIST

Mentor Functional Safety Process

Fault Planning Pruning

Create Metrics

Safety Manual

SPFM, LFM, PMHF
DC per SM

Assumptions / Requirements
Rationales

Formal
Fault
Campaign

Failure
Analysis (P)

Failure
Analysis (T)

Simulation
Fault
Campaign

Test Profiling

Simulation
Campaign

Emulation
Fault
Campaign

Test Profiling

Emulation
Campaign

UCDB

Fault Analysis
Structural
Analysis

Analysis Design Improvement

Structural Analysis

Safety Output

Safety Mechanism
Notification

Secondary Safety
Mechanism Notification

Represents
potential

coverage of SM
against function.

Represents no
coverage of SM
against function.

A2

A1
A1 = combination(FRF FSAFE)

A2 = combination(FDP,DET FRF FSAFE)

Goal: Reduce area of A1 before
starting fault campaign.

Likely residual fault distribution:
FRF,A1 >> FRF,A2

Creates a max ceiling for DC.

A1

A2
0%

100%Best Case

Worst Case
More likely

DC

Dependent Fault Analysis (DFA)
DFI (Shared Resource)

Safety Critical Block

Function

SM

SSM

Safety Output

SM Notification

SSM Notification

Safety Critical Block

Function

SM

SSM

Safety Output

SM Notification

SSM Notification

But easy in an IC to create DFI…

In an IC, common DFI:
• Clock Distribution
• Reset Distribution
• Power Distribution
• Main Data Busses

DFA & COI

• Use COI to find unintended overlap which implies shared resources
• Cutpoints & black-boxes stop COI tracing when function is protected

Element A

Element B

Element C
Element A

Element B

Element C

Shared ResourcesFree of Interference

Protected Protected

Summary

• ISO26262 is Functional Safety

• Requires many companies to create a Safety Culture

• Requires strong development and verification processes

• Requires analysis to address random hardware faults

• Reaching higher ASIL ratings will increase effort and costs

From Analysis to Fault Campaigns

Charles Battikha (chuck_battikha@mentor.com)

Topics

• Recap of Safety Analysis

• Usage of Metrics

• Analysis

• Fault Injection Campaign

• Summary

Safety Analysis

• Qualitative Analysis
– Effects & Causes FMEA, FTA
– Dependent Failure Analysis

• Quantitative Analysis
– Metrics FMEDA, FTA
– Analysis of Random Faults

• Fault Injection Testing
– Verification of Safety Mechanisms
– Metrics

Top-D
ow

n

Bottom
-up

Effects

Causes

Ex: Stuck-at 1
Faults

Ex: Corrupted Packet
Failures

Violations of Safety Goals

FTA

Deductive
FMEA

FMEDA

Inductive

Usage of Metrics

• PMHF – Targets distributed top-down
• SPFM/LFM –Bottom-up, abstracts details

of diagnostic coverage within the IC/IP

IC

Fault Error Failure

ECU

SPFM LFM

System

Safety
Mechanism

Diagnostic
Coverage

Diagnostic
Coverage

Safety
Mechanism

PMHF

PMHF

λ

Safety Critical Block

Function

Safety
Mechanism

Secondary
Safety

Mechanism

Safety

Notification

Notification

ECUECUECU Fault Error Failure

ICIC Fault Error FailureIC

FMEA & FTA

• Analysis Process to Identify
– Failure Modes in a function
– Effects of the failure
– Potential Causes of the failure

• Information allows definition of
– Safety Mechanisms
– Reaction to failure / Safe States
– Safety Requirements

• FMEA versus FTA versus FMEDA

Safety
Measures

FTA
Failure Cause

FMEA
Cause Failure

Combined
FMEA / FTA

FMEDA – General Structure

FMEDA

λ (lambda) = Determined by the IC
technology, distributed by

area/transistor count to each block

Distribution of Failure
Modes = Engineering

Judgment

Only Safety
Related Elements

Key document to share upward
to integrators of IC & IP

FMEDA - SPF
Single Point Failure Rate =

Failure Mode % * Block’s Lambda

Y? Y? N?

Equations derived from ISO
26262:2018 Part 5 Annex B

Implication: SPF > RF > MPF

FMEDA - RF Residual Failure Rate
= Failure Mode % * Block’s Lambda *

(1- Safety Mechanism Diagnostic Coverage)

Y? Y? Y?

FMEDA - Safe Safe Failure Rate
= Case 1: Failure Mode % * Block’s Lambda
= Case 2: Failure Mode % * Block’s Lambda

* Safety Mechanism Diagnostic Coverage

Y? N?

Case 1 – No
violation of
Safety Goal

N?

FMEDA - Safe Safe Failure Rate
= Case 1: Failure Mode % * Block’s Lambda
= Case 2: Failure Mode % * Block’s Lambda

* Safety Mechanism Diagnostic Coverage

Y? Y?

N?

Y?

Case 2 – Detected
with a no multi-point

failure potential

FMEDA – MPF
MPF, Detected Failure Rate

= Failure Mode % *
Block’s Lambda *

Diagnostic Coverage of both Safety Mechanisms.

Y? Y? Y?

Y? Y?

FMEDA - DC Where does Diagnostic Coverage come from?

Safety Mechanisms that are standard /
well understood can rely solely on the

standard / documented sources.
Position tends to vary with customers.

Answer: ISO 26262 Part 5 Annex D & Part 11
OR Fault Campaign OR Expert Judgement

Layered Fault Campaign

Structural
Analysis

Fault
Analysis

Failure
Analysis

Transients

Stuck-at 0

Stuck -at 1
Cones of Influence (COI)

Safe
SPF
RF
DPF,DP
DPF,L

Fault propagates
to function?

DPF,DP
propagates to

SM?

Fault Pruning

Safe

RF
MPF,L

No

No

Formal Analyze
Undetected Failures

Simulation

Emulation

RF
DPF,L

RF
MPF,L

FDI< Calculate MSD

Increase Confidence
Fa

ilu
re

 M
od

es

Stuck-at 0
Stuck-at 1
Transients

Stuck-at 0
Stuck-at 1
(No transients)

Diagnostic
Coverage

Fault Analysis Failure Analysis

Fault
propagates to

function?

DPF,DP
propagates to

SM?

Safe

RF
DPF,L

No

No

Structural Analysis
Categorize based on

cones of influence
Safe
SPF
RF
DPF,DP
DPF,L

RFUndetectable
Fault Failures?

DPF,L
Undetectable

DPF,DP
Failures?

Worst Case
Most Pessimistic

Highest Confidence
Least Pessimistic

Better
Less Pessimistic

Yes

Yes
Calculate Minimum
Sequential Distance

RF
DPF,LMSD > FDI

Design Hardening

• Beyond providing/validation of
Metrics, Fault Campaigns provide
– Verification of safety mechanisms
– Insight into improving coverage

• Need insight into where faults fall

Aggregating / Mapping Coverage
FMEDA
Design Block DC of SM

Block 1 X%

Block 2 Y%

Block 3 Z%

Etc.

FMEDA generates SPFM,
LFM, & PMHF (est.)

Fault Campaign ran on
Blocks A, B, D – individually
or grouped – based on
Function / SM

Campaign collects across
each block, the sum of:
FSPF FRF FSAFE FDP,DET
FDP,LAT

Block 1 (Safety Related, ASIL)

Function

PSM

SSM

Function

PSM

SSM

Function

PSM

SSM

Function

PSM

SSM

Sub-block A Sub-block B

Sub-block DSub-block C

Non-Safety
Function

Non-Safety
Function

Aggregated
Diagnostic
Coverage

Compare

Aggregates Faults to create
Diagnostic Coverage for Block
1:
DCRF,Block1 DCLF,Block1

Management & Tracing

• Challenges:
– Managing the Size/Complexity of FMEDA Spreadsheet
– Supporting internal reviews and audits
– Supporting external assessments

FMEDAFault
Campaign How to

Connect &
Manage?

Fault campaign process (1)
FMEDA

Tracking

Formal Fault
Campaign

Simulation/Emulation
Fault Campaign

Safety Info
FDI

Fault List Testbenches
UCDB

Diagnostic
Coverage

UCDB

Back-annotate

Fault campaign process (2)

FMEDA

Tracking

Safety Definitions Fault Campaigns

Safety Info
FDI

Diagnostic
Coverage

UCDB

Template +
Annotate

Summary

• Qualitative Analysis with a FMEA/FTA & Quantitative Analysis with a
FMEDA are standard practices

• FMEDA is a key document to allows integrators of IC/IP to understand
functional safety metrics
– Especially important when considering configuration / feature options

• Connecting information from Fault Injection Campaigns to the FMEDA
– Validates early predictions of Diagnostic Coverage and Hardware

Architectural Metrics
– With challenging architectures, the only means to determine coverage

• Fault Injection Campaigns serve as verification of safety mechanisms

Break

How Formal Reduces Fault
Analysis for ISO 26262

Doug Smith
Doug_Smith@mentor.com

Verification Consultant
Mentor Consulting

Traditional

Safety on semiconductors

Safety Element

Safety
Mechanism

Safety Sub-
element

Safety
Mechanism

Safety Sub-
element

Safety
MechanismSafety Sub-

element

Safety
Mechanism

Design

• Potentially lots of
– Safety critical functions
– Safety mechanisms
– Secondary safety mechanisms

• Large designs thousands of random faults to inject!
• How to categorize faults shared between shared logic?
• Need tests that allow faults to propagate and be detected
• Large simulation time to test software safety mechanisms
• May have large fault detection time intervals

Safety Sub-
element

Safety
Mechanism

Safety Sub-
element

Safety
MechanismSafety Sub-

element

Safety
Mechanism

DesignICs are harder

Try breaking up the problem!

• Not allowed
• Must show independence with

Dependent Fault Analysis (DFA)

Safety Sub-
element

Safety
Mechanism

Safety Sub-
element

Safety
MechanismSafety Sub-

element

Safety
Mechanism

Design

• Cone is equivalent to DFA
• Cones can overlap
• Cones enable quick fault

categorizing

Formal cone of influence (COI)

Safety Element

Safety Mechanism

COI fault analysis
 Safe fault
 Single-point fault
 Residual fault
 Dual-point fault in safety

function
 Dual-point fault in safety

mechanism
 Latent fault

Design
Safety function

Safety function

Safety mechanism

Secondary safety mechanism

Minimum sequential distance (MSD)

• Fault Detection Interval (FDI)
• Violation if

MSDSM – MSDSF > FDI

MSDSF = 3

Safety critical function

E.g.,

FDI = 2

6 - 3 > 2

∴, Too long to propagate….
safety goal violation!

MSDSM = 6

Safety mechanism

Safety function fault propagation

?

No propagation -> Safe fault!

Safety mechanism fault propagation

No propagation -> undetectable fault!

?

?

Safety Mechanism

Traditional formal
• Input constraints and assumptions

• Issues
– Need input requirements
– Labor intensive
– Not automated
– Typically incomplete – formal tries everything!

asm_drive_data : assume property (pkt_val |-> pkt_data == data);
asm_pkt_stable : assume property (pkt_val |-> $stable(packet));
asm_payload_stable : assume property (pkt_val |-> $stable(payload));
asm_pkt_kind_stable : assume property (pkt_val |-> $stable(pkt_type));

Sequential Equivalency Checking
Ti

e
in

pu
ts

 to
ge

th
er

Original design

Fault-injected design

Injecting faults

1

0

Fault condition

Driver value

netlist cutpoint dut.reg_o –cond { fault[100] } –driver 1’b0

Formal fault injector

• Conditional cutpoint

• SLEC target

module fault_injector(...);
default clocking cb @($global_clock); endclocking
bit [N:0] fault = '0;

asm_single_point_fault: assume property ($onehot0(fault));
asm_fault_stuckat: assume property (fault |=> $stable(fault));

netlist cutpoint {impl.dut.tx_data_fifo0.fifo0.genblk2.mem0.rdata[2]} \
-cond {impl.fi.fault[1]} –driver 1’b0

slec map spec.safecheck.safety0 \
impl.safecheck.safety0 -cond { impl.safecheck.fi.fault[1] }

Parallel fault analysis

• One compile
• Thousands of parallel fault targets analyzed by formal

slec map –cond { fault[8] } …
slec map –cond { fault[9] } …
slec map –cond { fault[10] } …
slec map –cond { fault[11] } …
slec map –cond { fault[12] } …

…

slec map –cond { fault[0] } …

slec map –cond { fault[1] } …

slec map –cond { fault[2] } …
slec map –cond { fault[3] } …
slec map –cond { fault[4] } …

slec map –cond { fault[5] } …
slec map –cond { fault[6] } …
slec map –cond { fault[7] } …

Proving a fault propagates

SLEC

?

?

First steps …

• Quick and easy
• But do all faults really propagate?

Structural analysis

Fault analysis

Need failure analysis …

• Simultaneous propagation
to output and safety mechanism?
– Within time window?

?

Failure analysis
// Find residual faults
cover property (fault && seq_fault_propagates |-> seq_fault_not_detected[*FDI]);

// Find latent faults
cover property (fault && seq_psm_fault_propagates |->

seq_ssm_fault_not_detected[*MPFDI]);

? tFDI

Example undetected failure

Building confidence
Structural analysis

?

Fault analysis

?

? tFDI

Failure analysis

Confidence
Least Most

• DC = % of safety element covered by safety mechanism

Residual

DCRF = 1 – (NRF / NAll)

Diagnostic coverage

NRF – # residual faults
NMPF,L – # latent faults

Latent

DCMPF,L = 1 – (NMPF,L / NAll)

?

? tFDI

A range for diagnostic coverage
Faults Structural analysis Fault analysis Failure analysis

Unverified Verified Unverified Verified Unverified Verified

Safe 286 286 0 299 0 301

Residual 8 0 0 12 0 17

Dual-point in Safey Function 219 0 215 0 134 84

Dual-point in Safety
Mechanism 2013 0 1704 28 1554 132

Latent 0 0 0 296 0 307

DCResidual 91.0% - 99.7% 91.0% - 99.5% 94.0% - 99.3%

DCLatent 20.3% - 100% 20.8% - 88.2% 26.3% - 87.8%

Continuous refinement

Example report

• Formal can run on gates, but …

• RTL more likely pessimistic • Gates likely mask faults

RTL or gates?

NRTL < NGates

∴, DCGates > DCRTL

DCRTL = NRF-RTL / NRTL DCGates = NRF-Gates / NGates

• If RTL more pessimistic, gates are unnecessary …

RTL to gates equivalency
RTL Structural analysis Gates Structural analysis

DCResidual 91% - 99.7%

DCLatent 20% - 100%

DCResidual 94% - 97%

DCLatent 18% - 98%

Potential limitations using formal …

• Large number of formal targets

• Long formal run times

• Large number of inconclusives

• Results biased towards formal friendly designs and design areas

Random sampling

• Confidence interval
– Allows picking random samples

• Solves
– Large numbers of formal targets
– Large numbers of inconclusives
– Unmanageable results

0%

1%

2%

3%

4%

50% 60% 70% 80% 90% 100%

1000 samples

2000

5000

99
%

 C
on

fid
en

ce
 in

te
rv

al
 ±

Fault Coverage (in samples)

Agrawal & Kata, D&T 1990

𝑪𝑪𝑪𝑪𝟗𝟗𝟗𝟗𝟗 =
𝒄𝒄 ±

𝟑𝟑.𝟑𝟑𝟑𝟑
𝒏𝒏

𝟏𝟏 + 𝟎𝟎.𝟓𝟓𝟗𝟗𝒏𝒏𝒄𝒄(𝟏𝟏 − 𝒄𝒄)

Goal posting
• Possibilities

– Write temp targets
– Automatic goal-posting

formal engines
– Seed formal with

waveforms
• Find activity around faults

State space

Formal engines

Start
here

Intermediate targets

Automated flow

?
Fault analysis

?
? tFDI

Failure analysis

Safety Definitions

dut.top.shift.en
dut.abp1.psel
...

Structural analysis

module fault_injector(...);

netlist cutpoint –cond ...

cover property (...);

Handoff to simulation and emulation

?

? tFDI

Formal Fault Campaign

dut.top.shift.en
dut.abp1.psel
...

Fault lists

module zi_replay_vlog;
initial begin
#1;
force spi_top.wb_rst_i = 1'b1;
...

Testbenches

UCDB and Tracking

initial begin
uvm_hdl_force(signal, 1’b0);
...

Fault injection logic

Automated fault injection for simulation

dut.top.shift.en
dut.abp1.psel
...

Fault lists

module fault_injector;
initial begin
// Read list + pick random fault
...
uvm_hdl_force(signal, 1’b0);

endmodule
bind testbench fault_injector fi();

Fault injection logic

vsim +FAULT_LIST=… \
+FAILURE_MODE=… \
+FAULT_ID=… \
...

Testbench
checks
results

Activity Analyzer

Regression simulations

Fault campaign from the top down

?

? tFDI

FMEDA

Tracking

Formal Fault Campaign

Simulation/Emulation
Fault Campaign

Fault list
Reports

Safety
info

Diagnostic
coverage

UCDB

Back-annotate

Testbenches
UCDB

Fault campaign from the bottom up

?

? tFDI

Safety Definitions

Tracking

Fault Campaign
Safety

info

Diagnostic
coverage

UCDB

FMEDA Template +
back-annotate

Summary

• Formal provides …

– Quick and easy fault categorization for worst-best case DC

– No environment setup required – no testcases

– High-level of confidence in results – can’t beat a proof!

– Ties in with simulation and emulation

– A great front-end for the entire fault campaign process

Requirement Tracing in the
ISO26262 World

Charles Battikha (chuck_battikha@mentor.com)

Why Requirements matter…

• Example: NASA’s Mars Climate Orbiter
– Sent crashing into Mars by NASA
– The Orbiter spoke to NASA in metric…

But the engineers on the ground were
replying in non-metric English

“What is being designed, built, and verified is
based on requirements and thus intended”

Safety Requirements

Safety
Goals

Technical Safety
Requirements (TSR)

Functional Safety
Requirements (FSR)

Software
Safety

Requirements

Chip & Software
ArchitectureItem ArchitectureASIL

Safety Goal met? = Complete List + Each True

Functional Safety Concept Technical Safety Concept

Allocation Allocation

26262 3-7 26262 4-6

26262 6-6

Hardware
Safety

Requirements

26262 5-6

Achieving ASIL rating means meeting all requirements

Why are requirements hard to write?

• Human Language is inherently vague and imprecise

• Relying on engineer’s writing skills….

• Trouble separating WHATs from HOWs
– Desire to jump into the details…

• Believe spending time writing requirement will cause delays
– Good enough…
– Let’s get on with it…

Requirements: Common Problems

• Errors of Omission
– What was intended, was not actually stated; Important information left out

• Errors of Commission
– Information is wrong; Information is contradictory

• Errors of Clarity
– Requirements stated in ways that lead to confusion, misunderstanding
– Creation of assumptions

• Errors of Understanding
– Ambiguous, words get in the way
– Each person internalizes and applies their own definitions

Writing Safety Requirements

• Natural language

• Informal notation

• Semi-formal notation (syntax defined)

• Formal notations (syntax & semantics defined)

26262 8-6

Increase Effort
Increase Rigor

ASIL A/B

ASIL C/D

Reduced Risk

Defining Requirements

• Define WHAT not HOW
• Should be:

– Complete / Atomic
– Consistent
– Comprehensible
– Realistic / Feasible
– Verifiable
– Valid / Correct
– Necessary

26262 8-6

Requirements Writing

• Each requirement should be written with a standard style and contain
the following components:
– Action: Operation design will perform. Atomic and unambiguous.
– Condition: Under what conditions is the action performed.
– Testable Result: What will occur. Should be specific.
– Reaction Time: A bounding time. For instance, a ‘within’ time frame.

• Time should in the proper context. Stay away from implementation details.

Desired format of requirements:
<Function/Object> shall <Action><Condition> <Testable Result> <Reaction Time>

Creating Safety Requirements

Sense Compute Act

Define Safe StateDefine Command
Define Information

Define equations for faults to
transition to Safe State

Detection Requirement Reaction Requirement

Requirements should be testable - can be viewed as preliminary test cases.

Value of Tracing

System
Requirements

Hardware
Design

Requirements

Hardware
Design

Documentation

Hardware
Design

Implementation

Top Down Trace – Find unallocated and/or unimplemented requirements

Bottom Up Trace – Find unnecessary, unneeded, unwanted functions or features

Top Down Trace – Find untested requirements, failing requirements, unimplemented tests

System
Requirements

Hardware
Design

Requirements

Verification
Plan

Test Bench
Implementation

Testing
Artifacts

Bottom Up Trace – Find undocumented testing

Tracing Requirements

Design
Specification

RTL Source
Code

Source
// [Implements: DREQ_nnn]

Description
[Covers: DREQ_nnn]

Test Case /
Test Bench

Source Code

Log Files
UCDB

Source
// [Implements: VREQ_mmm]

Log File
[Passed: VREQ_mmm]
Or
[Failed: VREQ_mmm]

Verification
Plan

VREQ_mmm
Description
[Covers: DREQ_nnn]

26262 8-6

Hardware
Requirement

Document

DREQ_nnn
Description
[Covers: SREQ_001]

Technical
Safety

Concept

System
Requirement

Document

SREQ_001

Functional
Safety

Concept

Safety Goals

TSR_001

Testing Artifacts

• Requirements must trace into the testing artifacts
– Shown to have been actively tested and shown to pass
– For simulations, typically UCDB and/or Test Log Files
– Artifacts from a “Run for the Record” regressions used for final reports.

Development
Regressions

during
Development

Feedback on testing including
coverage on traceability

Run for the
Record

Regressions
Logs

All Coverage Met –
Code, Functional, &

Traceability

UCDB Official
Traceability

Report

Directed Testing & Requirements

• Directed Tests are often used for 1-1 match of requirement to test
• However, typical Directed Tests driven to satisfy requirements tend to

have shortcomings:
– Not complete in testing across the full design
– Down stream errors are not checked
– Are limited to specific times, situations

Function A Function B
Stimulus

Directed
Test

Checks

Scope of Testing

Random Testing & Requirements

• Random Testing and UVM Test Benches allow a smaller set of Test
Cases to address multiple requirements concurrently.

• Random testing of requirements & checking for passing is the AND of:
– Test Case Passing
– Appropriate Stimulus Generated
– Appropriate Prediction Generated
– Results are checked and match

• Checks distributed work across test cases, predictors, and scoreboards
– AND function can be addressed by Functional Coverage

Tracking in a Test Bench
• Logging for traceability occurs where testing of a requirement is done
• Typically is an ‘else’ in an error check
• Simple Functional Coverage is okay IF run for record must achieve 100% passing

test cases

[DES_REQ_nnn] When sending a
message out on the channel, the design
shall calculate a CRC in accordance with
…
[VREQ_nnn] The Test Bench shall have a
checker on DUT channel output that
ensures all messages generated by the
design have a correct CRC….

if (expected_crc != actual_crc)
`uvm_error("DUT generated bad CRC")

becomes
// [Implements: VREQ_nnn]
if (expected_crc != actual_crc)

`uvm_error("DUT generated bad CRC")
else begin
`uvm_info("DUT generated good CRC")
Add to specific VREQ to covergroup

end

Tracking in a Test Bench

• If failing test cases can occur in
run for the record,
– Passing test cases may have

set functional coverage
– Create passing / failing

covergroups
– Coverage of failing conditions

trumps good covergroup.
– Parsing log files can

accomplish similar tracking

// [Implements: VREQ_nnn]
if (expected_crc != actual_crc) begin
`uvm_error("DUT generated bad CRC")
Add specific VREQ to bad covergroup

end else begin
`uvm_info("DUT generated good CRC")
Add specific VREQ to good covergroup

end

Tracking in a Test Bench
• UVM Test Benches distribute work so checking may be too simplistic for tracing

– Scoreboards may simply compare expected data against actual data
– May not be possible to isolate checks to a specific requirement

• Usually the ‘predictor’ can be associated with a requirement
– A requirement would then be considered passing if:

• The Predictor made appropriate prediction
• Test Case has passed (no scoreboard miscompares)

– Coverpoints created to AND these conditions

DUT

Predictor

Stimulus Scoreboard

Expected Data

Actual Data

√

√

Predictor to Requirement Mapping

• For some designs, it may be possible to create a more direct
predictor/checker mapping to requirements
– Tradeoff of complexity in checkers versus complexity in tracking

DUT

Checker (Req Z)

Inputs

Monitors
Tests =
Random
Stimulus Drivers

Monitors

Outputs

Checker (Req Y)

Checker (Req X)

Etc.

Assertions -> Requirements

function [12:0] ecc_calc(data, …);

wire logic p1 = 1 ^ data[0] ^ data[1] ^ ...

wire logic p2 = …
…

return ({data[7],data[6],data[5],data[4],p8,data[3], … });

endfunction

// Check ECC calculation

req_xyz: assert property (encoded_data == ecc_calc(data, …));

// formal randomly picks a bit(s) to flip.
asm_mask: assume property ($countones(one_error_mask) == 1);
// Check ECC repair is correct
req_nnnn: assert property (fixed_data[7:0] == data);

-- XOR mark to flip 1 bit
one_error_data <= one_error_mask XOR encoded_data;
fixed_data <= ecc_correction_function(one_error_data);

Assertions can also
be assigned per
requirement.

A proved assertion is
positive coverage.

Requirements Management

Source Control
Development

Change Management

Regressions

Safety
Goals

Safety
Goals

Safety
Requirements

Document
Database

Check-in Check-out

Approval to change

Design
Docs

Verification
Plans

Design &
Verification
Database

Iteration

Qualitative
Analysis

Quantitative
Analysis

FEMA/
FEMDA

Test
Results

Log
Files

UCDB

Passing Test Cases
Test Mapping

S
a
f
e
t
y
G
o
a
l
s

= Source Control +
Change Managed
documents

Design Source
(e.g. RTL)

= Source Control
documents

Verification Source
(e.g. Test Benches,

Test Cases, etc.)

Check-in Check-out

Fault Campaign
Hardening

Functional
Requirements

After release to
production.

Changes may
trigger for potential

re-certification.

Requirements Tracing Tools

• A centralized view that connects the
development process and results

• Traceability at all stages of
development

• Quickly understand the impact of a
change across the project

• Reflects the current status of the
project using live data

VHDL
Verilog

Requirements Tracing

C / C++

Lifecycle Management

Design &
Testbench

Data

Requirements
Management

Impact Analysis

Automated
Reporting

Test Results
Database

ASCII Tests,
Test Results, &

XML Data

Requirement
Documents & Files

Requirements
Database

Summary

• ISO26262 defines:
– Top down flow of safety requirements
– Requires precise language for requirement definition
– Traceability
– Change Management and Source Control

• Poor requirements creates an unstable base to build on

• Tracing should be done into verification artifacts

Questions?

Contact Information

Charles Battikha (chuck_battikha@mentor.com)
Doug Smith (doug_smith@mentor.com)

https://www.mentor.com/mentor-automotive

White paper - “How Formal Reduces Fault Analysis for ISO 26262”
http://go.mentor.com/4QQrY

https://www.mentor.com/mentor-automotive
http://go.mentor.com/4QQrY

	How to Stay Out of the News with ISO26262-Compliant Verification��
	Agenda
	Entering the Automotive Market…
	Automotive Market Drivers
	Complexity of Automotive Systems
	Functional Safety = Table Stakes
	Functional Safety Tradeoffs
	IC/IP Categories
	ISO26262 – The known
	ISO26262 – The unknown
	“V” Development & Verification
	Requires Two Testing Approaches
	Fault Types
	Fault Types
	Diagnostic Coverage
	Verification of Random Hardware Faults
	POST & Interrupt Driven BIST as SM
	Mentor Functional Safety Process
	Structural Analysis
	Dependent Fault Analysis (DFA)
	DFA & COI
	Summary
	From Analysis to Fault Campaigns
	Topics
	Safety Analysis
	Usage of Metrics
	FMEA & FTA
	FMEDA – General Structure
	FMEDA
	FMEDA - SPF
	FMEDA - RF
	FMEDA - Safe
	FMEDA - Safe
	FMEDA – MPF
	FMEDA - DC
	Layered Fault Campaign
	Increase Confidence
	Design Hardening
	Aggregating / Mapping Coverage
	Management & Tracing
	Fault campaign process (1)
	Fault campaign process (2)
	Summary
	Break
	How Formal Reduces Fault Analysis for ISO 26262
	Safety on semiconductors
	ICs are harder
	Try breaking up the problem!
	Formal cone of influence (COI)
	COI fault analysis
	Minimum sequential distance (MSD)
	Safety function fault propagation
	Safety mechanism fault propagation
	Traditional formal
	Sequential Equivalency Checking
	Injecting faults
	Formal fault injector
	Parallel fault analysis
	Proving a fault propagates
	First steps …
	Need failure analysis …
	Example undetected failure
	Building confidence
	Diagnostic coverage
	A range for diagnostic coverage
	Example report
	RTL or gates?
	RTL to gates equivalency
	Potential limitations using formal …
	Random sampling
	Goal posting
	Automated flow
	Handoff to simulation and emulation
	Automated fault injection for simulation
	Fault campaign from the top down
	Fault campaign from the bottom up
	Summary
	Requirement Tracing in the ISO26262 World
	Why Requirements matter…
	Safety Requirements
	Why are requirements hard to write?
	Requirements: Common Problems
	Writing Safety Requirements
	Defining Requirements
	Requirements Writing
	Creating Safety Requirements
	Value of Tracing
	Tracing Requirements
	Testing Artifacts
	Directed Testing & Requirements
	Random Testing & Requirements
	Tracking in a Test Bench
	Tracking in a Test Bench
	Tracking in a Test Bench
	Predictor to Requirement Mapping
	Assertions -> Requirements
	Requirements Management
	Requirements Tracing Tools
	Summary
	Questions?�����
	Contact Information��Charles Battikha (chuck_battikha@mentor.com)�Doug Smith (doug_smith@mentor.com)��https://www.mentor.com/mentor-automotive��White paper - “How Formal Reduces Fault Analysis for ISO 26262” http://go.mentor.com/4QQrY

