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• Stuart Swan: A Brief Introduction to High-Level Synthesis
• Mike Meredith: Accellera SystemC Synthesizable Subset Standard
• Matthew Bone: Techniques for Optimization of Power and 

Performance using HLS
• Rangharajan Venkatesan: MatchLib-based Object-Oriented HLS 

Methodology
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A BRIEF INTRODUCTION TO HIGH-LEVEL SYNTHESIS
Stuart Swan, Mentor, A Siemens Business
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What does HLS do?
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• The HLS tool:
– precisely characterizes delay/area of all operations in design
– schedules all the operations over the available clock cycles
– can optionally increase latency
• to share resources and reduce area
• to enable positive slack at gate level

– generates RTL that is functionally equivalent to input SystemC/C++
• HLS automatically creates FSMs, muxes, etc for pipelining and resource sharing

SystemC/C++ Design

Synthesis Directives

Tech Library Spec

High-Level Synthesis
Tool RTL



Core HLS Optimization Concepts
• Loop optimizations

– Unrolling
– Pipelining
– Automatic merging

• Scheduling
– Automatic timing closure based on 

target technology

• Register and Resource sharing
– Automatic lifetime and mutual 

exclusivity analysis and optimization

for (int i=0;i<4;i++) {
acc += data_in[i] * 

coef_in[i] ;
}
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Graphical Analysis of HW Performance
• Designers need to know what is 

happening during HLS
• HLS tools provide a view of the 

timed design
• Cross-probe back to source
• Understand dataflow, timing 

and dependencies

7

Most time 
spent in 
atan2 loop

Scheduled data flow 
dependency

White columns are 
clock cycles

Blue components 
show silicon delay



Coding Style is Key to Good QOR
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• Need to properly capture HW architecture when you write your code!
– I/O and memory architecture
– Process structure
– Useful to have rough idea what RTL will be generated and how expensive 

it will be. 
• E.g. still need to constrain bitwidths of variables (unlike SW programming)

– Leave the details of loop pipelining, microarchitecture optimization, memory 
access scheduling, etc to the HLS tool to optimize



Typical HLS Flow
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SystemC/C++ Design

High-Level Synthesis

RTL Verilog

RTL Synthesis, 
Place and Route

• Write, verify, refine C++ code
• Typical testbench environments: SystemC/C++, Matlab, SV UVM, …
• Perform code/functional coverage closure on SystemC/C++ model

• Explore and refine microarchitecture (using HLS directives)

• Achieve RTL code/functional coverage closure on RTL by leveraging existing 
SystemC/C++ testbench, SV UVM testbench, …



Why is HLS Beneficial?
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• Model is higher abstraction: 

– Smaller, fewer mistakes

– More easily reusable (parameterizable, etc)

– Easier to retarget to different silicon technologies

• Verification is faster and easier

• Enables ability to quickly explore PPA tradeoffs

• QOR very competitive to hand-written RTL



ACCELLERA SYSTEMC SYNTHESIZABLE SUBSET 
STANDARD

Mike Meredith, Cadence Design Systems
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General Principles
• Define a meaningful minimum subset
– Establish a baseline for transportability of code between HSL tools
– Leave open the option for vendors to implement larger subsets and still be 

compliant
• Include useful C++ semantics if they can be known statically – eg

templates
• Covers behavioral model in SystemC for synthesis
• Covers RTL model in SystemC for synthesis
• Main emphasis of the document is on behavioral model synthesizable 

subset for High-Level Synthesis



Scope Of The Standard

SystemC Elements
• Modules
• Processes

– SC_CTHREAD
– SC_THREAD
– SC_METHOD

• Reset
• Signals, ports, exports
• SystemC datatypes

C++ Elements
• C++ datatypes 
• Expressions
• Functions
• Statements
• Namespaces
• Classes
• Overloading
• Templates



SC_MODULE

Module Structure for Synthesis

clock
reset

Ports
required for

SC_CTHREAD,
SC_THREAD

Signal-level
ports for

reading
data

Signal-level
ports for
writing
data

SC_CTHREAD SC_METHOD

Member 
functionsMember 

functions

Data members
(Storage)Data members

(Storage)

submodule submodule
Signals

SC_THREAD



Specifying Clock and Reset
Simple signal/port and level 

SC_CTHREAD( func, clock.pos() 
);

reset_signal_is( reset, true 
);

areset_signal_is( areset, 
true );

SC_THREAD( func );
sensitive << clk.pos();
reset_signal_is( reset, true 

);
areset_signal_is( areset, 

true );

reset_signal_is( const sc_in<bool> &port, bool level )
reset_signal_is( const sc_signal<bool> &signal, bool level )
async_reset_signal_is( const sc_in<bool> &port, bool level )
async_reset_signal_is( const sc_signal<bool> &signal, bool level )

For synthesis, 
SC_THREAD 

can only have a 
single sensitivity 
to a clock edge



Module Declaration
• Module definition
– SC_MODULE macro

or
– Derived from sc_module

– SC_CTOR
or 

– SC_HAS_PROCESS

• Classes that derive from 
modules are supported

// A module declaration
SC_MODULE( my_module1 ) {

sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_CTOR( my_module1 ) {…}

};

// A module declaration
SC_MODULE( my_module1 ) {

sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;

SC_HAS_PROCESS( my_module1 );
my_module1(const sc_module_name 

name )
: sc_module(name)

{…}
};



Use Of wait()
• For synthesis, wait(...) can only reference the clock edge 

to which the process is sensitive
• For SC_CTHREADs

– wait()
– wait(int)

• For SC_THREADs
– wait()
– wait(int)
– wait(clk.posedge_event())
– wait(clk.negedge_event())

For synthesis of 
SC_THREADs 

wait(event) must 
match the sensitivity 

of the clock edge



Data Types
• Additional SystemC data types
– sc_bv

• Bit vector, no arithmetic
– sc_logic
• Single-bit 4 state logic, but “X” and “Z” 

are not supported
– sc_lv
• Vectors of sc_logic

• C++ integral types
– All C++ integral types except wchar_t
– char is signed (undefined in C++)

• Primary SystemC data types
– sc_int, sc_uint

• Fixed bit widths <=64
– sc_bigint, sc_biguint

• Arbitrary fixed bit widths
– sc_fixed, sc_ufixed

• Fixed point with configurable 
rounding and saturation



Pointers

• Supported for synthesis
– “this” pointer 
– “Pointers that are statically 

determinable are supported. 
Otherwise, they are not supported.”

– If a pointer points to an array, the 
size of the array must also be 
statically determinable.

• Not Supported
– Pointer arithmetic
– Testing that a pointer is zero
– The use of the pointer value as data 
• eg hashing on a pointer is not supported 

for synthesis



TECHNIQUES FOR OPTIMIZATION OF POWER AND 
PERFORMANCE USING HLS

Matthew Bone, Intel Corp.
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Intro

• Growth of HLS usage seen in many design domains at Intel
– Powerful tools enable new design methodology
– Benefits for datapath and control dominated designs
– Benefits break down roughly into three categories:

• Schedule/TTM, power/performance, SW quality and code sharing
– Case studies have been hand-picked to focus on power/performance and 

design space exploration



The Challenge

• Massive scale of designs and shortened schedules
– Finishing functionality for many pieces is a large effort
– Limited time available to explore power and performance

• Power is often the important metric
– Mobile devices have passed desktop devices for web access
– Datacenter costs (power, cooling)

• Using Traditional (RTL) Methodology
– Power/performance estimates available later in the design phase
– High-effort to make changes to address power/performance
– Language improves (System Verilog), but still 35 year old abstractions



High-Level Synthesis

• SystemC source – more concise expression than RTL
– Tool directives select parallelism, throughput, latency, storage types
– Technology library provides parts information

• e.g. the area and delay of a 16x16 multiplier

FPGA

High-Level Synthesis

SystemC/C++
Model

Code Parameters

Technology Library

HLS Directives

Server

Mobile / IoT

ASIC

Next Gen
Client



Why HLS?  #1: Faster TTM

• Designer benefits:

• Concise code (3-10X fewer lines than RTL) 

• Powerful directives for uarch decisions

• Effort savings in tracking spec changes

• Verification benefits:

• Begin earlier

• Simulation acceleration (100X faster than RTL)

• Physical design benefits:

• High quality RTL with good timing/routing 

characteristics

RTL Development Tuning

Integration Verification

SystemC Development Tuning

Freeze T/OSystemC + HLS

RTL

Unit-Level 

Verification

Unit-Level 

Verification

Integration Verification



Why HLS?  #2: Better PnP

• Exploration
• Low effort for arch/uarch variants

• Earlier power estimates
• Time to react with architectural 

changes, or “tuning” HLS directives

• Custom RTL
• Targets specific process node library 

(or FPGA)
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Why HLS?  #3: SW/FW Quality
• SystemC language:

• Opportunity for re-use of SC/HLS 
model as SW Virtual Prototype (or 
arch/perf model)

• Two styles of re-use seen:
• Use SC/HLS model as-is for VP

• Re-use the “core” portions of the 
SC/HLS model, with changes for VP 
speed-up

HLS Source
SystemC Pin-Level

Common 
C++

kernel()

Virtual Prototype
SystemC TLM

Common 
C++

kernel()

Use HLS model as-is:
Fast enough for SW/FW 

verification in many cases

Use “core” of HLS model:
Fastest simulation may 

require using TLM 
interfaces, and disabling 

some HW details



Exploration: Power/Performance

• Seeking best power/perf will be referred to as design space 
exploration, or just tuning later in the design phase

• Many RTL variants can be created by changing only HLS 
tool directives
– “Micro-architectural” changes
– Goal frequency, throughput, latency
– Storage scheme (registers, latch arrays, RFs, SRAMs)

• Some exploration requires edits to the SystemC source
– “Architectural” changes
– Usually more significant changes to partitioning or ordering of 

an algorithm
– Edits in SystemC are less effort than RTL

RF vs. SRAM vs. Multi-Port RAM

Pipelining II vs. Frequency
uarch Area Latency
PIPE_II4 16490 71
PIPE_II1 31707 55
PIPE_II1_192MHz 18847 12



1 stage Cannot meet 
timing

2 stage Tight timing 
in 1st stage

3 stage

Good for 
timing, but 
wasted 
sequentials?

2 stage
Well 
balanced 
pipeline

Exploration: Pipelining
• Pipelining example

– FIR filter * + +

+ +*

+ +*

// Sum of taps*coefs
sum = t0*coef0 + t1*coef1 +

t2*coef2 + t3*coef3

+ +*

*

*

*

*

+

+

+

Pipelined Variants

NOTE: Similar multiply and accumulate trees 
are common in AI/NN domain



Exploration: Pipelining 2

• Case Study: Signal Processing, 5G MMSE (datapath)
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Exploration: Pipelining 3

• Existing RTL vs. HLS Results
– Area: 

• 21.9k -> 16.4k (34% savings)
• Multipliers shared efficiently by HLS

– Latency:
• 102 -> 71 clocks (29% savings)
• Existing RTL developed on previous tech node

– Throughput:
• 1 per 4 clocks -> 1 per clock (4X)
• HLS gives options:

– 4X the throughput for 2X the area
– Same throughput at 1/4th the clock freq (power)
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Pipelining II vs. Frequency

uarch Area Latency
PIPE_II4 16490 71

PIPE_II1 31707 55

PIPE_II1_192MHz 18847 12



Exploration: Max Frequency

• Case Study: High-Frequency Memory Fabric (control logic)
– Maximum frequency of the fabric primarily limited by arbitration algorithms

• Challenges with traditional RTL design:
– Timing analysis done after synthesis of entire fabric (long turnaround)
– Timing path analysis through arbitration and fabric modules (high effort)

• With HLS design: 
– Tool does “characterization” logic synthesis for a region of code performing 

arbitration
– Early information; delay for entire arbitration operation is grouped 



Exploration: Max Frequency 2

fabric_4x3_req_ingress_arb
Area =     0.47     Delay =   139.1 ps

unsigned winner;   // Which requestor is picked
req_ingress_arb: {

if (req_wr_vec && !pri_rd)
winner = arb_wr[rspid].arbitrate(req_wr_vec);

else if (req_rd_vec)
winner = arb_rd[rspid].arbitrate(req_rd_vec);

. . . etc . . .
}

fabric_6x3_req_ingress_arb
Area =     0.70     Delay =   189.0 ps

Procedural  
Arbitration 

Code

fabric_5x3_req_ingress_arb
Area =     0.59     Delay =   164.2 ps

Vary number of 
requestors

Multiple HLS runs
Meets timing @ 2GHz

Marginal @ 2GHz

Cannot meet @ 2GHz

Fast feedback gives 
time to consider 

options

Change 
arb algo?

Multi-level 
fabric?Remove 

pri chan?



Exploration: Static Power

• Static (leakage) power is managed through Multi-Vt cells
– SVT: Standard Vt   - “Slow” - Standard delay, Low leakage
– LVT: Low Vt - “Fast”  - Shorter delay, High leakage

• Goals differ depending on design:
– Mobile: Prioritize low leakage (battery life, always active blocks)

• Design team may target a split like 90/10 for SVT/LVT cells
– Server: Tolerant of higher leakage (power-down idle silicon)

• Design team may target a split with majority LVT cells (and some ultra-
fast ULVT)

*

*

*

Standard:

Mixed:

Fast:



Exploration: Static Power 2

• Targeting a split like 90/10 for SVT/LVT cells:
– “Slow” (average) cell delays, very low leakage for 

90% of cells
– Small portion of fast, high-leakage cells to resolve 

tight timing issues 
– In HLS tool terms:

• “Fit as much logic as possible in each stage, reserve a 
very small timing guardband”

• What if low leakage is the primary goal?
– Trade-off is latency for power
– Slower cells require more time/stages to compute

+ +* *

Large guardband for 
routing/unpredicted delays,
no need for fastest cells

+ +* *

Small guardband for 
routing/unpredicted delays



Exploration: Static Power 3

• Case study: 5G Transceiver (mostly datapath)
– Always on (or quick wake-up); power-down is not an option
– Must have low leakage

• Target was 90% of the total design using low-leakage cells
– Legacy RTL and cores were using 40% high-leakage cells
– Re-pipeline all blocks (20+) with large timing guardband

• 1 day’s effort

+ +* *

Too many 
high-leakage 

cells

HLS RTL

High-leakage 
cells within 

budget

RTLHLS



Efficient Reuse with HLS

• Next-gen technology
– Change from XXnm to Ynm tech node
– Re-generate RTL that is timing-clean and has well-

balanced (power efficient) pipelines on the new 
tech node

• HLS Parameterization
– Same filter code can be used with different latency, 

throughput, parallelism directives
– Re-use same SystemC IP across product spectrum:

• Server: Fastest cells, high 
frequency/parallelism/throughput

• Mobile: Low-leakage cells, latency/throughput trade-
offs

16000
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Area vs. Latency

New process tech shifts 
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Wrap Up
• HLS finds low power and efficient solutions

– Design space exploration
– Late “tuning” changes
– Efficient designs when moving to next gen silicon tech

• SystemC-based designs
– Less code, less effort to make design changes
– Simulates fast – quick debug iterations
– Portions of code usable in other domains (VP, arch/perf model)

• The Investment
– Ramping teams into new language and toolset required real investment



MATCHLIB-BASED OBJECT-ORIENTED HLS 
METHODOLOGY

Rangharajan Venkatesan, NVIDIA Corp.
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Agenda
• Motivation - Chip Design Complexity

• Object-oriented HLS Approach

– A “C++/SystemC-to-Layout” Flow

– MatchLib Opensource HLS library

– Latency-Insensitive Channels: Connections

– Verification Methodology   

• SoC TestChip Demonstrations 

• RC18: Scalable Deep Learning Accelerator

– 128 TOPS, ~10 TOPS/W

– Spec-to-Tapeout in 6 months with <10 researchers
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Chip Design Complexity
Customer demand for more transistors & capability, 

need lower design costs

NVIDIA Xavier SoC [CES 2018]
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Motivation: Shorten Development Time & Cost 

• RTL design and verification dominates:  >70% of IC design effort at NVIDIA
– Prohibits which features make it into each SoC

• Need 10x lower design and verification effort:
– Overlap architect & implement phases for faster time-to-market, more features

Typical development timeline:  3-5 years from R&D to product

41



High-productivity Design Approach
Enables faster time-to-market and more features to each SoC

RAISE HARDWARE DESIGN LEVEL 
OF ABSTRACTION

Use High-level languages
e.g. C++/SystemC instead of Verilog

Use Automation
e.g. High-Level Synthesis (HLS)

Use libraries/generators
MatchLib

AGILE VLSI DESIGN

Small teams, jointly working on 
architecture, implementation, VLSI

Continuous integration with  automated 
tool flows

Agile project management techniques

24-hour spins from SystemC-to-layout

42



Object-Oriented High-Level Synthesis (OOHLS)

• Leverage HLS tools to design with C++ and SystemC
models

• MatchLib: Modular Approach To Circuits and Hardware 
Library
– “STL/Boost” for Hardware Design
– Synthesizable hardware library developed by NVIDIA 

research
– Highly-parameterized, high QoR implementation
– Available open-source: https://github.com/NVlabs/matchlib

• Latency-Insensitive (LI) Channels
– Enable modularity in design process
– Decouple computation & communication architectures

“Push-button” SystemC-to-gates flow

Ref: Khailany et al., DAC 2018 43

https://github.com/NVlabs/matchlib


Latency-Insensitive (LI) Channels

• Connections is a LI channel library in MatchLib

• Producer & consumer implementations are channel-agnostic, with arbitrary 
pipelining and scheduling

• Channels mapped to ready/valid interfaces when synthesized to RTL

Our approach:  Connections

Ref: L.P.Carloni et al., DAC’99, K.E.Fleming et al., FPGA 2012 44



Object-Oriented High-Level Synthesis (OOHLS)

All functional verification and performance verification run 
natively in C++ simulation of SystemC models
• ~50x speedup over RTL
• ~3% error in performance

Leverage libraries for productivity
Use std verification approaches but in SystemC
• Constrained random generators and checkers
• Line and expression coverage
• Assertions

• All SystemC testbenches reusable with generated RTL for 
final verification at full-chip and unit-level

• No Formal verification Support between SystemC and RTL
– A major challenge for widespread adoption of HLS in industry

Verification Methodology

Ref: Khailany et al., DAC 2018 45



Agile VLSI design Techniques 

• Agile, incremental approach to design closure during march-to-tapeout
phase

• Small, abutting partitions for fast place and route iterations
• RTL bugs, performance, and VLSI constraints converge together

Daily “SystemC to Layout” Spins
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SoC Testchip Demonstrations
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RC18: SCALABLE DEEP LEARNING INFERENCE 
ACCELERATOR
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RC18: Scalable DL Inference Accelerator

• Design a state-of-the-art scalable 
high-performance deep learning 
inference accelerator
– >100 TOPS, ~10 TOPS/W

• Demonstrate this is possible with a 
small team in a high-productivity 
VLSI flow

Project Goals

Zimmer et al., VLSI 2019, 
Venkatesan et al. HotChips 2019
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RC18: Scalable DL Inference Accelerator

• Package
– 6x6 Multi-Chip Modules (MCM) in a package

– Ground-reference signaling based inter-chip 
communication

• Chip
– 4x4 array of Processing Elements (PEs) per chip

– Global Buffer/PE for 2nd-level inter-layer storage

– RISC-V controller

– 5x4 Mesh Network-on-Chip

– Network-on-Package and GPIO Interface

Tiled Architecture with Distributed Memory

Zimmer et al., VLSI 2019, 
Venkatesan et al. HotChips 2019

50



RC18: Scalable DL Inference Accelerator

Ref: Sijstermans et al., HotChips 2018
Zimmer et al., VLSI 2019, 

Venkatesan et al. HotChips 2019

Processing Element
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Hierarchical Communication Architecture
Network-on-Package (NoP) and Network-on-Chip (NoC)

NETWORK-ON-CHIP (NoC)

NETWORK-ON-PACKAGE (NoP)

Zimmer et al., VLSI 2019, 
Venkatesan et al. HotChips 2019
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RC18 Design Methodology

RC18

MCM

AGILE VLSI 
Flow

LI 
Channels

Tile-based 
architectu

re

High level 
synthesis

Develop 
hardware 
libraries

Raise 
design & 

verif. 
levels

Low-level Verilog/VHDL 
to C++/SystemC

MatchLib

Autogenerate RTL from 
SystemC/C++ Modular architecture

Decouple compute & 
communication

Continuous integration 

Scale to Multiple 
Chips
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Processing Element Implementation
Reuse, Modularity, Hierarchical Design
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Fabricated MCM-based Accelerator
NVResearch Prototype: 36 Chips on Package in TSMC 16nm Technology

High speed interconnects using 
Ground Reference Signaling (GRS)

100 Gbps per link

Efficient Compute tiles
~10 TOPS/W, 128 TOPS

Low Design Effort
Spec-to-Tapeout in 6 months with 
<10 researchers

Zimmer et al., VLSI 2019, 
Venkatesan et al. HotChips 2019
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Summary

• Design effort reduction from raising abstraction 
levels, tools

• Object-Oriented HLS Flow
• Latency Insensitive Channels abstractions for all 

communication
• MatchLib for capturing reuse of commonly-used 

hardware components
• Enables faster time-to-market and more features 

to each SoC
• ~10X reduction in ASIC design and verification efforts

MATCHLib-Based Object-Oriented HLS Methodology

RC18: Scalable DL Inference Accelerator
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