
How HLS and SystemC is Delivering on its
Promise of Design and Verification Productivity

1

Stuart Swan – HLS Technologist at Mentor, A Siemens Business
Mike Meredith – Product Engineering Group Director for Stratus HLS at Cadence Design Systems, Inc.

Matthew Bone – HLS and Design Methodology Expert at Intel Corp.
Rangharajan Venkatesan – Senior Research Scientist at NVIDIA Corp.

Speakers

2

Mike Meredith
Product Engineering Group

Director for Stratus HLS
Cadence Design Systems, Inc.

Stuart Swan
HLS Technologist

Mentor, A Siemens Business

Matthew Bone
HLS & Design

Methodology Expert
Intel Corp.

Rangharajan
Venkatesan

Senior Research Scientist
NVIDIA Corp.

Agenda
• Stuart Swan: A Brief Introduction to High-Level Synthesis
• Mike Meredith: Accellera SystemC Synthesizable Subset Standard
• Matthew Bone: Techniques for Optimization of Power and

Performance using HLS
• Rangharajan Venkatesan: MatchLib-based Object-Oriented HLS

Methodology

3

A BRIEF INTRODUCTION TO HIGH-LEVEL SYNTHESIS
Stuart Swan, Mentor, A Siemens Business

4

What does HLS do?

5

• The HLS tool:
– precisely characterizes delay/area of all operations in design
– schedules all the operations over the available clock cycles
– can optionally increase latency
• to share resources and reduce area
• to enable positive slack at gate level

– generates RTL that is functionally equivalent to input SystemC/C++
• HLS automatically creates FSMs, muxes, etc for pipelining and resource sharing

SystemC/C++ Design

Synthesis Directives

Tech Library Spec

High-Level Synthesis
Tool RTL

Core HLS Optimization Concepts
• Loop optimizations

– Unrolling
– Pipelining
– Automatic merging

• Scheduling
– Automatic timing closure based on

target technology

• Register and Resource sharing
– Automatic lifetime and mutual

exclusivity analysis and optimization

for (int i=0;i<4;i++) {
acc += data_in[i] *

coef_in[i] ;
}

Ar
ch
ite

ct
ur
e

Co
ns
tr
ai
nt
s

+x

+
x

x

x

x

+

+

t1
t2
dout

Register Lifetime

Shared
register

Shared resource

Loops in
design

6

Graphical Analysis of HW Performance
• Designers need to know what is

happening during HLS
• HLS tools provide a view of the

timed design
• Cross-probe back to source
• Understand dataflow, timing

and dependencies

7

Most time
spent in
atan2 loop

Scheduled data flow
dependency

White columns are
clock cycles

Blue components
show silicon delay

Coding Style is Key to Good QOR

8

• Need to properly capture HW architecture when you write your code!
– I/O and memory architecture
– Process structure
– Useful to have rough idea what RTL will be generated and how expensive

it will be.
• E.g. still need to constrain bitwidths of variables (unlike SW programming)

– Leave the details of loop pipelining, microarchitecture optimization, memory
access scheduling, etc to the HLS tool to optimize

Typical HLS Flow

9

SystemC/C++ Design

High-Level Synthesis

RTL Verilog

RTL Synthesis,
Place and Route

• Write, verify, refine C++ code
• Typical testbench environments: SystemC/C++, Matlab, SV UVM, …
• Perform code/functional coverage closure on SystemC/C++ model

• Explore and refine microarchitecture (using HLS directives)

• Achieve RTL code/functional coverage closure on RTL by leveraging existing
SystemC/C++ testbench, SV UVM testbench, …

Why is HLS Beneficial?

10

• Model is higher abstraction:

– Smaller, fewer mistakes

– More easily reusable (parameterizable, etc)

– Easier to retarget to different silicon technologies

• Verification is faster and easier

• Enables ability to quickly explore PPA tradeoffs

• QOR very competitive to hand-written RTL

ACCELLERA SYSTEMC SYNTHESIZABLE SUBSET
STANDARD

Mike Meredith, Cadence Design Systems

11

General Principles
• Define a meaningful minimum subset
– Establish a baseline for transportability of code between HSL tools
– Leave open the option for vendors to implement larger subsets and still be

compliant
• Include useful C++ semantics if they can be known statically – eg

templates
• Covers behavioral model in SystemC for synthesis
• Covers RTL model in SystemC for synthesis
• Main emphasis of the document is on behavioral model synthesizable

subset for High-Level Synthesis

Scope Of The Standard

SystemC Elements
• Modules
• Processes

– SC_CTHREAD
– SC_THREAD
– SC_METHOD

• Reset
• Signals, ports, exports
• SystemC datatypes

C++ Elements
• C++ datatypes
• Expressions
• Functions
• Statements
• Namespaces
• Classes
• Overloading
• Templates

SC_MODULE

Module Structure for Synthesis

clock
reset

Ports
required for

SC_CTHREAD,
SC_THREAD

Signal-level
ports for

reading
data

Signal-level
ports for
writing
data

SC_CTHREAD SC_METHOD

Member
functionsMember

functions

Data members
(Storage)Data members

(Storage)

submodule submodule
Signals

SC_THREAD

Specifying Clock and Reset
Simple signal/port and level

SC_CTHREAD(func, clock.pos()
);

reset_signal_is(reset, true
);

areset_signal_is(areset,
true);

SC_THREAD(func);
sensitive << clk.pos();
reset_signal_is(reset, true

);
areset_signal_is(areset,

true);

reset_signal_is(const sc_in<bool> &port, bool level)
reset_signal_is(const sc_signal<bool> &signal, bool level)
async_reset_signal_is(const sc_in<bool> &port, bool level)
async_reset_signal_is(const sc_signal<bool> &signal, bool level)

For synthesis,
SC_THREAD

can only have a
single sensitivity
to a clock edge

Module Declaration
• Module definition
– SC_MODULE macro

or
– Derived from sc_module

– SC_CTOR
or

– SC_HAS_PROCESS

• Classes that derive from
modules are supported

// A module declaration
SC_MODULE(my_module1) {

sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;
SC_CTOR(my_module1) {…}

};

// A module declaration
SC_MODULE(my_module1) {

sc_in< bool> X, Y, Cin;
sc_out< bool > Cout, Sum;

SC_HAS_PROCESS(my_module1);
my_module1(const sc_module_name

name)
: sc_module(name)

{…}
};

Use Of wait()
• For synthesis, wait(...) can only reference the clock edge

to which the process is sensitive
• For SC_CTHREADs

– wait()
– wait(int)

• For SC_THREADs
– wait()
– wait(int)
– wait(clk.posedge_event())
– wait(clk.negedge_event())

For synthesis of
SC_THREADs

wait(event) must
match the sensitivity

of the clock edge

Data Types
• Additional SystemC data types
– sc_bv

• Bit vector, no arithmetic
– sc_logic
• Single-bit 4 state logic, but “X” and “Z”

are not supported
– sc_lv
• Vectors of sc_logic

• C++ integral types
– All C++ integral types except wchar_t
– char is signed (undefined in C++)

• Primary SystemC data types
– sc_int, sc_uint

• Fixed bit widths <=64
– sc_bigint, sc_biguint

• Arbitrary fixed bit widths
– sc_fixed, sc_ufixed

• Fixed point with configurable
rounding and saturation

Pointers

• Supported for synthesis
– “this” pointer
– “Pointers that are statically

determinable are supported.
Otherwise, they are not supported.”

– If a pointer points to an array, the
size of the array must also be
statically determinable.

• Not Supported
– Pointer arithmetic
– Testing that a pointer is zero
– The use of the pointer value as data
• eg hashing on a pointer is not supported

for synthesis

TECHNIQUES FOR OPTIMIZATION OF POWER AND
PERFORMANCE USING HLS

Matthew Bone, Intel Corp.

20

Intro

• Growth of HLS usage seen in many design domains at Intel
– Powerful tools enable new design methodology
– Benefits for datapath and control dominated designs
– Benefits break down roughly into three categories:

• Schedule/TTM, power/performance, SW quality and code sharing
– Case studies have been hand-picked to focus on power/performance and

design space exploration

The Challenge

• Massive scale of designs and shortened schedules
– Finishing functionality for many pieces is a large effort
– Limited time available to explore power and performance

• Power is often the important metric
– Mobile devices have passed desktop devices for web access
– Datacenter costs (power, cooling)

• Using Traditional (RTL) Methodology
– Power/performance estimates available later in the design phase
– High-effort to make changes to address power/performance
– Language improves (System Verilog), but still 35 year old abstractions

High-Level Synthesis

• SystemC source – more concise expression than RTL
– Tool directives select parallelism, throughput, latency, storage types
– Technology library provides parts information

• e.g. the area and delay of a 16x16 multiplier

FPGA

High-Level Synthesis

SystemC/C++
Model

Code Parameters

Technology Library

HLS Directives

Server

Mobile / IoT

ASIC

Next Gen
Client

Why HLS? #1: Faster TTM

• Designer benefits:

• Concise code (3-10X fewer lines than RTL)

• Powerful directives for uarch decisions

• Effort savings in tracking spec changes

• Verification benefits:

• Begin earlier

• Simulation acceleration (100X faster than RTL)

• Physical design benefits:

• High quality RTL with good timing/routing

characteristics

RTL Development Tuning

Integration Verification

SystemC Development Tuning

Freeze T/OSystemC + HLS

RTL

Unit-Level

Verification

Unit-Level

Verification

Integration Verification

Why HLS? #2: Better PnP

• Exploration
• Low effort for arch/uarch variants

• Earlier power estimates
• Time to react with architectural

changes, or “tuning” HLS directives

• Custom RTL
• Targets specific process node library

(or FPGA)

16000
16200
16400
16600
16800
17000
17200
17400

60 65 70 75 80 85

Po
w

er
 (u

W
)

Latency (clks)

Design Variants

RTL Development Tuning

Verification

1st power estimates

SystemC Development Tuning

Verification

Freeze T/OSystemC + HLS

RTL

1st power estimates

Why HLS? #3: SW/FW Quality
• SystemC language:

• Opportunity for re-use of SC/HLS
model as SW Virtual Prototype (or
arch/perf model)

• Two styles of re-use seen:
• Use SC/HLS model as-is for VP

• Re-use the “core” portions of the
SC/HLS model, with changes for VP
speed-up

HLS Source
SystemC Pin-Level

Common
C++

kernel()

Virtual Prototype
SystemC TLM

Common
C++

kernel()

Use HLS model as-is:
Fast enough for SW/FW

verification in many cases

Use “core” of HLS model:
Fastest simulation may

require using TLM
interfaces, and disabling

some HW details

Exploration: Power/Performance

• Seeking best power/perf will be referred to as design space
exploration, or just tuning later in the design phase

• Many RTL variants can be created by changing only HLS
tool directives
– “Micro-architectural” changes
– Goal frequency, throughput, latency
– Storage scheme (registers, latch arrays, RFs, SRAMs)

• Some exploration requires edits to the SystemC source
– “Architectural” changes
– Usually more significant changes to partitioning or ordering of

an algorithm
– Edits in SystemC are less effort than RTL

RF vs. SRAM vs. Multi-Port RAM

Pipelining II vs. Frequency
uarch Area Latency
PIPE_II4 16490 71
PIPE_II1 31707 55
PIPE_II1_192MHz 18847 12

1 stage Cannot meet
timing

2 stage Tight timing
in 1st stage

3 stage

Good for
timing, but
wasted
sequentials?

2 stage
Well
balanced
pipeline

Exploration: Pipelining
• Pipelining example

– FIR filter * + +

+ +*

+ +*

// Sum of taps*coefs
sum = t0*coef0 + t1*coef1 +

t2*coef2 + t3*coef3

+ +*

*

*

*

*

+

+

+

Pipelined Variants

NOTE: Similar multiply and accumulate trees
are common in AI/NN domain

Exploration: Pipelining 2

• Case Study: Signal Processing, 5G MMSE (datapath)

16000
16200
16400
16600
16800
17000
17200
17400

60 65 70 75 80 85
Latency (clks)

Area vs. Latency

Wasted sequentialsCan’t meet
timing

* + + + +*+ +*

“Best guess” result from HLS tool is
often close to optimal

Final optimal implementation

More
guardband for
timing delays

Cell upsizing or
replication to reduce

delays

Change latency directive,
30 minute HLS run per RTL

variant

Exploration: Pipelining 3

• Existing RTL vs. HLS Results
– Area:

• 21.9k -> 16.4k (34% savings)
• Multipliers shared efficiently by HLS

– Latency:
• 102 -> 71 clocks (29% savings)
• Existing RTL developed on previous tech node

– Throughput:
• 1 per 4 clocks -> 1 per clock (4X)
• HLS gives options:

– 4X the throughput for 2X the area
– Same throughput at 1/4th the clock freq (power)

16000
16200
16400
16600
16800
17000
17200
17400

60 65 70 75 80 85
Latency (clks)

Area vs. Latency

Pipelining II vs. Frequency

uarch Area Latency
PIPE_II4 16490 71

PIPE_II1 31707 55

PIPE_II1_192MHz 18847 12

Exploration: Max Frequency

• Case Study: High-Frequency Memory Fabric (control logic)
– Maximum frequency of the fabric primarily limited by arbitration algorithms

• Challenges with traditional RTL design:
– Timing analysis done after synthesis of entire fabric (long turnaround)
– Timing path analysis through arbitration and fabric modules (high effort)

• With HLS design:
– Tool does “characterization” logic synthesis for a region of code performing

arbitration
– Early information; delay for entire arbitration operation is grouped

Exploration: Max Frequency 2

fabric_4x3_req_ingress_arb
Area = 0.47 Delay = 139.1 ps

unsigned winner; // Which requestor is picked
req_ingress_arb: {

if (req_wr_vec && !pri_rd)
winner = arb_wr[rspid].arbitrate(req_wr_vec);

else if (req_rd_vec)
winner = arb_rd[rspid].arbitrate(req_rd_vec);

. . . etc . . .
}

fabric_6x3_req_ingress_arb
Area = 0.70 Delay = 189.0 ps

Procedural
Arbitration

Code

fabric_5x3_req_ingress_arb
Area = 0.59 Delay = 164.2 ps

Vary number of
requestors

Multiple HLS runs
Meets timing @ 2GHz

Marginal @ 2GHz

Cannot meet @ 2GHz

Fast feedback gives
time to consider

options

Change
arb algo?

Multi-level
fabric?Remove

pri chan?

Exploration: Static Power

• Static (leakage) power is managed through Multi-Vt cells
– SVT: Standard Vt - “Slow” - Standard delay, Low leakage
– LVT: Low Vt - “Fast” - Shorter delay, High leakage

• Goals differ depending on design:
– Mobile: Prioritize low leakage (battery life, always active blocks)

• Design team may target a split like 90/10 for SVT/LVT cells
– Server: Tolerant of higher leakage (power-down idle silicon)

• Design team may target a split with majority LVT cells (and some ultra-
fast ULVT)

*

*

*

Standard:

Mixed:

Fast:

Exploration: Static Power 2

• Targeting a split like 90/10 for SVT/LVT cells:
– “Slow” (average) cell delays, very low leakage for

90% of cells
– Small portion of fast, high-leakage cells to resolve

tight timing issues
– In HLS tool terms:

• “Fit as much logic as possible in each stage, reserve a
very small timing guardband”

• What if low leakage is the primary goal?
– Trade-off is latency for power
– Slower cells require more time/stages to compute

+ +* *

Large guardband for
routing/unpredicted delays,
no need for fastest cells

+ +* *

Small guardband for
routing/unpredicted delays

Exploration: Static Power 3

• Case study: 5G Transceiver (mostly datapath)
– Always on (or quick wake-up); power-down is not an option
– Must have low leakage

• Target was 90% of the total design using low-leakage cells
– Legacy RTL and cores were using 40% high-leakage cells
– Re-pipeline all blocks (20+) with large timing guardband

• 1 day’s effort

+ +* *

Too many
high-leakage

cells

HLS RTL

High-leakage
cells within

budget

RTLHLS

Efficient Reuse with HLS

• Next-gen technology
– Change from XXnm to Ynm tech node
– Re-generate RTL that is timing-clean and has well-

balanced (power efficient) pipelines on the new
tech node

• HLS Parameterization
– Same filter code can be used with different latency,

throughput, parallelism directives
– Re-use same SystemC IP across product spectrum:

• Server: Fastest cells, high
frequency/parallelism/throughput

• Mobile: Low-leakage cells, latency/throughput trade-
offs

16000
16200
16400
16600
16800
17000
17200
17400

60 70 80

Latency (clks)

Area vs. Latency

New process tech shifts
“ideal” latency down

Wrap Up
• HLS finds low power and efficient solutions

– Design space exploration
– Late “tuning” changes
– Efficient designs when moving to next gen silicon tech

• SystemC-based designs
– Less code, less effort to make design changes
– Simulates fast – quick debug iterations
– Portions of code usable in other domains (VP, arch/perf model)

• The Investment
– Ramping teams into new language and toolset required real investment

MATCHLIB-BASED OBJECT-ORIENTED HLS
METHODOLOGY

Rangharajan Venkatesan, NVIDIA Corp.

38

Agenda
• Motivation - Chip Design Complexity

• Object-oriented HLS Approach

– A “C++/SystemC-to-Layout” Flow

– MatchLib Opensource HLS library

– Latency-Insensitive Channels: Connections

– Verification Methodology

• SoC TestChip Demonstrations

• RC18: Scalable Deep Learning Accelerator

– 128 TOPS, ~10 TOPS/W

– Spec-to-Tapeout in 6 months with <10 researchers

39

Chip Design Complexity
Customer demand for more transistors & capability,

need lower design costs

NVIDIA Xavier SoC [CES 2018]

40

Motivation: Shorten Development Time & Cost

• RTL design and verification dominates: >70% of IC design effort at NVIDIA
– Prohibits which features make it into each SoC

• Need 10x lower design and verification effort:
– Overlap architect & implement phases for faster time-to-market, more features

Typical development timeline: 3-5 years from R&D to product

41

High-productivity Design Approach
Enables faster time-to-market and more features to each SoC

RAISE HARDWARE DESIGN LEVEL
OF ABSTRACTION

Use High-level languages
e.g. C++/SystemC instead of Verilog

Use Automation
e.g. High-Level Synthesis (HLS)

Use libraries/generators
MatchLib

AGILE VLSI DESIGN

Small teams, jointly working on
architecture, implementation, VLSI

Continuous integration with automated
tool flows

Agile project management techniques

24-hour spins from SystemC-to-layout

42

Object-Oriented High-Level Synthesis (OOHLS)

• Leverage HLS tools to design with C++ and SystemC
models

• MatchLib: Modular Approach To Circuits and Hardware
Library
– “STL/Boost” for Hardware Design
– Synthesizable hardware library developed by NVIDIA

research
– Highly-parameterized, high QoR implementation
– Available open-source: https://github.com/NVlabs/matchlib

• Latency-Insensitive (LI) Channels
– Enable modularity in design process
– Decouple computation & communication architectures

“Push-button” SystemC-to-gates flow

Ref: Khailany et al., DAC 2018 43

https://github.com/NVlabs/matchlib

Latency-Insensitive (LI) Channels

• Connections is a LI channel library in MatchLib

• Producer & consumer implementations are channel-agnostic, with arbitrary
pipelining and scheduling

• Channels mapped to ready/valid interfaces when synthesized to RTL

Our approach: Connections

Ref: L.P.Carloni et al., DAC’99, K.E.Fleming et al., FPGA 2012 44

Object-Oriented High-Level Synthesis (OOHLS)

All functional verification and performance verification run
natively in C++ simulation of SystemC models
• ~50x speedup over RTL
• ~3% error in performance

Leverage libraries for productivity
Use std verification approaches but in SystemC
• Constrained random generators and checkers
• Line and expression coverage
• Assertions

• All SystemC testbenches reusable with generated RTL for
final verification at full-chip and unit-level

• No Formal verification Support between SystemC and RTL
– A major challenge for widespread adoption of HLS in industry

Verification Methodology

Ref: Khailany et al., DAC 2018 45

Agile VLSI design Techniques

• Agile, incremental approach to design closure during march-to-tapeout
phase

• Small, abutting partitions for fast place and route iterations
• RTL bugs, performance, and VLSI constraints converge together

Daily “SystemC to Layout” Spins

46

SoC Testchip Demonstrations

47

RC18: SCALABLE DEEP LEARNING INFERENCE
ACCELERATOR

48

RC18: Scalable DL Inference Accelerator

• Design a state-of-the-art scalable
high-performance deep learning
inference accelerator
– >100 TOPS, ~10 TOPS/W

• Demonstrate this is possible with a
small team in a high-productivity
VLSI flow

Project Goals

Zimmer et al., VLSI 2019,
Venkatesan et al. HotChips 2019

49

RC18: Scalable DL Inference Accelerator

• Package
– 6x6 Multi-Chip Modules (MCM) in a package

– Ground-reference signaling based inter-chip
communication

• Chip
– 4x4 array of Processing Elements (PEs) per chip

– Global Buffer/PE for 2nd-level inter-layer storage

– RISC-V controller

– 5x4 Mesh Network-on-Chip

– Network-on-Package and GPIO Interface

Tiled Architecture with Distributed Memory

Zimmer et al., VLSI 2019,
Venkatesan et al. HotChips 2019

50

RC18: Scalable DL Inference Accelerator

Ref: Sijstermans et al., HotChips 2018
Zimmer et al., VLSI 2019,

Venkatesan et al. HotChips 2019

Processing Element

51

Hierarchical Communication Architecture
Network-on-Package (NoP) and Network-on-Chip (NoC)

NETWORK-ON-CHIP (NoC)

NETWORK-ON-PACKAGE (NoP)

Zimmer et al., VLSI 2019,
Venkatesan et al. HotChips 2019

52

RC18 Design Methodology

RC18

MCM

AGILE VLSI
Flow

LI
Channels

Tile-based
architectu

re

High level
synthesis

Develop
hardware
libraries

Raise
design &

verif.
levels

Low-level Verilog/VHDL
to C++/SystemC

MatchLib

Autogenerate RTL from
SystemC/C++ Modular architecture

Decouple compute &
communication

Continuous integration

Scale to Multiple
Chips

53

Processing Element Implementation
Reuse, Modularity, Hierarchical Design

54

Fabricated MCM-based Accelerator
NVResearch Prototype: 36 Chips on Package in TSMC 16nm Technology

High speed interconnects using
Ground Reference Signaling (GRS)

100 Gbps per link

Efficient Compute tiles
~10 TOPS/W, 128 TOPS

Low Design Effort
Spec-to-Tapeout in 6 months with
<10 researchers

Zimmer et al., VLSI 2019,
Venkatesan et al. HotChips 2019

55

Summary

• Design effort reduction from raising abstraction
levels, tools

• Object-Oriented HLS Flow
• Latency Insensitive Channels abstractions for all

communication
• MatchLib for capturing reuse of commonly-used

hardware components
• Enables faster time-to-market and more features

to each SoC
• ~10X reduction in ASIC design and verification efforts

MATCHLib-Based Object-Oriented HLS Methodology

RC18: Scalable DL Inference Accelerator

56

Acknowledgments

• Research sponsored by DARPA under the CRAFT program (PM: Linton Salmon).
• NVIDIA Collaborators: Evgeni Krimer, Jason Clemons, Ben Keller, Matthew Fojtik,

Alicia Klinefelter, Angshuman Parashar, Michael Pellauer, Nathaniel Pinckney, Mark
Ren, Yakun Sophia Shao, Stephen Tell, Yanqing Zhang, Brian Zimmer, Bill Dally, Joel
S. Emer, Tom Gray, Stephen Keckler.

• Harvard Collaborators: David Brooks, Gu-Yeon Wei, and team
• Former NVIDIA interns/postdocs: Christopher Fletcher, Ziyun Li, Antonio Puglielli,

Shreesha Srinath, Gopal Srinivasan, Chris Torng, Sam (Likun) Xi
• Thanks to the Mentor Graphics Catapult HLS team for discussions and support:

Bryan Bowyer, Stuart Clubb, Moises Garcia, Khalid Islam, and Stuart Swan.

Collaborative Effort Across Architecture and Design Methodology

This research was, in part, funded by the U.S. Government, under the DARPA CRAFT program. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited). 57

THANK YOU!

58

