
How Far Can You Take UVM Code

Generation and Why Would You Want To?

John Aynsley
Doulos, Ringwood, UK

Abstract-This paper describes the motivation for UVM code generation and the experiences of the author in

implementing and deploying a particular code generator. It analyzes both the benefits and weaknesses of code generation

as an approach to building UVM environments and describes how to go about creating and maintaining a code generator

that is able to maximize the benefits while working around the weaknesses. The paper gives specific advice to anyone

planning to implement and deploy a UVM code generator.

I. INTRODUCTION

 UVM, the Universal Verification Methodology for SystemVerilog, has become a very successful standard, yet

adopting UVM can still be a significant challenge. UVM is large and complex. Moreover, the specification of UVM

leaves plenty of room for choice when it comes to which particular set of features to use and which coding style to

adopt. As a result, projects can find themselves with a code base of inconsistent and unmaintainable UVM code.

Code generation can be used as part of the solution. A code generator can encapsulate knowledge of good ways to

structure a UVM verification environment, can help avoid coding pitfalls, and can increase productivity. A code

generator can also be a good way to ensure that a growing code base is written in a consistent style and adheres to

best practice. But code generators also have potential weaknesses, such as generating unreadable code and having

insufficient flexibility to accommodate the kinds of coding structures that users want to write. This paper describes

our experience with designing and deploying a particular code generator, the Easier UVM Code Generator, and

investigates to what extent it is possible to construct and use a UVM code generator deep into a project by blending

automatically generated boilerplate code with user-defined code fragments.

 In this paper we describe the motivation for and the design philosophy of a particular UVM code generator.

Meeting the primary design goal of a code generator, namely the automatic generation of a body of code that is

syntactically and semantically correct and stylistically consistent, is straightforward. But there are secondary goals

that present more of a challenge. A code generator and the code that it generates could be evaluated along the

following dimensions:

 Good coding style and coding practices – encapsulating best practice and avoiding pitfalls

 Robustness and portability – code that runs on any simulator and is resilient to likely future changes

 Readability and maintainability – code that can be read and maintained by humans

 Flexibility and expressibility – incorporating user-defined code fragments within a user-defined structure

 Productivity – automating as much of the code production as possible

 Iteration – supporting an iterative development process where the generator is run repeatedly

A key issue is whether the user is allowed to modify the generated code. Any modification to the generated code

is problematic, since any changes will potentially be overwritten the next time the generator is run.

II. BACKGROUND TO EASIER UVM

The DVCon 2011 paper "Easier UVM for Functional Verification by Mainstream Users" [1] was an early

presentation of what would eventually grow to become the Easier UVM Coding Guidelines, which consist of a set of

180 detailed coding guidelines with explanations and examples. Most of the guidelines could be regarded as

common sense, but the guidelines document [2] is a lot more prescriptive than the official UVM documentation. The

Easier UVM Coding Guidelines are not meant to exclude any part of the SystemVerilog or UVM standards: rather,

they are offered as a suggestion of best practice, and users are free to take them, leave them, or modify them for their

own purposes. A primary design goal of the Code Generator was to be consistent with the Coding Guidelines.

The DVCon 2014 poster "Easier UVM - Coding Guidelines and Code Generation" [3] described our motivation

and early experiences with the Coding Guidelines (based closely on the previous paper) and with rolling out an early

version of the Code Generator in an industrial context.

The Easier UVM Code Generator itself was originally based on the juvb11.pl script v1.09 by Jim McGrath,

Cadence, which was uploaded as a UVMWorld contribution on 16 September 2011 [4]. This script was then

modified by Christoph Sühnel, then at Mentor, before being modified extensively by David Long and John Aynsley

at Doulos. The current version of the Easier UVM Code Generator [5] is available from Doulos under the Apache

2.0 license.

 III. WHY CODE GENERATION?

Code generation offers some real benefits to both new and experienced users.

For new users:

 Code Generation can help individuals and teams ramp up with UVM by reinforcing what they have learned

during training and providing complete, working code examples to build on. In one case, use of the Code

Generator saved around 6 weeks at the start of a project [3].

For all users:

 Productivity. The use of a code generator avoids the tedious and error-prone work of writing and re-writing

the boilerplate code of any UVM project, and avoids having to manually propagate changes though envs,

sequences, configurations, and so forth.

 Consistency. Automatically generated code is always self-consistent, by design. This helps avoid both

inconsistencies between the coding style and choice of features used by multiple engineers and also

accidental inconsistencies within the coding style of a single engineer. Consistency has the effect of making

the UVM code base easier to read and easier to maintain.

 Adhering to best practices and avoiding common pitfalls. This is related to consistency but goes deeper in

that a code generator can capture known good coding idioms and lock them into a code base.

There are several ways in which a code generator could be put to use, and we are not claiming that all approaches

will be suitable for every situation:

1. A code generator can be used simply as a learning aid by generating and running working examples of UVM

code that are based on a particular DUT, which can be toy or real. The only requirements are to provide

control files that represent the interfaces of the specific DUT, provide driver and monitor code to implement

the protocols, run the code generator, and simulate. This approach can be used to demonstrate to yourself or

to management that getting a UVM environment up-and-running is not so difficult!

2. A code generator can be used to create the initial framework of the production code, after which the code

generator is abandoned and the production code maintained by hand. Although the code generator is only

used in the initial stages of the project and is then discarded, there is still the benefit that the production code

starts out with a consistent structure and coding style.

3. A code generator can be used to create the framework of the production code, and then used in combination

with control files and include files to extend and modify the functionality of the generated code according to

the specific needs of the project. If this approach is implemented carefully, it should be possible to re-run the

code generator at any stage to reflect any changes made to the control files, but this does depend on not

making any modifications to the generated code that cannot be reproduced at will using control files or

include files, which might not be trivial to do. Using the code generator for as long as possible into a project

makes it possible to continue to take of advantage of the code generator to create the code that connects

everything together.

IV. CHARACTERISTICS OF UVM CODE FOR GENERATION PURPOSES

Every UVM code base can be broken down into two parts: boilerplate code that is always the same and user-

defined code that is always unique. This statement is an oversimplification, of course. The boilerplate code can be

broken down into true boilerplate code that really is identical from case-to-case, and near-boilerplate code where

there are strong similarities across instances, but also minor differences.

What this boils down to is the need for template-driven code generation that can accommodate rather arbitrary

user-defined elements. In theory, the generated code could be copied from a set of templates that consist of legal,

properly formatted SystemVerilog code using the UVM class library and containing a few special elements as

follows:

 Variable fields that are replaced with user-defined names during generation. The variables fields are often

used as part of a name in the generated code.

 Repeated line groups, where the loop might iterate over some quite arbitrary list of agents or settings and

where the loop variable is available as a variable field for use within the line group

 Conditional line groups, where the existence of the line group depends on some user-defined setting

 Arbitrarily nested repeated and conditional line groups (like any structured programming language)

 Marking vertical alignment points within a line group for pretty-printing

 Marking the locations where user-defined code fragments could be included (either with `include or inlined)

 Marking the line groups where automatically generated methods could be suppressed

 A few additional ad hoc rules that require partially parsing user-defined code fragments

 A few variable fields assigned from arbitrary expressions over other variable fields

Here is an example of such a code template in a hypothetical Perl-like meta-format, where lines containing meta-

commands are prefixed by --

`ifndef ${agent_name}_ENV_SV VARIABLE FIELD

`define ${agent_name)_ENV_SV

--insert_inc_file $agent_env_inc_before_class{$agent_name}; MARK LOCATION FOR INCLUDE

class ${agent_name}_env extends uvm_env; VARIABLE FIELD

 `uvm_component_utils(${agent_name}_env) VARIABLE FIELD

 extern function new(string name, uvm_component parent); BOILERPLATE

--for ($i = 0 ; $i < $number_of_instances{$agent_name}; $i++) { REPEATED LINE GROUP

-- $suffix = calc_suffix($i, $number_of_instances{$agent_name}); AD HOC VARIABLE ASSIGNMENT

 ${agent_name}_config m_${agent_name}${suffix}_config; VARIABLE FIELD

 ${agent_name}_agent m_${agent_name}${suffix}_agent;

 ${agent_name}_coverage m_${agent_name}${suffix}_coverage;

-- if (@env_list) { CONDITIONAL LINE GROUP

 // Child environments

-- }

--}

--foreach $agent_env (@env_list) { REPEATED LINE GROUP

-- if ($agent_env ne "") { CONDITIONAL LINE GROUP

-- align(" ${agent_env} ", "m_${agent_env};", ""); VERTICAL ALIGNMENT POINT

-- }

--}

--gen_aligned();

--unless ($agent_env_generate_methods_inside_class{$agent_name} eq "NO") {

-- unless ($comments_at_include_locations eq "NO") { MARK OPTION TO SUPPRESS

 // You can remove build_phase and connect_phase by setting agent_env_generate_methods...

-- }

 extern function void build_phase(uvm_phase phase); BOILERPLATE

 extern function void connect_phase(uvm_phase phase);

--}

--insert_inc_file $agent_env_inc_inside_class{$agent_name}; MARK LOCATION FOR INCLUDE

endclass : ${agent_name}_env

function ${agent_name}_env::new(string name, uvm_component parent); BOILERPLATE

 super.new(name, parent);

endfunction : new

What this shows is that UVM code generation, at the level at which we wish to use it, requires a degree of

programmatic flexibility that cannot be accomplished merely by copying a set of exemplar source files, despite the

existence of boilerplate code and the similarities between many UVM code fragments. The differences between

UVM files are sufficient to demand an algorithmic approach to code generation. Hence the Easier UVM Code

Generator is actually implemented as a Perl script.

The Code Generator creates the following set of classes, packages, modules, and interfaces.

Per-interface/agent:

uvm_sequence_item class

Configuration class

Sequencer class

Driver class

Monitor class

Agent class

Split transactors for emulation

Subscriber class

Default sequence class for agent

Env class

Default virtual sequence class for env

Default register sequence class for env

Register model adaptor

Agent package

SystemVerilog interface

Top-level:

Top-level configuration object

Top-level env

Reference model

Instantiation of Syosil scoreboard

Instantiation of register block

Default top-level virtual sequence class

Top-level package

Test class

Test package

Test harness module to instantiate DUT

Top-level module

V. IMPLEMENTATION OF THE CODE GENERATOR

In case you wish to use the Easier UVM Code Generator as a starting point for creating your own code generator,

the overall flow of the script is as follows:

1. Parse any command line switches

2. Parse the common control files and set internal variables to represent settings

3. Check any mutual constraints on those settings

4. For each interface/agent

a. Parse the control file and set internal variables to represent settings

b. Check any mutual constraints on those settings

c. Generate code based on the code templates and internal variables

5. Generate top-level code based on the code templates and internal variables

6. Generate simulator scripts

As described above, the Code Generator interleaves boilerplate code, variable fields, and user-defined code

fragments. The control files provide a wide range of settings that allow a degree of flexibility in the generated code.

Whether or not this flexibility is sufficient is discussed below.

Aside from errors introduced in the user-defined code fragments, the resulting generated code is complete and

ready-to-run using the generated simulator scripts.

The virtues of this particular code generator are that it a) generates code that is complete and ready-to-run, b) is

open-source and freely available, c) is well-documented [6], and d) is relatively well-tested, having its own

regression test suite. However, the goal of this paper is not to persuade you of the merits of this particular code

generator, but to give you a better understanding of UVM code generation in general.

VI. IDIOMS AND CHOICES CAPTURED BY THE CODE GENERATOR

Code templates, as described above, can capture many different aspects of coding style, ranging from low-level

lexical conventions through to major decision on how the code is structured. This section contains a comprehensive

list of these aspects, with the goal of giving you some sense of an answer to the question posed by the title of this

paper, “How Far Can You Take UVM Code Generation”.

At the lexical and file levels, the Easier UVM Code Generator captures the following conventions:

 File naming and file organization within a directory structure

 Inserts a standard file header at the top of each file generated

 Inserts conditional compilation guards around each compilation unit

 Organizes classes into packages using the `include directive to include the class code

 Indentation, spacing, alignment, and blank lines, otherwise known as pretty printing

 Naming conventions for variables and types, with standard prefixes and suffixes to names

 Matching the strings names of UVM objects with the corresponding variable names

 A conventional ordering for declarations and statements within each class

By keeping the code templates in something close to plain text form, it is quite straightforward to implement

variations on any of the above. It helps to keep the meta-format as consistent as possible, e.g. having a simple and

consistent way of vertically aligning text or constructing numerical suffixes.

At a structural level, the Easier UVM Code Generator captures the following:

 Separates the SystemVerilog module that instantiates the DUT from the module that instantiates the UVM

test

 Supports top-level agents, agents within their own envs, and multiple instances of a given agent

 Uses configuration objects, one per-agent and one for the top-level env

 Connects a subscriber to the analysis port of each agent (versus nesting the subscriber inside the agent)

 What to do in the test versus the top-level env

o Modifies configuration objects and sets factory overrides from the test

o Instantiates the root register model and starts top-level virtual sequences from the env

The point here in this paper is not to argue the case for the specific choices made in Easier UVM, but rather to

point out that it would be straightforward to modify the code generator for any similar structural choice, for

example, extending all tests from a test base class.

At a more detailed level, the Easier UVM Code Generator captures a lot of specific choices concerning which

UVM features to use and which coding idioms to use:

 The choice of which UVM component base classes to extend

 The choice of which UVM macros to use and which to avoid (Easier UVM avoids the field macros)

 Which actions to perform in which UVM phase methods (build_phase, connect_phase, and so on)

 Always using the factory method T::type_id::create to instantiate all components, sequences, and transactions

 The choice of a default set of variables to be included in configuration classes, including checks_enable and

coverage_enable

 The choice of a specific mechanism for passing virtual interfaces from the top-level module through the

configuration database to the agents

 The choice of where to assign the virtual interfaces located in the monitor and driver components

 The choice of a mechanism to set and get the is_active variable of the agent (by overriding get_is_active)

 Passing the configuration object for the agent to the associated sequencer and subscriber in the configuration

database

 The choice of whether to introduce a user-defined sequencer class or use uvm_sequencer directly

 Always randomizing transaction objects and sequence objects between creation and sending

 Using set_starting_phase/get_starting_phase with sequences in case any nested or derived sequences happen

to raise objections

 The choice of overriding pre/post_start in preference to pre/post_body or just body in sequences

 The choice of instantiating explicit predictors (set_auto_predict(0)) with the register model

 The choice of message ID and verbosity for reports according to the location and intention of the report

 Implicitly, the definition of a subset of UVM classes and methods which are sufficient for most purposes.

In addition to the above, which all represent conventional coding choices to some degree, the Easier UVM Code

Generator also contributes to automation by generating code that would be time-consuming and error-prone to write

by hand:

 Generation of a test harness module containing interface instantiations, the DUT instantiation, and pin-level

connections between the interfaces and the DUT.

 Generation of the set of methods required by each transaction class, including support for metadata that is

excluded from the automatically generated compare, pack, and unpack operations because it does not

represent data transferred to and from the DUT (the motivation is the same as for field macros, but the code

generation implementation is more transparent to the user)

 Generation of the register adapter for each agent and instantiation and connection of the register model,

adapter, and predictor.

The Easier UVM Code Generator also contributes to productivity by generating working example code that can

be used, extended or discarded subsequently:

 Default clock and reset generation circuitry in the test harness

 Default driver code to get the request transaction from the sequencer

 A default covergroup in the subscriber component containing a coverpoint for each transaction variable

(excluding any metadata)

 A default write method in the subscriber component to sample the above covergroup

 Instantiation and configuration of the Syosil UVM Scoreboard [7], including any number of TLM

connections to the DUT and to a reference model

 A default end_of_elaboration_phase method to dump the UVM component topology and the factory.

 A default report_phase method to report the final coverage for an agent

 A tree of default sequences consisting of a top-level virtual sequence, a virtual sequence for each env, and a

sequence for each agent, each sequence having access to the associated configuration object.

 A default top-level virtual sequence that starts multiple synchronized volleys of low-level sequences across

all agents.

Top-level env

Test Harness

Env

Agent

Reference Model

Scoreboard (class cl_syoscb)

REF REF DUT DUT

Register Block

Root
map

Env

Agent

Subscriber Predictor Adapter

Monitor Driver

Sequencer

Config

Config

Subscriber Subscriber

Agent Agent Agent

Subscriber Subscriber

Interface Interface Interface Interface Interface

DUT

Config
Test

Figure 1. A Representative Structure from the Easier UVM Code Generator

Figure 1 shows an example of the kind of structure that the current Easier UVM Code Generator is capable of

producing, including multiple DUT interfaces and associated agents, nested envs, and the instantiation of a register

block, reference model, and scoreboard. Note that the Code Generator does not generate the contents of the register

block, reference model, or scoreboard. The register block would typically come from a separate generator, the

reference model would be coded by hand, and the scoreboard is VIP available under an Apache 2.0 license.

VII. A UVM SUBSET?

Right from the beginning [1], one of the explicit goals of Easier UVM was to make life easier for the novice by

deliberately restricting the number of UVM features being used, while at the same time allowing that any and all

features of UVM could be used by experts, because UVM is the standard. Recently Sutherland and Fitzpatrick [8, 9]

have published UVM-Light, which they call a subset of UVM for rapid adoption. In their paper, Sutherland and

Fitzpatrick analyze the UVM constructs that appear in a simple, complete UVM example, and argue that this subset

is sufficient to write “effective UVM testbenches”. An analysis of the UVM constructs used by the Easier UVM

Code Generator broadly supports this conclusion, with a few caveats.

Of the UVM constructs itemized in the second paper [9], all except three (phase_ready_to_end, response_handler,

use_response_handler) are used by the Easier UVM Code Generator or closely associated user code. The Code

Generator also uses a handful of other constructs that are not enumerated in the UVM-Light paper but were probably

inadvertent omissions, namely uvm_macros.svh, uvm_phase, uvm_comparer, and a few verbosity levels such as

UVM_LOW, UVM_MEDIUM, UVM_HIGH, bringing the feature count from the 65 claimed by Sutherland and

Fitzpatrick up to around 70. The Easier UVM Code Generator then uses a further 20 features that are not mentioned

as being part of UVM-Light, namely uvm_object, uvm_top, find, end_of_elaboration_phase, get_is_active,

uvm_bitstream_t, uvm_factory::get, factory.print, find_override_by_type, do_print, do_record, uvm_recorder,

`uvm_record_field, compare_field, pre_start, post_start, set_starting_phase, get_starting_phase, get_type_name,

print_topology.

Broadly speaking, the message of Easier UVM is closely aligned with that of UVM-Light, namely, that a very

small subset of UVM is sufficient not only to get started with UVM but to do a substantial amount of work.

However, Easier UVM acknowledges that some users will need a richer API. In particular, some uses will need to

take advantage of further methods that reveal or control the state of UVM objects, methods such as

factory::find_override_by_type or uvm_sequence::get_sequencer or uvm_sequencer::user_priority_arbitration.

Unfortunately, the list goes on and on, and given the basic principles of API design (such as completeness,

consistency and orthogonality), we end up with something that contains the majority of the UVM standard, though

not necessarily all of it.

VIII. HOW FAR CAN YOU TAKE UVM CODE GENERATION AND WHY WOULD YOU WANT TO?

In this section we review our experience of using the Easier UVM Code Generator and reflect on the two

questions posed in the title of this paper, how far can you take UVM code generation and why would you want to?

In direct answer to the first question, by employing an algorithmic approach there is no hard upper limit on how

far code generation can be taken. It is just a question of how much effort you choose to invest, given the immediate

goals of whatever project you are working on. At Doulos, we have been able to use the Code Generator to generate

source code for all the examples and exercises we use in our training classes. We have not always chosen to use the

generated code in our training materials because sometimes we want to show alternative or more advanced

approaches, but we have been able to achieve much better consistency across our examples and exercises.

This provides one answer to the second question: why would you want to? A lot of the value of code generation

lies in the fact that it can generate a consistent code base, and this would be of value to everybody. The point about

consistency is that its value increases the more widely it is applied. Hand generated code almost always contains

inconsistencies, both internal inconsistencies within the code written by a single individual and inconsistencies

across the code written by a team. Further, although certain inconsistencies might be debated as justifiable in the

context of solving the problem at hand, most inconsistencies in any code base are entirely gratuitous. Our

experience has always been that by ironing out gratuitous inconsistencies in style, the effort of any team can become

a lot more focused and productive. Possibly depending on their cultural background, many engineers strive to inject

their individuality and personality into their code by adopting their own idiosyncratic coding preferences. In terms of

creating a maintainable code base, this is always a bad idea. Using a code generator to nail down the coding style

used in the non-user-defined elements of the UVM code base might even give engineers a sense of common

ownership over the coding style decisions that they have made as a team and then captured in the code generator

script.

Our next observation based on experience is that a code generator never does everything you want it to do. This

may be a cause of psychological resistance to the use of code generation for many engineers: “The code generator

will never be able to write the code that I can write, so I don’t want anything to do with it.” Actually, my experience

is that the code generator writes better code than I do, or at least more consistent code, and there is no motivation to

vary the style of user-defined code fragments too far from the auto-generated norm.

Allowing fine-grain control over the generated code is problematic because the author of the code generator

cannot predict everything that the end user will need. We employ a number of mechanisms to give the user control

over the code:

 Pre-defined insertion points for user-defined code fragments. This mechanism works well when the insertion

points can be identified in advance, and it is easy to add extra insertion points (by modifying the code

generator)

 Control file switches to turn off automatic code generation for a particular region of code, which permits the

user to replace automatically generated code with a user-defined code fragment. This is a catch-all solution

that gives the user total control of the generated code, but it is an all-or-nothing approach and a blunt

instrument. Once the user has turned off automatic code generation for a region of code, the benefits of code

generation are lost for that region.

 Users can extend an automatically generated class and override individual methods using the factory. This is

a pragmatic solution in some situations, but is arguably a marginal abuse of object-oriented programming

principles if used to obliterate the structure and function of a base class and replace it with something else

entirely. It also suffers from the same disadvantage as the previous point in that the advantages of automatic

code generation are lost for whichever methods are overridden, particularly if they happen to perform

significant operations such as build_phase or connect_phase.

It is not only that users want to push the code generator to handle new scenarios. As well as that, the coding

guidelines captured by the code generator will continue to evolve. There are very few coding guidelines that can

really be set in concrete or apply to every situation that can arise, and so the code generator will need to evolve

along with the guidelines.

In my opinion, the more general consequence of the observation that you can never anticipate everything that will

be required of the code generator is that you should work continually on beautifying your code generator script so

that it remains easy to change and easy to maintain. We found a few things to be key:

 Maintain a simple, consistent overall structure for the code generator script

 Take care over the naming of internal variables that represent control file settings

 Keep the code templates as close to plain text as possible so that they are readable and easy to update

 Keep the meta-instructions used to generate code from the templates as regular, consistent, and simple as

possible. For example, have a simple, consistent way of vertically aligning text

 Build a regression test suite and run it after every change to the generator script

Our next observation is that you should not be tempted to modify the generated code, not if you ever want to

generate it again. We learnt through experience that this should be regarded as a clear-cut rule. The first time you

change the generated code, you have in effect burnt your bridges with the control files and the code generation

process. This is fine if and when abandoning the code generator is what you want to do, not but before. You must be

able to delete the entire output from the code generator and regenerate it from the control files, code fragments, and

DUT alone. Apart from anything else, this allows you to run regression tests on the code generator script itself. It

also allows you to regenerate your UVM code base if ever it becomes corrupt.

Our second answer to the second question “Why would you want to” is that there is enormous value in being able

to automatically regenerate the code that stitches everything together, particularly the envs, interfaces, and top-level

modules. Once you start modifying the generated code and burn your bridges to the code generator, you no longer

have the option to regenerate the top-level. If you really do need to depart a long way from the generated code, a

better solution is to continue to regenerate the top-level automatically, inserting dummy agents to represent your

own VIP as necessary, then use the factory to swap-in your own VIP in place of the automatically generated

components. You will not benefit from automation in any connections made to your own VIP, but you can continue

to benefit from automation elsewhere in the code.

Our final observation is not unique to code generation. It is to do whatever it takes to maintain backward

compatibility between the evolving code generator script and old versions of the control files. There is always a

temptation to think “I’ll just make some improvements: nobody will notice.” Don’t do it! Not only will you upset

any users you may happen to be cultivating, but you will also break all your own old scripts, including your

regression tests. Always be prepared to jump through hoops rather than introducing backward incompatibilities.

Deprecate old features if you want to, but don’t break old code. (I wish all standards committees would take this

lesson to heart.)

IX. SUMMARY

Limitations and Advice

 There are no hard upper limits to the capabilities of UVM code generation. It is a return-on-investment

decision how far you take code generation

 A code generator always needs to evolve to handle new use cases and changing coding guidelines

 You should work continually to make your code generator script increasingly easy to modify

 Do whatever it takes to keep the evolving script backward compatible with old control files

 You must be able to regenerate the entire code base at any time

 Do not modify the generated code until you are ready to burn your bridges to the code generator

Benefits

 There is huge value in the consistency of coding style achieved using a code generator

 There is huge value in automatically regenerating the code that stitches everything together

REFERENCES
[1] John Aynsley, Doulos, “Easier UVM for Functional Verification by Mainstream Users”, DVCon 2011, San Jose.

[2] Detailed Explanation of the Easier UVM Coding Guidelines, Version 2015-02-23,
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/detail/

[3] John Aynsley, Dr Christoph Sühnel, “Easier UVM - Coding Guidelines and Code Generation”, DVCon 2014, San Jose
[4] Jim McGrath, juvb11.pl and juvb12.pl, http://forums.accellera.org/files/category/3-uvm
[5] The Easier UVM Code Generator, http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/
[6] The Easier UVM Code Generator – Reference Guide, http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/ref/
[7] The Syosil UVM Scoreboard, http://syosil.com/index.php?pageid=33
[8] Sutherland and Fitzpatrick, “UVM Rapid Adoption: A Practical Subset of UVM”, DVCon United States 2015
[9] Sutherland and Fitzpatrick, “UVM-Light, A Subset of UVM for Rapid Adoption”, DVCon Europe 2015

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/detail/
http://forums.accellera.org/files/category/3-uvm
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/ref/
http://syosil.com/index.php?pageid=33

