
How Far Can You Take UVM Code
Generation and

Why Would You Want To?

John Aynsley, Doulos

Agenda

Goals for code generation

The Easier UVM Code Generator

Characteristics of UVM code

Template-driven code generation

How far can you take UVM code generation?

Why would you want to?

Conclusions based on experience

3/2/2022 John Aynsley, Doulos 2

Characteristics

Goals for Code Generation (1)

The quality of the code

3/2/2022 John Aynsley, Doulos 3

Better than I write

Goals for Code Generation (2)

3/2/2022 John Aynsley, Doulos 4

Generates what I want

Iterative

The quality of the generator

Doulos – Easier UVM

John Aynsley, Doulos 5

Coding guidelines – "One way to do it"

Automatic code generator

180 detailed guidelines with explanations and examples

Code generator complies with guidelines

Free and open

Apache 2.0 license

3/2/2022

Easier UVM Generator (1)

3/2/2022 John Aynsley, Doulos 6

Top-level agent

Agents grouped
within env

Register block

Adapter, predictor
Reference model

Scoreboard

Configuration

Interface

Agent

Easier UVM Generator (2)

3/2/2022 John Aynsley, Doulos 7

Per-interface/agent:

uvm_sequence_item class
Configuration class
Sequencer class
Driver class
Monitor class
Agent class
Split transactors for emulation
Subscriber class
Default sequence class for agent
Env class
Default virtual sequence class for env
Default register sequence class for env
Register model adaptor
Agent package
SystemVerilog interface

Top-level:

Top-level configuration object
Top-level env
Reference model
Instantiation of Syosil scoreboard
Instantiation of register block
Default top-level virtual sequence class
Top-level package
Test class
Test package
Test harness module to instantiate DUT
Top-level module

Split transactors for emulation

Instantiation of Syosil scoreboard

Default sequence class for agent

Default virtual sequence class for env

Code Generator Inputs & Outputs

3/2/2022 John Aynsley, Doulos 8

Interface
Template File

Interface
Template File

Interface
Template File

Common
Template File

Pin List File

DUT Directory

files.f

Include
Directory

Code
Generator

ScriptInput Files

generated_tb

dut

sim

tb
<agent>

<top>

<top_test>

include

Output Files

<agent><agent>

User-defined
code fragments
inserted into
generated code

Design
Under
Test

Simulation scripts

Control Files

Perl script, code ready-to-run, open source, well documented, regression tested

Ways to Use a Code Generator

Generate examples as a learning aid

An initial framework for production code

Continually regenerate code throughout the project

3/2/2022 John Aynsley, Doulos 9

Agenda

Goals for code generation

The Easier UVM Code Generator

Characteristics of UVM code

Template-driven code generation

How far can you take UVM code generation?

Why would you want to?

Conclusions based on experience

3/2/2022 John Aynsley, Doulos 10

Characteristics of UVM Code

3/2/2022 John Aynsley, Doulos 11

`ifndef BUS_SEQ_ITEM_SV
`define BUS_SEQ_ITEM_SV

class bus_tx extends uvm_sequence_item;
`uvm_object_utils(bus_tx)

rand bit cmd;
rand byte addr;
rand byte data;

extern function new(string name = "");
extern function void do_copy(uvm_object rhs);
extern function bit do_compare(uvm_object rhs, uvm_comparer comparer);
extern function void do_print(uvm_printer printer);
...

Boilerplate

User-defined

Boilerplate with user-defined fields

Template-Driven Code Generation

3/2/2022 John Aynsley, Doulos 12

Variable fields

Repeated line groups

Conditional line groups

... arbitrarily nested

Mark vertical alignment points

Mark insertion points

Mark groups of lines as suppressible

Ad hoc rules that require partially parsing user-defined code fragments

Variable fields assigned using arbitrary expressions

95%

A Hypothetical Code Template

3/2/2022 John Aynsley, Doulos 13

`ifndef ${agent_name}_ENV_SV
`define ${agent_name)_ENV_SV

--insert_inc_file $agent_env_inc_before_class{$agent_name};

class ${agent_name}_env extends uvm_env;

`uvm_component_utils(${agent_name}_env)

extern function new(string name, uvm_component parent);

--for ($i = 0 ; $i < $number_of_instances{$agent_name}; $i++) {

-- $suffix = calc_suffix($i, $number_of_instances{$agent_name});

${agent_name}_config m_${agent_name}${suffix}_config;
${agent_name}_agent m_${agent_name}${suffix}_agent;
${agent_name}_coverage m_${agent_name}${suffix}_coverage;

-- if (@env_list) {
// Child environments
...

Variable fields

Location for include

Variable fields

Repetition

Ad hoc

Variable fields

Conditional

Agenda

Goals for code generation

The Easier UVM Code Generator

Characteristics of UVM code

Template-driven code generation

How far can you take UVM code generation?

Why would you want to?

Conclusions based on experience

3/2/2022 John Aynsley, Doulos 14

How Far Can You Take UVM Code
Generation? (1)

3/2/2022 John Aynsley, Doulos 15

No limits! A few examples ...

Organising classes into packages using `include

Indentation and alignment – pretty printing

Which UVM features to use where

Where to set/get virtual interfaces

How Far Can You Take UVM Code
Generation? (2)

3/2/2022 John Aynsley, Doulos 16

Contributing to automation and productivity

Instantiating and connecting DUT and interfaces

Stitching together all the VIP at the top level

Generating methods for each transaction class

Generating simulation scripts

How Far Can You Take UVM Code
Generation? (3)

3/2/2022 John Aynsley, Doulos 17

Working example code

Default clock and reset generation

Default covergroups and sampling

Default end_of_elaboration to print diagnostics

Default sequences

Why Would You Want To? (1)

3/2/2022 John Aynsley, Doulos 18

For learners

Reinforce training with complete, working

examples

Why Would You Want To? (2)

3/2/2022 John Aynsley, Doulos 19

For all users

Consistency

Productivity – automatic generation

Agenda

Goals for code generation

The Easier UVM Code Generator

Characteristics of UVM code

Template-driven code generation

How far can you take UVM code generation?

Why would you want to?

Conclusions based on experience

3/2/2022 John Aynsley, Doulos 20

Issues - Regeneration

3/2/2022 John Aynsley, Doulos 21

Must be able to regenerate the entire output

(lost or corrupted files, regression)

Do not modify the generated code until ...

... you are ready to burn your bridges

Issues - Flexibility

3/2/2022 John Aynsley, Doulos 22

Predefined insertion points

Suppressing automatic generation

Extend classes and override

It still won't be enough!

Beautify the Code Generator!

3/2/2022 John Aynsley, Doulos 23

Maintain a simple, consistent overall structure

Take care over the naming of internal variables

Keep the code templates close to plain text

Keep the meta-instructions regular and simple

Build a regression test suite

Summary

3/2/2022 John Aynsley, Doulos 24

Consistency and automation are worth having!

Where Can I Get It?

3/2/2022 John Aynsley, Doulos 25

http://www.doulos.com/easier

http://www.edaplayground.com

http://www.edaplayground.com/x/65x

The simplest example

	 How Far Can You Take UVM Code Generation and�Why Would You Want To?
	Agenda
	Goals for Code Generation (1)
	Goals for Code Generation (2)
	Doulos – Easier UVM
	Easier UVM Generator (1)
	Easier UVM Generator (2)
	Code Generator Inputs & Outputs
	Ways to Use a Code Generator
	Agenda
	Characteristics of UVM Code
	Template-Driven Code Generation
	A Hypothetical Code Template
	Agenda
	How Far Can You Take UVM Code Generation? (1)
	How Far Can You Take UVM Code Generation? (2)
	How Far Can You Take UVM Code Generation? (3)
	Why Would You Want To? (1)
	Why Would You Want To? (2)
	Agenda
	Issues - Regeneration
	Issues - Flexibility
	Beautify the Code Generator!
	Summary
	Where Can I Get It?

