
Holistic Automated Code Generation:
No Headache with Last-Minute Changes

Klaus Strohmayer
Dialog Semiconductor

Kärntnerstrasse 518, A-8054 Graz-Seiersberg
Email: Klaus.Strohmayer@diasemi.com

Norbert Pramstaller
Dialog Semiconductor

Kärntnerstrasse 518, A-8054 Graz-Seiersberg
Email: Norbert.Pramstaller@diasemi.com

Abstract—In this article, we introduce holistic automated code
generation (HACG). It extends the state-of-the-art approaches for
automated code generation by targeting not only the register file
but also other regular structures appearing in a modern System-
on-Chip (SoC). HACG is enabled by combining handwritten and
automated code as well as fully automated dependency handling
resulting in a self-maintained environment. This allows to quickly
react on design changes throughout the entire development
phase. HACG significantly improves productivity, quality, and
consistency of the entire design process of a mixed-signal SoC.

I. INTRODUCTION

Mixed-signal System-on-Chip (SoC) designs are getting
more and more demanding with respect to system complexity,
first time right, and time to market. State-of-the-art design
techniques and verification methodologies help dealing with
complex mixed-signal designs. Additionally, automated code
generation is applied in order to ease the maintenance of regu-
lar structures such as the register file, analog/digital interfaces,
level shifter instances, etc. (see [1], [2], [3], [4], [6]).

Functional changes are part of a designers daily business.
At any phase of the development flow, changes are either
requested directly by the customer or are resulting out of the
design and verification progress. Examples of such changes
are new or altered features, the need for additional trimming
bits or trimming range extensions, the adaption of analog
configuration parameters, or the extension of test modes and
scan isolation values. Default register values and register map
re-orderings are also common changes.

In an SoC, a small change (e.g. redefinition of a single
register or an additional required test mode) in general requires
modifications on multiple steps in the design flow. This results
in significant effort for design, verification, and implementa-
tion. Even worse, these changes and in particular last-minute
changes are very error-prone and can impact already passing
regression runs, synthesis and place & route possibly delaying
the project schedule. Existing automated code generation
approaches mainly target the handling of register files. These
approaches help dealing with changes in this area and are def-
initely a valuable first step. Nevertheless, on top of the register
file, several modifications still need to be done manually. More
precisely, in addition to regenerating the register file the related
connections through the hierarchies, pins, etc. need to be
adapted manually to get the environment up and running again.

In a mixed-signal SoC, regular structures appear throughout
the entire design flow: specification, source code generation at
register transfer level (RTL), verification planning, verification,
physical implementation (synthesis, and place & route), lab
evaluation, production testing, and application-software de-
velopment. Extending automated code generation to covering
also these steps in the design flow will allow an even faster
reaction on (last-minute) changes and hence reduce the risk for
injecting errors. We will refer to this extension to the entire
design flow as holistic automated code generation (HACG).
Compared to existing solutions, HACG mainly differentiates
by the fact that it supports combing handwritten and automated
generated code. Further, it is able to automatically derive
dependencies for the generation process.

The remainder of this article is structured as follows. In
Section II, we present an overview of a general mixed-signal
SoC. We focus on a common case of a configuration register
located in the digital domain controlling an analog component.
Furthermore, we list several language constructs that appear in
our design flow. Based on this, we derive the requirements for
HACG in Section III. We show in detail how HACG works
and give an example for the application of the presented tool.
Finally, we summarize in Section IV.

II. THE JOURNEY OF A SINGLE BIT IN AN SOC

In this section, we present an overview of a typical SoC
design. We particularly focus on an example of a configuration
register used to control an analog component such as an LDO.
After this, we list several language constructs found in our
digital design flow. This serves to demonstrate in which areas
we can apply the principle of HACG.

Figure 1 shows the general structure of a typical mixed-
signal SoC. The main components are the central control unit
(either a dedicated control state machine or a microcontroller
including memory), interface units (e.g. SPI, I2C), and the dig-
ital control to analog components (e.g. ADC, LDO, switching
converter, oscillator, etc)̇. All these components communicate
via a centralized bus system.

A. Detailed description of a configuration register

At the bottom of Figure 1, a configuration register con-
trolling an analog component is shown. This configuration
register (Figure 1.A) is controlled via the centralized bus. The

Core
Ctrl FSM SPI

Memory

Bus

Islolation layer

Module level

D Q

Analog

A
B C D E

Oscillator - Ctrl
RTC

Oscillator -
Analog

ADC - Ctrl

ADC - Analog

LDO – Ctrl

LDO – Analog

DCDC - Ctrl

DCDC - Analog

I2CGPIO

Timer
Watchdog

Fig. 1. General SoC Structure.

output of this register is then (optionally) processed by the
combinational logic according to the specified functionality of
the analog component. After this the signal crosses the module
hierarchy (Figure 1.B). It is a common design approach to
include dedicated logic at the digital top level for test and
scan isolation (Figure 1.C). After the insertion of the test
isolation logic the signal crosses the digital/analog boundary
(Figure 1.D). Modern SoCs are usually composed of several
voltage domains. Therefore, it is necessary to provide level
shifters between the different voltage domains (Figure 1.E).

The description represents a typical case for a configuration
register located in the digital domain controlling an analog
component. It is important to note that in a modern SoC a
significant amount of module hierarchies, thousands of config-
uration registers, and several hundreds of level shifters are not
an exception. Even more importantly, the definition of analog
trim and configuration registers often go through multiple
iterations throughout the design process. Such changes require
manual interaction in various steps of the design flow.

This simple description already makes clear that an efficient
method for handling the generation of these registers and the
connection through different hierarchies significantly reduces
the overall design effort. Additionally, the risk of injecting
errors can be minimized.

Requirements

Specification

Design

Verification

Implementation

Verification
Planning

Chip Evaluation

if (wr=1'b1) begin
case (addr)

 `CFG_ADDR: cgf <= data[5:2];
endcase
end

[CFG]
 PARENT=SigCon
 NAME=CFG
 MODE=BYTE
 ADDRESS=0x01B1
 NOTE=Config register

reg_block: SigCon_i0 (
 .cgf_q(cfg_q),
 ...
);

sfr at 0x01B1 CFG; // CFG register
 #define CFG_BF1_SHFT 2
 #define CFG_BF1_SHFT_SIZE 4

set_load 50 SigCon_cfg_q

write_bitfield(CFG, 3);

covergroup cfg_reg_we @(posedge clk);
coverpoint data[5:2] iff (wr=1'b1);

 ...
endgroup

coverage "CFG" {
items_pattern:

<text>(HDL,instance)SigCon_i0.cfg_reg_we
</text>;

item_details: "Values for write
access.";
};

<reg:field id="CFG">
 <doc:desc>
 Config register
 </doc:desc>
 <reg:type read=“1“ write=“1“/>
</reg:field>

Fig. 2. Language Constructs in the Design Flow.

B. Language constructs in an SoC

In Section II-A, we have shown the importance of an
efficient method for handling configuration registers. Looking
at the design flow, we see that the information on these
registers appears in several steps. The same information is
described by different language constructs. In the following,
we will describe these language constructs appearing in the
design flow. The flow and the language constructs are shown
in Figure 2. Note that for the sake of visibility we have not
drawn the iterative behavior of the design flow.

The specification of an SoC includes register descriptions,
memory maps, and for instance pin lists. These descriptions
can be automatically derived from a database by using XML,
Visual Basic macros, or other languages.

The implementation of the digital design functionality at
RTL is done by using hardware description languages (HDLs)
such as SystemVerilog, Verilog, or VHDL. Amongst others,
it includes language constructs for register definitions, register
implementation, connectivity through multiple hierarchies, test
mode isolation (e.g. scan isolation), and level shifters. An

example is given in Section II-A.
For verification planning it is important to define verification

metrics of the registers in the verification plan. Furthermore,
the according implementation as part of the source code
describing the hardware functionality has to be defined. The
metrics include coverage information and test cases for veri-
fying the register accesses. Also reset values or test isolation
values can be part of the verification plan. The verification plan
including the metrics and the mapping to the source code of
the design is stored in a tool dependent format. For instance the
format used by Incisive Enterprise Manager from Cadence [7].

For verification it is important to increase the level of
abstraction. This requires high-level functions to access and
verify the registers. These functions are written in the applied
verification language (e.g. SystemVerilog or e). Additionally,
the implementation of coverage and assertion constructs to
support metric driven verification is also a part of the verifica-
tion process. This is done by using SystemVerilog Assertions
(SVA) or by the Property Specification Language (PSL).

For the (physical) implementation of the digital design it
is required to define design constraints. Such constraints are
for instance applied to the interfaces between the analog
and digital domain or to the connection to I/Os. Defining
constraints can for example be done with tcl.

The last step in our design flow is the chip evaluation. For
chip evaluation high-level functions are often written in C or
LabView. Many of these functions are based on definitions
placed in C-header files. For the debugging of the controller
software the register information (configuration) needs to be
provided to the debugger (e.g. Keil µVision [8]). The debugger
derives this information from a configuration file.

All the language constructs listed in this section are ideal
candidates for automated code generation. In combination with
the register handling this leads us to the principle of HACG
described in the next section.

III. HOLISTIC AUTOMATED CODE
GENERATION (HACG)

Holistic automated code generation is based on the follow-
ing four prerequisites.

1) Usage of a unique database (XML, Excel, etc.) for each
regular structure

2) Automated generation of regular structures derived from
the unique database (databases)

3) Combination of handwritten and automated generated
code within source files throughout all steps of the
design flow

4) Automated handling of dependencies between unique
database and automated code generation.

Approaches for dealing with 1. and 2. are available on the
market (see [1], [2], [3], [4]), or do exist as proprietary in-
house solution [6]. These solutions for automated code gener-
ation mainly target the register generation and are based on a
unique database approach. Even if documentation, implemen-
tation, and verification of the registers is employed by these
tools the following features are missing: 3. the combination of

Reg
Library

Pin
Library

Backup
(*.org)

Parse
RegsParse

Pins

XML
Textfile

Database
Spreadshee

t

tcl
C

XML
Verilog

SystemVerilo
g

makefile

hacg_depmak
e

hacg_extra
ct

hacg_proc
ess

Data base

Parser plug-in

Libraries
Source files

Backup files

Reg Library

Pin Library

Backup
(*.org)

Parse Regs
Parse Pins

XML
Textfile

Database
Spreadsheet

tcl
C

XML
Verilog

SystemVerilog

makefile

hacg_depmake

hacg_extract hacg_process

Database

Parser plug-ins

Libraries
Source files

Backup files

Fig. 3. HACG flow.

handwritten and generated code and 4. the automated handling
of dependencies of the generated data from the unique data
source. Items 3. and 4. add the term “holistic” to automated
code generation as they enable dealing with regular structures
in the entire design flow. The idea for combining handwritten
and automated generated code follows the basic principles of
template based design. This combination supports a very deep
integration in the design process. Furthermore, all native files
are being parsed in order to determine the dependencies from
the corresponding unique database (or databases). As a result
it is possible to setup a self-maintained environment, i.e. a
change in the database is fully covered by HACG consistently
updating the generated data in the according source files. The
approach is fully language independent and can easily be
introduced step by step to already existing designs.

A. HACG Flow

In this section, we describe the basic flow of HACG. The
flow is graphically depicted in Figure 3. It consists of two main
steps, namely the data base extraction and the processing of the
database. Additionally, in order to maintain the dependencies
between source files and the libraries, an automatically derived
makefile is provided. In the following the according functions
of HACG are described in detail.

• hacg extract: During the first step of HACG the unique
databases are being parsed by applying dedicated plug-
ins. These can be plug-ins for parsing Excel spreadsheets,
for parsing XML files, etc. The output of hacg extract is
a proprietary binary library containing the data of the
parsed database. For instance extracting the data from a
register-list spreadsheet results in a register library and a
pin database results in a pin library.

• hacg process: In the second step of HACG the source
files are being processed, where the parsing tool is
looking for templates (pragmas) defined in HACG. The
templates are based on the template toolkit TT2 [5]. Each
of these templates includes data fields that correspond
to information that is stored in the libraries generated
by applying hacg extract. The templates in combination

with the data stored in the proprietary libraries result
then in the final source code (see also Section III-B).
An additional feature of hacg process is that a backup
copy of each processed source file is created. This allows
to undo changes in the case of an erroneous template
which is of particular help in the initial phase of template
definition.

• hacg depmake: This process checks the dependency of
the source files in relation to the data in the library and
generates a make file out of it.

If there is a change in the database (e.g. pin list or register
list) hacg extract and hacg process need to be repeated. If
there is a change in the source file (e.g. adapting the template
or adding new data fields to the template) only hacg process
needs to be redone. This step will be discussed in more detail
in Section III-B.

B. HACG Applied

In this section, we describe the processing of source files via
hacg process. Figure 4 depicts the flow diagram for processing
a single source file and Figure 5 shows a source-code snippet
with an embedded code generation template. This snippet
combines hand written and automatically generate code.Start

Extract library
name

pragma
hacg_start

Read-in library

pragma
hacg_end

Remove
comment

Process
template

Insert generated
code

End

Remove codeGenerated
code

Yes

No

Yes

No

Yes

No

always_comb begin
if (rd == 1'b1) begin

 // pragma hacg_begin RegList.REG
 // [%- FOREACH g = grp('Name'); IF (g.Name == 'SigCon');
 // FOREACH sf = g.reg;
 // "\n if ("; method.lower("reg.addr_${sf.ID}) begin");
 // FOREACH b = sf.bit; IF (b.ID != "ni");
 // IF (b.Access == 'RW');
 // method.format("\n datao_b[%-20s] = %s;",
 // "`${sf.ID}_${b.ID}_FLD", method.ffb("${sf.ID}_${b.ID}"));
 // ELSE;
 // method.format("\n datao_b[%-20s] = %s;",
 // "`${sf.ID}_${b.ID}_FLD", method.lower("sfr_${sf.ID}_${b.ID}_b"));
 // END;
 // END; END;
 // "\n end";
 // END;
 // END; END -%]
 ////>> Start of hacg inline generated code. Don't change! ////

if (sfr.addr_cfg) begin
 datao_b[`CFG_BF1_FLD] = cfg_bf1_ff;
 datao_b[`CFG_BF2_FLD] = cfg_bf2_ff;

end
 ...
 //// End of hacg_inline generated code! <<////
 // pragma hacg_end

1

1

2

2

3

3

4

4

5

5

6

7

6

7

Start

Extract library
name

pragma
hacg_start

Read-in library

pragma
hacg_end

Remove
comment

Process
template

Insert generated
code

End

Remove codeGenerated
code

Yes

No

Yes

Yes

No1

2

3

4

5

6

7No

Fig. 4. HACG processing of source files

Step 1 starts with the search for the keywords “pragma
hacg begin” in all lines beginning with a comment delimiter.
This determines the start of a section for HACG. Note that all
lines of the template need to start with the comment delimiter
of the used language.

In step 2, the library name is extracted. The name of the
library defines the relationship between the unique database
and the data required for processing the template.

Once the library data is read in, the keyword “pragma
hacg end” is searched within the source file (step 3). This
is done in order to determine the end of the HACG template.

In step 4 it is verified if a generated source code already
exists. Any generated source code is placed between “////>>

Start

Extract library
name

pragma
hacg_start

Read-in library

pragma
hacg_end

Remove
comment

Process
template

Insert generated
code

End

Remove codeGenerated
code

Yes

No

Yes

No

Yes

No

always_comb begin
if (rd == 1'b1) begin

 // pragma hacg_begin RegList.REG
 // [%- FOREACH g = grp('Name'); IF (g.Name == 'SigCon');
 // FOREACH sf = g.reg;
 // "\n if ("; method.lower("reg.addr_${sf.ID}) begin");
 // FOREACH b = sf.bit; IF (b.ID != "ni");
 // IF (b.Access == 'RW');
 // method.format("\n datao_b[%-20s] = %s;",
 // "`${sf.ID}_${b.ID}_FLD", method.ffb("${sf.ID}_${b.ID}"));
 // ELSE;
 // method.format("\n datao_b[%-20s] = %s;",
 // "`${sf.ID}_${b.ID}_FLD", method.lower("sfr_${sf.ID}_${b.ID}_b"));
 // END;
 // END; END;
 // "\n end";
 // END;
 // END; END -%]
 ////>> Start of hacg inline generated code. Don't change! ////

if (sfr.addr_cfg) begin
 datao_b[`CFG_BF1_FLD] = cfg_bf1_ff;
 datao_b[`CFG_BF2_FLD] = cfg_bf2_ff;

end
 ...
 //// End of hacg_inline generated code! <<////
 // pragma hacg_end

1

1

2

2

3

3

4

4

5

5

6

7

6

7

Start

Extract library
name

pragma
hacg_start

Read-in library

pragma
hacg_end

Remove
comment

Process
template

Insert generated
code

End

Remove codeGenerated
code

Yes

No

Yes

No

Yes

No1

2

3

4

5

6

7

Fig. 5. Example template (pragma) of HACG.

Start of hacg inline generated code. Don’t change! ////” and
the unique termination “//// End of hacg inline generated code!
<<////”. If auto-generated code already exists it is simply
removed.

Afterwards, the comment delimiter in front of the template
code is removed (step 5). This allows to execute the template
toolkit. Note that the source code file is not directly affected;
the template is directly processed in memory.

In step 6, new source code is generated by processing the
template. The data used for processing the template is begin
derived from the library determined in step 2.

Finally, in step 7 the newly generated source code is inserted
at the location of previously removed code. The template is
now fully processed.

Steps 1 to 7 are repeated as often as necessary within one
source file. It is possible to have several templates using the
data from different libraries within one file.

IV. SUMMARY

In this paper, we have emphasized that modern SoCs include
several regular structures that can be exploited for automated
code generation. We have identified four prerequisites that
allow to exploit all regular structures in the design flow. Our
approach, referred to as holistic automated code generation
(HACG) is enabled by combining handwritten and automated
code as well as fully automated dependency handling resulting
in a self-maintained environment. This approach significantly
improves productivity, quality and consistency of the entire
design process of a mixed-signal SoC. It enables designers to
react on unavoidable (last-minute) design changes with small
effort and low risk: it helps reducing designer’s headache.

REFERENCES

[1] PDTiTMSpectaReg http://www.productive-eda.com
[2] Denali Blueprint https://www.denali.com/en/products/blueprint.jsp
[3] Agnisys IDesignSpecTM http://www.agnisys.com
[4] Semifore CSRCompilerTM http://www.semifore.com
[5] The Template Toolkit http://www.tt2.org
[6] B. Banerjee and S. Rajan and S. Naidu, Automated approach to Register

Design and Verification of complex SOC. Presented at Design and
Verification Conference & Exhibition (DevCon) 2011, San Jose, CA
http://events.dvcon.org/2011/proceedings/papers/11 2.pdf

[7] Cadence Incisive Enterprise Manager http://www.cadence.com
[8] KEILTM µVision http://www.keil.com/uvision/uv4.asp

