
Holistic Approach to

IO Timing Verification Using

Portable Stimulus and Assertions

 Amitesh Khandelwal and Praveen Kumar
Infineon Semiconductor Asia Pac Pte Ltd,

8 Kallang Sector, Singapore. 349282

 Abstract-This paper gives an overview of how to verify IO timings of a complex SoC with auto generated Assertions

using the concept of portable stimulus.

I. INTRODUCTION

One of the major challenges for Static Timing Analysis (STA) is to guarantee the IO timing parameters speci-

fied in the datasheet for each and every supported variation (in terms of frequency and load). A farrago of different

peripherals with multiple modes creates myriad scenarios that are too difficult and error prone to be done accurate-

ly for a static tool therefore augmentation is required by alternate methodologies.

We used SystemVerilog assertions that are run in the dynamic simulations to complement STA in verifying IO

timings for IPs like Gigabit Ethermac, SPI, MSC and SDMMC etc. Please refer to [2] for details on these IPs.

Since these IPs have several timing parameters for each pin-clock combination and each pin can appear on several

top level ports depending upon muxing options used, the total number of assertions required to verify all the timing

parameters can easily run into hundreds. This challenge is overcome by using Perspectm [3] to generate these as-

sertions automatically by modelling basic assertion in SLN.

‘SLN’ which stand for System-Level Notation is a proprietary language from Cadencetm. The Perspectm tool

documentation also covers the details of this language. It is similar to the ‘e’ language in terms of syntax so the

adaptation is faster if you are already familiar with ‘e’.

Basic SystemVerilog assertions are modelled in SLN using the Perspectm tool to create a template. All the de-

sired timing parameters are given to the tool in csv format. Perspectm then applies the template to all the pin-clock

combinations and generates assertions. These assertions are then added to the top level testbench and run along

with dynamic simulation. Any deviation is reported in the logs.

II. IO timing parameters specified in the datasheet

Different peripherals have different IO timings. However they can be classified in the following three categories in

general.

a) Clock Duty Cycle Deviation

b) Output Delay

c) Setup and Hold

Below figure 1 and 2 provide examples of such IO timings for MSC (Micro Second Channel) module. The MSC is

a serial interface that is especially designed to connect external power devices. The serial data transmission capa-

bility minimizes the number of pins required to connect such external power devices.

Figure 1 : IO Timing diagram of MSC module (Refer to 2 for module details).

Figure 2 : IO Timing parameters of MSC module (Refer to 2 for module details).

Typically the parameters are specified in the datasheet. Datasheet also contains the expected values which we need

to verify.

Sometimes values may not be present in the datasheet (for example for a new lead product) and in such cases STA

report itself can be used as a reference.

III. Extraction of parameter values from datasheet

If parameters are not available in the datasheet, we can use the values dumped from the STA tool. Below figure

3 shows an example of the MSC timing report. Using a Perl script this report was converted into CSV format as

shown in figure 4.

Figure 3: STA report

Figure 4: CSV generated from the STA report

Alternatively if the datasheet contains timing values, it can be directly used. Below figure 5/6 shows examples

of CSV which are using datasheet parameters for Ethermac and SDMMC

Figure 5: Ethermac timing parameters extracted from the datasheet

Figure 6: SDMMC timing parameters extracted from the datasheet

IV: Fundamental Assertions

For the verification of the three different types of IO timings, we use two fundamental assertions. These are

called check_delay and check_deviation.

Figure 7: Fundamental assertions used to verify the IO timings.

The key here is to use parameters for the values that are checked. For the Clock duty cycle deviation check we

use three parameters, pClkPeriod, pMinDelay and pMaxDelay. For the output delay IO timing check we also use

three parameters, pDataOffset, pMinDelay and pMaxDelay. The pDataOffset helps to overcome the scenarios

where negative timings may be present.

V. Generating all the assertions required for complete IO timing verification

Once we have the fundamental assertions ready we can move on to the generation of the specific assertions for

each of the specified IO timings which we described in Figure 4/5/6.

We used Cadencetm Perspectm tool to achieve this but this can be also done using scripts or other tools. The

basic idea is to describe the parameters in a tabular fashion as done in Figure 4/5/6 and then apply these values to

instantiate the fundamental assertions for each of the parameter.

Figure 8: Perspectm
 abstraction to instantiate fundamental assertions in SLN language.

Figure 9: Perspectm

 Generated instantiations of the fundamental check_delay and check_deviation assertions for Ethermac.

Perspec has built-in system function csv_to_table to read in tables but the tables must follow certain format.

Each table must start with a table header followed by a row of column headers where each column header must

start with a ‘#’. In figure 5 ‘ETH’ is the table header and #Mode, #Check_Mode etc are the respective column

headers. We use another table to list all the modules for which assertions are to be generated. This table (stored in

list_of_modules.csv file) looks like the following (along with the datasheet_params.csv shown in Figure 5)

Figure 10: Example of the tables used in Perspec to generate assertions

Now let us examine the SLN code shown in Figure 8 to show how it reads the various tables to dump out asser-

tions.

The first line defines a variable index and initializes it to 0.

<[var index : unit = 0;]>

This variable is used to generate instances of the fundamental assertions check_deviation and check_delay.

Line 2 and 3 in Figure 8 call the system function csv_to_table to read in the tables shown in Figure 10.

Line 4 then uses these tables to instantiate the fundamental assertion check_deviation.

<[table from csv_to_table(LIST_OF_MODULES, "TC38x") with {]>

 <[table from csv_to_table(DATASHEET_PARAMS_FILE,"<#Peripheral>", ((csv_column("Check_Mode") == "Clock du-

ty cycle deviation at"))) with {]>

 check_deviation #(.pClkPeriod(pClkPeriod), .pMaxDelay(<#Max>ns), .pMinDelay(<#Min>ns),.msg("AssertFailed

DCDMAX<(index)>: Duty Cycle Deviation in <#Mode> mode for clock on port <#Clk_Port> ")) <##Peripher-

al>_dcd<(index)> (<#Clk_Port>, global_enable_iotiming_checks && <##Peripheral>_enable_iotiming_checks && <##Pe-

ripheral>_dcd<(index)>_enable);

The #Peripheral would be replaced with ETH, SDMMC and MSC in each iteration.

The function csv_to_table takes additional arguments so we can iterate over rows with specific values in a giv-

en column. Here although ETH has rows for both ‘clock duty cycle deviation’ and ‘output delay’, we only want to

instantiate check_deviation assertion for ‘clock duty cycle deviation’ rows.

Once specific table and rows are identified, we can extract the values of the required parameters and add them

to our code using #<column header>. For example <#Max> would be replaced by 0.8ns.

check_deviation #(.pClkPeriod(pClkPeriod), .pMaxDelay(0.8ns), .pMinDelay(-0.8ns),.msg("AssertFailed DCDMAX0:

Duty Cycle Deviation in rgmii mode for clock on port p11_4 ")) ETH_dcd0 (p11_4, global_enable_iotiming_checks &&

ETH_enable_iotiming_checks && ETH_dcd0_enable);

check_deviation #(.pClkPeriod(pClkPeriod), .pMaxDelay(0.8ns), .pMinDelay(-0.8ns),.msg("AssertFailed DCDMAX1:

Duty Cycle Deviation in rgmii mode for clock on port p11_12 ")) ETH_dcd1 (p11_12, global_enable_iotiming_checks &&

ETH_enable_iotiming_checks && ETH_dcd1_enable);

check_deviation #(.pClkPeriod(pClkPeriod), .pMaxDelay(0.001ns), .pMinDelay(-0.001ns),.msg("AssertFailed

DCDMAX8: Duty Cycle Deviation in sdmmc mode for clock on port p15_1 ")) SDMMC_dcd8 (p15_1, glob-

al_enable_iotiming_checks && SDMMC_enable_iotiming_checks && SDMMC_dcd8_enable);

Notice how the ports and module names are replaced taking values from the parameters listed in Figure 5 and

6. By nesting the tables, we can generate assertions for all the ports of all the modules with a few lines of code.

The check_delay assertion is instantiated in a similar way. We then instantiate all the generated assertions in a

System Verilog module and integrated it with the existing top level testbench.

The check_delay and check_deviation can be implemented independently in any language and the SLN code

will still work as long as the CSV format is maintained.

VI. Running and debugging the assertions

The generated assertions are compiled as a parallel top and run with the existing test suite where the targeted

modules are doing tx/rx so that the pins are exercised and assertions are triggered. Any deviation is reported in the

logfiles and can be debugged in the waves as usual. Figure 10 shows one such typical failure when the assertions

are run in dynamic simulation

Figure 11: Assertion failure in dynamic simulation

Above example shows a failure for the MSC module where the output delay was observed as 2ns however the

pMaxDelay is 1.64ns. This could be seen in the failure message printed in the logfile.

Fortunately this was not a real bug as the testcase did not set the output pads in the fastest mode.

VII. Usage and challenges in running multiple modules:

As mentioned in introduction we successfully used this methodology in some of our IPs like Gigabit Ethermac,

Quad SPI and SDMMC etc. However there were some adaptions required when testing different modules.

Some modules work on both edges and here the fundamental assertions were adapted to work on both edges.

However the SLN code was the same.

Some testcases applied multiple modes in a single testcase. So assertions were required to be enabled/disabled

automatically instead of being enabled all the time.

Many a times a module pin would toggle as soon as the module is enabled. This would not follow the timing

parameters since no actual tx/rx would have started. Additional enable/disable logic was added to overcome such

issues.

Once these basic issues were sorted out, it was really easy to run the assertions for different modules. Below we

provide two such examples for Ethermac and SDMMC.

Gigabit Ethermac: Gigabit Ethernet, a transmission technology based on the Ethernet frame format and pro-

tocol used in local area networks (LANs), provides a data rate of 1 billion bits per second (one gigabit). Gigabit

Ethernet is defined in the IEEE 802.3 standard and is currently being used as the backbone in many enterprise

networks.

The reduced gigabit media independent interface (RGMII) has become a widely used alternative to the gigabit

media independent interface (GMII) by offering lower pin count which enables board space, and cost, savings. The

RGMII standard achieves this by reducing parallel data bus width and through double data rate (DDR). RGMII

specifies that the clock and data will be generated simultaneously by the transmitting source which requires a skew

be introduced between clock and data. The skew can be achieved by PCB trace routing or by an internal delay in

the transmitting or receiving node. The skew imposed on the clock and data shall be chosen carefully to ensure

meeting the requirements of the interface.

There are tough timing budget for Gigabit Ethermac to meet the requirement. There are timing skew require-

ment as low as 500 ps. Here are the timing requirements at a glance:

Figure 12: Gigabit Ethermac IO timing requirements

 Figure 13: RGMII TX Timing Diagram Figure 14: GMII RX Timing Diagram

With above so strict timing requirements GEthermac become really critical in terms of meeting the IO timing

requirement and checking the interface for correct timing. To quickly verify and ensure that STA assumption are

correct and meeting the requirement as per the standard specification we used the Portable Stimulus to generate

System Verilog assertions using Perspec.

Figure 15: Gigabit Ethermac Results

From above snapshot it can be seen that full frame transmission is achieved in dynamic simulation and contin-

uous checking of “clock Deviation” and “setup/Hold” are checked at I/O interface.

SDMMC (SD/MMC Card Controller): The purpose of the SDMMC module is to enable communication to

external managed NAND Flashes using the SD or eMMC interface.

SDMMC supports following modes:

a. Communication to eMMC memories

1. Communication using 1-, 4- or 8-data lines

2. Legacy MMC card- and High-speed SDR mode supported

b. Communication to SD-cards

1. Communication using 1- or 4-data lines.

2. Default- and High Speed Mode supported.

Figure 16: SDMMC controller Pin Connections.

Figure 17: SDMMC IO timing diagram.

Figure 18: SDMMC IO timing parameters.

Figure 19: Assertions Generated for SDMMC:

VIII. Summary:

As described in [1] the use of SVA to verify IO timings is very useful. However manually creating all the re-

quired assertions could be very challenging. Deploying the power of portable stimulus using Cadence’s Perspectm

tool helps to overcome these challenges with minimal effort in modelling and scripting.

A successful regression with these assertions running in full timing gate level simulation gives a very high con-

fidence for the IO timing sign off.

References:

[1] Using System Verilog Assertions in Gate-Level Verification Environments, Mark Litterick, Verilab, Mu-

nich, Germany. (mark.litterick@verilab.com) : http://www.verilab.com/files/sva_gate_paper_dvcon2006.pdf

[2] Datasheet for 32bit Infineon Microcontroller : https://www.infineon.com/dgdl/Infineon-TC27xDC_DS_v10-DS-

v01_00-EN.pdf?fileId=5546d46259d9a4bf015a846b292f74ce

[3] Perspec System Verifier – Usecase driven SoCVerification: https://www.cadence.com/content/dam/cadence-

www/global/en_US/documents/tools/system-design-verification/perspec-system-verifier-ds.pdf

http://www.verilab.com/files/sva_gate_paper_dvcon2006.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/perspec-system-verifier-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/perspec-system-verifier-ds.pdf

