

Highly Configurable UVM Environment for Parameterized
IP Verification

Liu HongLiang Whiting Karl
AMD Inc. AMD Inc.
Andy.liu@amd.com Karl.whiting@amd.com

ABSTRACT

A parameterized IP is configurable, which means the IP design can has different design
parameters in different SoC, the design parameters can be port protocol, port number, port name
and internal logic. Various IP design parameters significant affect verification environment
infrastructure including test bench connections, drivers, monitors, stimulus sequences and
functional coverage.

This paper presents a highly configurable advanced microcontroller bus architecture (AMBA)
fabric IP verification environment with universal verification methodology (UVM), Synopsys
AMBA VIP, and Ruby script. The verification environment can update itself automatically
according to AMBA design parameters; it includes IP_PREPROCESS, IP_TEST_BENCH and
IP_MODULE_UVC.

This paper also introduce how to do vertical reuse and horizontal reuse of test bench bind
connection , verification IP(VIP) , sequence reuse, UVM configuration, scoreboard reuse, and
coverage.

Our project results indicate the approach can reduce demand for additional resources by 30%
when parameterized IP changes its design parameters and integrate to different SoC.

Keywords: Configurable, Horizontal reuse, Parameterized IP, Vertical reuse, universal
verification methodology(UVM).

1. Introduction

Parameterized IP design is an accelerating industry trend. Likewise, using one IP design suit
different SoC projects with different parameters is an accelerating trend. These trends improve
the efficiency of RTL development; however, they also lead new requirements for verification.

Janick Bergeron wrote “in the era of multi-million gate ASICs and FPGAs, reusable IP, and
system-on-a-chip (SoC) designs, verification consumes about 70% of the design effort.”[1].
Verification usually rests squarely in the critical path of project schedule, it is essential to
understand how to let one verification environment suit different IP parameters automatically,
and require the least amount of effort when IP changes design parameters.

To reduce the verification effort, the verification environment must be highly configurable and
easily reusable as well. This paper describes how to develop configurable and reusable

2

verification test bench components, and how to let them be configured by design parameters
automatically. The approach is called a self-adapting IP verification environment in this paper.

2. Challenge to Verify Parameterized IP

Sharing parameters is a challenge when the design needs to be tested in multiple parameterized
configurations[2]. Manually updating verification environment to use new design parameters is
a complex work. It includes modifying test bench connections; increasing or decreasing the
number of drivers, monitors, and scoreboards; updating configuration objects; rewriting stimulus
sequences; and, adjusting functional coverage and assertions, all of these consume significant
verification bandwidth.

A commonly used method is using macros (`ifdef) to distinguish different design parameters.
Typically, one project would own a group of macros, test bench debug and maintain become
complicated when the number of projects grows.

The next section introduces a self-adapting IP verification environment that deals with this
challenge.

3. Self-adapting Parameterized IP Verification Environment Architecture
In this paper, the parameterized IP design is an advanced microcontroller bus architecture
(AMBA) fabric; it connects a group of AXI, AHB, APB masters and slaves. The port width,
port protocol, port number, internal register base address, and counter initial value can be
different according to design parameters.

As shown in Figure 1, the self-adapting IP verification environment includes three parts-
IP_PREPROCESS, IP_TEST_BENCH and IP_MODULE_UVC.

configure object

feature class

3

Figure 1 - self-adapting IP verification environment

3.1 IP_PREPROCESS

The IP preprocess mechanism requires putting all IP design parameters in one group,
after the group is pre-processed, a parameter file is generated for design usage, and a
global ruby array, @@FEATURES is generated for verification usage. This paper focuses on
the verification side:
@@FEATURES = YAML::load('---
ip_component.axi_slaves: N
ip_component.axi_slv0_port: AXI0
ip_component.axi_slv0_addr_width: 32
ip_component.axi_slave_timeout: M
ip_component.axi_slv0_outstanding_wr:8
...
')

The global Ruby array @@FEATURES stores all IP design parameters. Whenever IP
parameters change, the global Ruby array is updated automatically before VCS simulation
runs.

3.2 IP_TEST_BENCH
IP test bench comprises an IP module UVM Component (UVC), a feature Ruby program, a
module bind Ruby program and an assertion Ruby program. The three Ruby programs
execute before VCS simulation, and capture the IP design’s parameters automatically.
a) The IP module UVC’s main function is to model behaviour by generating constrained

random traffic, monitoring DUT responses, guaranteeing DUT’s function works
correctly, checking the validity of the protocol activity, and collecting coverage.
Chapter five elaborates it more.

b) The feature Ruby program traverses the global Ruby array @@FEATURES. It converts

all IP design parameters to properties of a System Verilog feature class -
ip_component_features is instantiated as ip_features in this paper,
whose properties store all IP design’s parameters as following, the UVC is configured
by this ip_features.
class ip_component_features extends uvm_object;
function new();
 axi_slaves = N;
 axi_slv0_port = "AXI0";

axi_slv0_addr_width = 32;
axi_slave_timeout = M;

 ...
endfunction : new
endclass

c) The module bind Ruby program connects the DUT module and test bench.

4

Below code segment describes that the number of Synopsys SVT AXI slave interface
instance is controlled by IP design parameter “axi_slaves”, the connection of AXI
slave interface signal wdata and awaddr is controlled by IP design parameters:
bind `IP_COMPONENT_MODNAME svt_axi_slv_if
svt_axi_slave_if<%=i%> (
.awaddr(<%=features("axi_slv#{i}_port")%>_awaddr),

);

This paper uses uvm_resouce_db to set bind interface instance in a top module:
uvm_pkg::uvm_resource_db#(virtual svt_axi_slave_if)::set
("uvm_interface_registry",top.svt_axi_slv_if0, top.
svt_axi_slv_if0)

Then the UVM test bench utilizes virtual interfaces at dynamic driver, monitor class to
access static interfaces [3], it retrieves the bind interface instance handle by reading
uvm_resouce_db:

Figure 2 – connect RTL and UVM by interface bind

uvm_pkg::uvm_resource_db#(virtual
svt_axi_slave_if)::read_by_name ("uvm_interface_registry",
top.svt_axi_slv_if0, virtual_axi_if_variable).

This bind interface can be directly reused to chip level, because IP design module name
stays the same in IP standalone environment and SoC full chip environment.

d) The assertion ruby program passes the IP design parameters to one type assertions

related to IP design block function. These assertions are created according to IP design
specification, and the assertion property uses local variables in its timing expressions,
so it is self-adaptive.

These assertions are placed in an interface, then are bound to DUT module. For DUT
module could be reused to SoC level and different projects, thus they accommodate in
both vertical reuse and horizontal reuse:
bind `IP_COMPONENT_MODNAME ip_checker ip_checker(
 .axi_timeout_in(<%=features("axi_slave_timeout")%>),

);

5

4. Self-adapting Parameterized IP Module UVC Structure
IP_MODULE_UVC is extended from uvm_env, which contains AMBA SVT VIPs, predictors,
scoreboards, module monitor, IP module UVC configuration object, basic sequence and global
virtual sequencer. Figure 2 illustrates IP_MODULE_UVC.

IP_MODULE_UVC

module_monitor
(coverage collector) svt_ahb_uvc[0]

(svt_ahb_master_agent)

predictor

scoreboard

ahb_master_if[0]

Parameterized IP
DUT

global virtual
sequencer

module_uvc_cfg

svt_apb_uvc[0..N]
(svt_apb_slave_agent)

svt_axi_uvc[0..K]
(svt_axi_slave_agent)

apb_slave_if[0..N] axi_slave_if[0..K]

ip_features

basic sequence

cfg

cfg

cfg

cfg

cfg

Figure 3 - IP_MODULE_UVC structure

The System Verilog feature class-ip_component_features generated at chapter 4.2 is
instantiated in IP module UVC configuration object with name ip_features. Each
component of the IP_MODULE_UVC can be configured and controlled by IP design parameters.

4.1 AMBA SVT VIPs
Synopsys AMBA SVT VIP is a UVC which contains master and slave agents, drivers,
sequencers, monitors, configuration objects, protocol checkers, functional covergroups,
constrained random sequences and transaction packets.
a) Instantiate AXI, AHB and APB SVT UVC

As depicted in Figure 2, in order to let the agents numbers automatically get IP design
parameters, this paper creates AXI, AHB and APB SVT UVC dynamical array in
IP_MODULE_UVC, for instance AXI SVT UVC:
svt_axi_uvc = new[cfg.ip_features.axi_slaves];

b) Configure AXI, AHB and APB SVT UVC
The AMBA SVT UVC configuration classes[4] are instantiated in module UVC
configuration object and assigned at the same place to capture IP design parameters. In UVM
configuration mechanism[5], AXI SVT UVC, AHB SVT UVC and APB SVT UVC are
configured by IP design parameters during the UVM build phase.
for (int i=0; i<ip_features.axi_slaves; i++)
axi_env_cfg[i].addr_width = ip_features.axi_slv_addr_width[i];

4.2 Self-adapting predictor and scoreboard.
 The predictor takes in the real transaction packet from AMBA UVC TLM ports, puts out
 predicted transaction to scoreboard through TLM ports. The scoreboards check transaction

6

 correctness.

 As Figure 3 depicts, each slave has a scoreboard, both the predictor TLM port
 number and the scoreboard number are self-adapting to the IP design parameters -
 ip_features, they are all dynamic array data structure. When device number reduces,
 scoreboard number and TLM port number reduce automatically; when the device number
 increases, the scoreboard number and TLM port number increase automatically.

Figure 4 – predictor and scoreboard structure

4.3 Self-adapting basic sequence

The basic sequence provides stimulus. This paper’s proposed solution uses IP design
parameters to control sequence creation and start.

For instance, when IP design changes the base address of an AXI slave device, the AXI
address stimulus is updated automatically.

 for(k=0;k<cfg.ip_features.axi_slaves;k++) begin
 `uvm_rand_send_with (read_tran,
 { read_tran.xact_type == svt_axi_transaction::READ;
 read_tran.addr == cfg.ip_features.axi_slv_addr[k];}

4.4 Self-adapting functional coverage

Synopsys AMBA SVT VIP provides internal AXI, AHB and APB functional coverage; user
just need enable them in the VIP configuration class.
Synopsys AMBA SVT VIP also provides coverage callback for IP design self coverage. In
order to use IP design parameters to control functional coverage, this paper extends the
Synopsys coverage callback class, instantiate ip_component_features in Synopsys
coverage callback class, and uses IP features to configure the cover point, so the cover point
is self-adapting:

7

 wr_max = ip_features.axi_slv0_outstanding_wr;
 covergroup cg_outstanding @(cov_outstanding_event);
 cp_wr_num : coverpoint num_write_outstanding_xact
 { bins nums[] = {[0:wr_max]};}
 endgroup
 Be careful to use ip_features in functional coverage, since functional coverage
 should always be from the design specification, but not from IP design parameters code
directly.

5. Reuse Self-adapting Parameterized IP Verification Environment
5.1 Vertical reuse

Vertical reuse means reuse from IP level to SoC level.
a) AMBA SVT VIP reuse.

AMBA SVT VIP consists of driver agent, monitor and protocol checker; at IP level, all
the three works in active mode. When AMBA SVT VIP is reused to SoC level, driver
agent is configured to work in passive mode, it doesn’t generate master request or slave
response stimulus to drive RTL signals anymore; monitor and protocol checker works in
active mode.

b) UVM sequence reuse.
Regarding sequence, the normal sequence is hard to reuse, for it is adhere to interface
protocol; Register model sequence can be directly reuse from IP level to SoC level, the
key point is that implement register adapters for different protocols.

c) Connection reuse.
The Self-adapting parameterized IP verification environment deal with connection in
three aspects:
First, how to connect the static RTL port signal to the dynamic AMBA VIP?
We instantiate real AMBA interface in static RTL world, declare virtual AMBA
interface in AMBA VIP, and use global uvm_resource_db to connect the real AMBA
interface to virtual AMBA interface like below.

Second, how to directly reuse the connection from IP level to SoC level?
We bind the real interface instance to RTL module, when IP RTL is reused to SoC level,
module usually remains the same at IP and SoC level, so the connection bind can be
directly reused from IP level to SoC level; Furthermore, bind method separate
verification code from RTL code, we get clean RTL code with any EDA tool check.

Third, how to let the connection self-adapting to port signal changes?
As section 3 description, the port signals can be changed when design parameters
changes.

8

5.2 Horizontal reuse
 Horizontal reuse means reuse from one project to another project.

The whole IP Module UVC can be directly reused to different projects since it is self-
adapting to IP design parameters.

Figure 5 – IP Module UVC horizontal reuse

Moreover, in a new project, user can extend the AMBA SVT VIP build-in packet, modify
some fields according to new project requirement, and employ UVM factory API
set_type_override_by_type() or set_inst_override_by_type () to replace the old packet during
simulation time. It is a convenient method for data packet horizontal reuse.

6. Results
This paper describes a highly configurable UVM environment with AMBA VIP. In this
approach, the device number, memory range, address, data bus width and port names are all
IP design parameters, which can be changed in different projects. The whole UVM
verification environment is self-adapting to those changes.

Thus, when the IP design parameters change, it requires only minimal effort to update the
verification environment. Sequences and drivers issue proper stimulus automatically. Module
UVC creates correct components according to the new parameters directive automatically.
Predictor accommodates its functions to the new parameters. Test bench connections
automatically add or remove ports. Functional coverage and assertions also are self-adapting
to new IP design parameters.

The whole UVM verification environment supports vertical reuse and horizontal reuse well.

7. Conclusions
The approach improves parameterized IP verification efficiency, and improves flexibility in
UVM component creation, UVM configuration, stimulus sequence constrains, scoreboard,
predictors, assertions, cover groups and test bench connections. The project practice shows
this approach reduces additional resource demand by 30% when the IP design parameters
change.

9

8. References
[1] J. Bergeron. "Writing Testbenches using System Verilog."24-25.

[2] B. Ramirez, M. Horn."Parameters and OVM — Can’t They Just Get Along?"2,DvCon2011

[3] W. Yun, S. Zhang." Deploying Parameterized Interface with UVM"1,DvCon2013

[4] Synopsys. "Synopsys Discovery Verification IP for AXI UVM User Manual."pp.29-30.

[5] Accellera. "Universal Verification Methodology (UVM) 1.1 User’s Guide." pp.72-73.

