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Introduction
• Most virtual prototypes only focus on digital HW/SW 

system components – AMS functionality is neglected
• However, today’s embedded systems contain AMS 

and RF components which tightly interact with the 
HW/SW system

• Advanced modeling approaches needed to include 
AMS behavior in the architecture design phase

• Application of a model-based ESL design refinement 
flow based on SystemC and SystemC AMS 
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V-model and ESL refinement flow
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SystemC AMS extensions
• SystemC AMS extensions defined in IEEE Std 1666.1
• SystemC AMS defines new models of computation for 

efficient modeling of analog and RF functionality
– Timed Data Flow to describe non-conservative signal 

processing functionality, including multi-rate systems
– Linear Signal Flow and Electrical Linear Networks to describe 

conservative continuous-time descriptions
• Proof-of-concept implementation of SystemC AMS is 

available under Apache 2.0 license
• SystemC AMS models and simulator can be integrated 

in commercial EDA tools and flows
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SystemC AMS model abstractions 
and modeling formalisms 
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Modeling in SystemC/-AMS
SystemC SystemC AMS
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Digital filters
DSP algorithms/functions

Processor instruction set model
Register interfaces

Calibration and control algorithms
Transaction-level (TLM) communication

FIFO’s
…

Signal sensing, amplification and mixing
A/D and D/A conversion

Digital filters
DSP algorithms/functions

Power supply ripple
Continuous-time filtering

Noise (white noise, 1/f noise, …)
Non-linearities

DC offsets
Saturation effects

Impedance mismatches
Small-signal (AC) characteristics

Charge/discharge effects
…

© Accellera Systems Initiative 7



ESL design refinement methodology
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Architecture-
level design 

topology 
exploration

• Modeling of passive components, thermal noise, 
1/f noise and non-idealities

• Include characterized behavior in the system-level 
model, incl. PVT variations and dependencies

Architecture 
design 

optimization 
and design 
centering

Architecture 
design for 
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• Implement the architecture in SystemC AMS 
and SystemC

• Design refinement using transfer functions, 
switches, accurate regulation and control loops

• Monte Carlo (MC) simulations using statistical 
library

• Apply extensive failure injection and analysis
• If MC or failure analysis fails, re-optimize 

system architecture



Application example: 
Magneto Resistive (MR) Sensor
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Programmable Gain Amplifier (PGA)
in SystemC AMS

class pga: public sca_tdf::sca_module
{
public:
sca_tdf::sca_in<double>       in;
sca_tdf::sca_out<double>      out;
sca_tdf::sca_de::sca_in<bool> gain_select;

pga( sc_core::sc_module_name nm, double f3dB1_, 
double dcgain1_, double f3dB2_, double dcgain2_ )

: in("in"), out("out"), gain_select("gain_select"),
f3dB1(f3dB1_), dcgain1(dcgain1_), f3dB2(f3dB2_),
dcgain2(dcgain2_) {}

void initialize() // initialize numerator and denominator
{

num1(0) = dcgain1;  den1(0) = 1.0; 
den1(1) = 1.0 / ( 2.0 * M_PI * f3dB1 );
num2(0) = dcgain2;  den2(0) = 1.0; 
den2(1) = 1.0 / ( 2.0 * M_PI * f3dB2 );

}

void set_attributes()
{

request_next_activation( gain_select.default_event() );
does_attribute_changes();
accept_attribute_changes();

}
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void processing() // time-domain implementation
{
double pga_out;
if( gain_select.read() )
pga_out = ltf_nd1( num1, den1, state, in.read(), 1.0 );

else
pga_out = ltf_nd2( num2, den2, state, in.read(), 1.0 );

out.write(pga_out);
}

void change_attributes() 
{

request_next_activation( gain_select.default_event() );
}

private:
sca_tdf::sca_ltf_nd ltf_nd1, ltf_nd2;               
sca_util::sca_vector<double> num1, num2, den1, den2; 
sca_util::sca_vector<double> state;
double f3dB1, f3dB2;
double dcgain1, dcgain2;                        

};
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Programmable Gain Amplifier (PGA)
in SystemC AMS – incl noise

class pga_noise: public sca_tdf::sca_module
{
public:
sca_tdf::sca_in<double>       in;
sca_tdf::sca_out<double>      out;
sca_tdf::sca_de::sca_in<bool> gain_select;

pga_noise( sc_core::sc_module_name nm, double f3dB1_, 
double dcgain1_, double f3dB2_, double dcgain2_ )

: in("in"), out("out"), gain_select("gain_select"),
f3dB1(f3dB1_), dcgain1(dcgain1_), f3dB2(f3dB2_),
dcgain2(dcgain2_) {}

void initialize() // initialize numerator and denominator
{

num1(0) = dcgain1;  den1(0) = 1.0; 
den1(1) = 1.0 / ( 2.0 * M_PI * f3dB1 );
num2(0) = dcgain2;  den2(0) = 1.0; 
den2(1) = 1.0 / ( 2.0 * M_PI * f3dB2 );
Rth = 1e-6; Temp = 290.0; k = 1.38064852e-23;                  
fs = 8e6; mu = std::sqrt(4*k*Temp*Rth*fs/2.0); 

}

void set_attributes()
{

request_next_activation( gain_select.default_event() );
does_attribute_changes();
accept_attribute_changes();

}
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void processing() // time-domain implementation
{
double pga_out;
if( gain_select.read() )
pga_out = ltf_nd1( num1, den1, state, in.read() + 

mu*r.get_value(), , 1.0 );
else
pga_out = ltf_nd2( num2, den2, state, in.read() + 

mu*r.get_value(), , 1.0 );
out.write(pga_out);

}

void change_attributes() 
{

request_next_activation( gain_select.default_event() );
}

private:
sca_tdf::sca_ltf_nd ltf_nd1, ltf_nd2;               
sca_util::sca_vector<double> num1, num2, den1, den2; 
sca_util::sca_vector<double> state;
double f3dB1, f3dB2;
double dcgain1, dcgain2;                        

};

Noise
(4kTBR)

// file: gaussian_rnd.h
// Helper class to calculate a 
// Gaussian random number using
// the GNU Scientific Library

#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

template < typename P > 
class gaussian_rnd
{
public:
gaussian_rnd(...);
P get_value();

private:
const gsl_rng_type* T;
gsl_rng*            r;

};



Typical temperature error of the 
MR Sensor
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Mixed-signal transient simulation
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Typical simulation speed 
for each design refinement step

Design refinement step
Simulation speed

Simulation 
time (sec)

Wall clock 
time (sec)

A. Architecture-level design topology exploration 1 ~60

B. Architecture design optimization and design
centering 1 ~500

C. Architecture design for reliability and robustness
(using Monte Carlo) 1ms ~5

(per MC run)
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Conclusions
• An mixed-signal ESL design refinement methodology has 

been developed using SystemC and SystemC AMS
• SystemC AMS offers unique capabilities to accurately 

describe analog/mixed-signal behavior, while keeping a 
high simulation speed

• The ESL design refinement flow has been successfully 
applied in the concept design phase of a Magneto 
Resistive (MR) Sensor

• The use of libraries such as Boost and the GNU Scientific 
Library (GSL) facilitated analog performance and Monte-
Carlo analysis of the mixed-signal sensor application
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Questions
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