
High-Performance Mixed-Signal ESL Design
of a Magneto Resistive Sensor Application

Martin Barnasconi, NXP Semiconductors
Sumit Adhikari, NXP Semiconductors

© Accellera Systems Initiative 1

Outline
• Introduction
• SystemC AMS extensions
• ESL design refinement methodology for mixed-signal

systems
• Application example: Magneto Resistive (MR) Sensor
• SystemC AMS model of a programmable gain

amplifier
• Simulation results
• Conclusions

© Accellera Systems Initiative 2

Introduction
• Most virtual prototypes only focus on digital HW/SW

system components – AMS functionality is neglected
• However, today’s embedded systems contain AMS

and RF components which tightly interact with the
HW/SW system

• Advanced modeling approaches needed to include
AMS behavior in the architecture design phase

• Application of a model-based ESL design refinement
flow based on SystemC and SystemC AMS

© Accellera Systems Initiative 3

V-model and ESL refinement flow

© Accellera Systems Initiative 4

C++ / SystemC /
SystemC AMS

Algorithm/functional

Architecture/system IC/system integration
and test

Product integration
and test

Product spec
Product
implementation

Product
V&V

System
V&V

IP
V&V

Block/sub-system (IP) IP implementation
and test

SystemC AMS extensions
• SystemC AMS extensions defined in IEEE Std 1666.1
• SystemC AMS defines new models of computation for

efficient modeling of analog and RF functionality
– Timed Data Flow to describe non-conservative signal

processing functionality, including multi-rate systems
– Linear Signal Flow and Electrical Linear Networks to describe

conservative continuous-time descriptions
• Proof-of-concept implementation of SystemC AMS is

available under Apache 2.0 license
• SystemC AMS models and simulator can be integrated

in commercial EDA tools and flows

© Accellera Systems Initiative 5

SystemC AMS model abstractions
and modeling formalisms

© Accellera Systems Initiative 6

Timed Data Flow (TDF)

Modeling formalism

Use cases

Executable
specification

Architecture
exploration

Integration
validation

Virtual
prototyping

Discrete-time
static non-linear

Non-conservative behavior

Model abstractions

Continuous-time
dynamic linear

Linear Signal Flow (LSF) Electrical Linear
Networks (ELN)

Conservative behavior

Source: Accellera Systems Initiative

Modeling in SystemC/-AMS
SystemC SystemC AMS

State machines
Digital protocols (e.g. I2C, SPI, …)

Digital filters
DSP algorithms/functions

Processor instruction set model
Register interfaces

Calibration and control algorithms
Transaction-level (TLM) communication

FIFO’s
…

Signal sensing, amplification and mixing
A/D and D/A conversion

Digital filters
DSP algorithms/functions

Power supply ripple
Continuous-time filtering

Noise (white noise, 1/f noise, …)
Non-linearities

DC offsets
Saturation effects

Impedance mismatches
Small-signal (AC) characteristics

Charge/discharge effects
…

© Accellera Systems Initiative 7

ESL design refinement methodology

© Accellera Systems Initiative 8

Architecture-
level design

topology
exploration

• Modeling of passive components, thermal noise,
1/f noise and non-idealities

• Include characterized behavior in the system-level
model, incl. PVT variations and dependencies

Architecture
design

optimization
and design
centering

Architecture
design for

reliability and
robustness

• Implement the architecture in SystemC AMS
and SystemC

• Design refinement using transfer functions,
switches, accurate regulation and control loops

• Monte Carlo (MC) simulations using statistical
library

• Apply extensive failure injection and analysis
• If MC or failure analysis fails, re-optimize

system architecture

Application example:
Magneto Resistive (MR) Sensor

© Accellera Systems Initiative 9

SystemC AMS

SystemC

Programmable Gain Amplifier (PGA)
in SystemC AMS

class pga: public sca_tdf::sca_module
{
public:
sca_tdf::sca_in<double> in;
sca_tdf::sca_out<double> out;
sca_tdf::sca_de::sca_in<bool> gain_select;

pga(sc_core::sc_module_name nm, double f3dB1_,
double dcgain1_, double f3dB2_, double dcgain2_)

: in("in"), out("out"), gain_select("gain_select"),
f3dB1(f3dB1_), dcgain1(dcgain1_), f3dB2(f3dB2_),
dcgain2(dcgain2_) {}

void initialize() // initialize numerator and denominator
{

num1(0) = dcgain1; den1(0) = 1.0;
den1(1) = 1.0 / (2.0 * M_PI * f3dB1);
num2(0) = dcgain2; den2(0) = 1.0;
den2(1) = 1.0 / (2.0 * M_PI * f3dB2);

}

void set_attributes()
{

request_next_activation(gain_select.default_event());
does_attribute_changes();
accept_attribute_changes();

}

© Accellera Systems Initiative 10

void processing() // time-domain implementation
{
double pga_out;
if(gain_select.read())
pga_out = ltf_nd1(num1, den1, state, in.read(), 1.0);

else
pga_out = ltf_nd2(num2, den2, state, in.read(), 1.0);

out.write(pga_out);
}

void change_attributes()
{

request_next_activation(gain_select.default_event());
}

private:
sca_tdf::sca_ltf_nd ltf_nd1, ltf_nd2;
sca_util::sca_vector<double> num1, num2, den1, den2;
sca_util::sca_vector<double> state;
double f3dB1, f3dB2;
double dcgain1, dcgain2;

};

pgain out

gain_select

Continuous-
time filter

Dynamic time
step when gain
input changes

Enable dynamic
time steps

Programmable Gain Amplifier (PGA)
in SystemC AMS – incl noise

class pga_noise: public sca_tdf::sca_module
{
public:
sca_tdf::sca_in<double> in;
sca_tdf::sca_out<double> out;
sca_tdf::sca_de::sca_in<bool> gain_select;

pga_noise(sc_core::sc_module_name nm, double f3dB1_,
double dcgain1_, double f3dB2_, double dcgain2_)

: in("in"), out("out"), gain_select("gain_select"),
f3dB1(f3dB1_), dcgain1(dcgain1_), f3dB2(f3dB2_),
dcgain2(dcgain2_) {}

void initialize() // initialize numerator and denominator
{

num1(0) = dcgain1; den1(0) = 1.0;
den1(1) = 1.0 / (2.0 * M_PI * f3dB1);
num2(0) = dcgain2; den2(0) = 1.0;
den2(1) = 1.0 / (2.0 * M_PI * f3dB2);
Rth = 1e-6; Temp = 290.0; k = 1.38064852e-23;
fs = 8e6; mu = std::sqrt(4*k*Temp*Rth*fs/2.0);

}

void set_attributes()
{

request_next_activation(gain_select.default_event());
does_attribute_changes();
accept_attribute_changes();

}

© Accellera Systems Initiative 11

void processing() // time-domain implementation
{
double pga_out;
if(gain_select.read())
pga_out = ltf_nd1(num1, den1, state, in.read() +

mu*r.get_value(), , 1.0);
else
pga_out = ltf_nd2(num2, den2, state, in.read() +

mu*r.get_value(), , 1.0);
out.write(pga_out);

}

void change_attributes()
{

request_next_activation(gain_select.default_event());
}

private:
sca_tdf::sca_ltf_nd ltf_nd1, ltf_nd2;
sca_util::sca_vector<double> num1, num2, den1, den2;
sca_util::sca_vector<double> state;
double f3dB1, f3dB2;
double dcgain1, dcgain2;

};

Noise
(4kTBR)

// file: gaussian_rnd.h
// Helper class to calculate a
// Gaussian random number using
// the GNU Scientific Library

#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

template < typename P >
class gaussian_rnd
{
public:
gaussian_rnd(...);
P get_value();

private:
const gsl_rng_type* T;
gsl_rng* r;

};

Typical temperature error of the
MR Sensor

© Accellera Systems Initiative 12

Mixed-signal transient simulation

© Accellera Systems Initiative 13

Typical simulation speed
for each design refinement step

Design refinement step
Simulation speed

Simulation
time (sec)

Wall clock
time (sec)

A. Architecture-level design topology exploration 1 ~60

B. Architecture design optimization and design
centering 1 ~500

C. Architecture design for reliability and robustness
(using Monte Carlo) 1ms ~5

(per MC run)

© Accellera Systems Initiative 14

Conclusions
• An mixed-signal ESL design refinement methodology has

been developed using SystemC and SystemC AMS
• SystemC AMS offers unique capabilities to accurately

describe analog/mixed-signal behavior, while keeping a
high simulation speed

• The ESL design refinement flow has been successfully
applied in the concept design phase of a Magneto
Resistive (MR) Sensor

• The use of libraries such as Boost and the GNU Scientific
Library (GSL) facilitated analog performance and Monte-
Carlo analysis of the mixed-signal sensor application

© Accellera Systems Initiative 15

Acknowledgment
• Karsten Einwich – COSEDA Technologies GmbH
• Vincent Motel – Cadence Design Systems

© Accellera Systems Initiative 16

Questions

© Accellera Systems Initiative 17

	High-Performance Mixed-Signal ESL Design �of a Magneto Resistive Sensor Application
	Outline
	Introduction
	V-model and ESL refinement flow
	SystemC AMS extensions
	SystemC AMS model abstractions �and modeling formalisms
	 Modeling in SystemC/-AMS
	ESL design refinement methodology
	Application example: �Magneto Resistive (MR) Sensor
	Programmable Gain Amplifier (PGA)�in SystemC AMS
	Programmable Gain Amplifier (PGA)�in SystemC AMS – incl noise
	Typical temperature error of the MR Sensor
	Mixed-signal transient simulation
	Typical simulation speed �for each design refinement step
	Conclusions
	Acknowledgment
	Questions

