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Introduction

* Most virtual prototypes only focus on digital HW/SW
system components — AMS functionality is neglected

 However, today’s embedded systems contain AMS
and RF components which tightly interact with the
HW/SW system

* Advanced modeling approaches needed to include
AMS behavior in the architecture design phase

* Application of a model-based ESL design refinement
flow based on SystemC and SystemC AMS
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V-model and ESL refinement flow
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SystemC AMS extensions

e SystemC AMS extensions defined in IEEE Std 1666.1

e SystemC AMS defines new models of computation for
efficient modeling of analog and RF functionality

— Timed Data Flow to describe non-conservative signal
processing functionality, including multi-rate systems

— Linear Signal Flow and Electrical Linear Networks to describe
conservative continuous-time descriptions

* Proof-of-concept implementation of SystemC AMS is
available under Apache 2.0 license

e SystemC AMS models and simulator can be integrated

in commercial EDA tools and flows
2016
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SystemC AMS model abstractions
and modeling formalisms

Use cases

Virtual Architecture Integration
prototyping exploration validation

Executable

specification

Model abstractions

Discrete-time Continuous-time
static non-linear dynamic linear

Non-conservative behavior Conservative behavior

$

Modeling formalism

Electrical Linear

Timed Data Flow (TDF) Linear Signal Flow (LSF) Networks (ELN)
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Modeling in SystemC/-AMS

State machines Signal sensing, amplification and mixing
Digital protocols (e.g. 12C, SPI, ...) A/D and D/A conversion
Digital filters Digital filters
DSP algorithms/functions DSP algorithms/functions
Processor instruction set model Power supply ripple

Register interfaces Continuous-time filtering

Calibration and control algorithms Noise (white noise, 1/f noise, ...)

Transaction-level (TLM) communication Non-linearities
FIFQO’s DC offsets

Saturation effects
Impedance mismatches
Small-signal (AC) characteristics
Charge/discharge effects
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ESL design refinement methodology

e Implement the architecture in SystemC AMS
and SystemC

e Design refinement using transfer functions,
switches, accurate regulation and control loops

Architecture-
level design
topology

exploration

0

Architecture
design

e Modeling of passive components, thermal noise,
1/f noise and non-idealities

optimization . ..
P ﬁ e Include characterized behavior in the system-level

and design _ A )
centerin model, incl. PVT variations and dependencies

e Monte Carlo (MC) simulations using statistical
library

e Apply extensive failure injection and analysis

e |[f MC or failure analysis fails, re-optimize
system architecture

Architecture

/} design for
A reliability and

robustness
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Application example:
Magneto Resistive (MR) Sensor
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Lineratity error temperature range -40 °C to +160 °C -1 1 deg
Angular error temperature range -40 °C to +160 °C -1.2 1.2 deg
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Programmable Gain Amplifier (PGA)
In SystemC AMS

class pga: public sca_tdf::sca_module void processing() // time-domain implementation
{ {
public: double pga_out;

sca_tdf::sca_in<double> in; if( gain_select.read() )

sca_tdf::sca_out<double> out; pga_out = 1tf_nd1( numl, denl, state, in.read(), 1.0 );

sca_tdf::sca_de::sca_in<bool> gain_select; else

pga_out = 1tf_nd2( num2, den2, state, in.read(), 1.0 );
pga( sc_core::sc_module_name nm, double f3dB1_, out.write(pga_out);
double dcgainl_, double f3dB2_, double dcgain2_ ) } Continuous-

¢ in("in"), out("out"), gain_select("gain_select"), time filter
£3dB1(f3dB1_), dcgainl(dcgainl_), f3dB2(f3dB2_), void change_attributes()
dcgain2(dcgain2_) {} {

request_next_activation( gain_select.default_event() );
void initialize() // initialize numerator and denominator } \\\\\\

{ Dynamic time
numl(@) = dcgainl; den1(@) = 1.0; private: step when gain
den1(1) = 1.0 / ( 2.0 * M_PI * f3dB1 ); sca_tdf::sca_ltf _nd 1tf ndl, 1tf nd2; input changes
num2(@) = dcgain2; den2(0) = 1.0; sca_util::sca_vector<double> numl, num2, denl, den2;
den2(1) = 1.0 / ( 2.0 * M_PI * f3dB2 ); sca_util::sca_vector<double> state;

} double f3dB1, f3dB2;

double dcgainl, dcgain2;
void set_attributes() };

{

request_next_activation( gain_select.default_event() );
does_attribute_changes();

accept_attribute_changes(); Enable dynamic
¥ time steps in out
ga|n Select DESIGEMN AMD VER%QJ'éDN'-
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Programmable Gain Amplifier (PGA)
in SystemC AMS — incl noise

class pga_noise: public sca_tdf::sca_module void processing() // time-domain implementation
{ {
public: double pga_out;
sca_tdf::sca_in<double> in; if( gain_select.read() )
sca_tdf::sca_out<double> out; pga_out = 1tf_nd1( numl, denl, state, in.read() +
sca_tdf::sca_de::sca_in<bool> gain_select; mu*r.get_value(), , 1.0 );
else
pga_noise( sc_core::sc_module_name nm, double f3dB1_, pga_out = 1tf_nd2( num2, den2, state, in.read() +
double dcgainl_, double f3dB2_, double dcgain2_ ) mu*r.get_value(), , 1.0 );
: in("in"), out("out"), gain_select("gain_select"), out.write(pga_out);
£3dB1(f3dB1_), dcgainl(dcgainl_), f3dB2(f3dB2_), }
dcgain2(dcgain2_) {}
void ch // file: gaussian_rnd.h
void initialize() // initialize numerator and denominator { // Helper class to calculate a
{ reque // Gaussian random number using lt_event() );
numl(®) = dcgainl; denl(Q) = 1.0; } // the GNU Scientific Library
den1(1) = 1.0 / ( 2.8 * M_PI * f3dB1 ); )
num2(@) = dcgain2; den2(0) = 1.0; private: iiggiﬁg: zgzijgzi::2§32;t.h>
den2(1) =1.0 / ( 2.0 * M_PI * f3dB2 ); sca_tdf
Rth = le-6; Temp = 290.0; k = 1.38064852e-23; | Noise sca_uti template < typename P > L, den2;
fs = 8e6; mu = std::sqrt(4*k*Temp*Rth*fs/2.0); (4kTBR) sca_uti class gaussian_rnd
} double | { .
double publle
gaussian_rnd(...);
void set_attributes() }; P get_value();
{
request_next_activation( gain_select.default_event() ); private:
does_attribute_changes(); const gsl_rng_type* T;
accept_attribute_changes(); gsl_rng* rs
& 2016
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Typical temperature error of the
MR Sensor

Temperature Error Plot
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Mixed-sighal transient simulation
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Typical simulation speed
for each design refinement step

Simulation speed

Design refinement step Simulation Wall clock
time (sec) time (sec)

1

1

A. Architecture-level design topology exploration ~60

B. Architecture design optimization and design

. ~500
centering
C. Architecture design for reliability and robustness 1ms ~5
(using Monte Carlo) (per MC run)
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Conclusions

* An mixed-signal ESL design refinement methodology has
been developed using SystemC and SystemC AMS

e SystemC AMS offers unique capabilities to accurately
describe analog/mixed-signal behavior, while keeping a
high simulation speed

* The ESL design refinement flow has been successfully
applied in the concept design phase of a Magneto
Resistive (MR) Sensor

* The use of libraries such as Boost and the GNU Scientific
Library (GSL) facilitated analog performance and Monte-
Carlo analysis of the mixed-signal sensor application
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