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ABSTRACT  
In this paper, we will describe how a complete graphics processing 
pipeline was implemented using an HLS methodology. As with most 
real-life applications, this design consists of a complex mix of 
control logic, datapaths, interfaces, and hierarchy. We will show how 
these four essential ingredients are addressed in the context of HLS, 
and we will review the capabilities of current-generation HLS 
technology and its applicability for complex applications.  
 
In doing so, this paper will focus on the best coding style and 
suitable abstractions for the various parts of the design. We will 
dissect and compare the modeling requirements for the control and 
algorithmic portions of the system. We will conclude by providing 
guidelines for choosing when high-level models are optimally 
expressed in a cycle-accurate manner versus the more abstract, 
purely untimed modeling style, and we will show how to efficiently 
combine both kinds of models. Thus, the reader will not only see that 
HLS walks the talk, but they will walk away having learned the 
correct way to put HLS to work for them today. 
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1. INTRODUCTION  
The shift to a higher abstraction is becoming mandatory to address 
today’s ASIC and SoC design challenges. Just as design teams 
transitioned from gates to RTL in the mid-90s, new thresholds in 
design complexity are calling for the move from RTL to C++ and 
SystemC-based modeling, verification, and synthesis.  
 
Consequently, during the past couple of years, high-level synthesis 
(HLS) has become much more prevalent in design flows, widened its 
applicability, and entered the mainstream of hardware design [1][2]. 
However, designers need the know-how to put it into practice in the 
best possible way.  
 

 
 
In this paper, we will show how this is done by describing how a 
complete graphics processing pipeline was implemented using an 
HLS methodology. We will demonstrate how today’s mature HLS 
technologies handle the complex mix of control logic, datapaths, 
interfaces, and hierarchy. We will share the best coding style and 
suitable abstractions for each of these parts of the design, compare 
the modeling requirements for the various portions of the system, 
and provide guidelines for choosing abstraction levels. First, we’ll 
review the primary objectives of designing at higher levels of 
abstraction. 
 

2. GUIDING PRINCIPLES  
The various abstraction levels serve different design needs; for this 
reason they complement each other to great advantage in a “full-
chip” HLS flow. But how does one choose the proper modeling style 
and most efficient abstraction-level for specific design tasks? The 
answer to these questions is found in the reason HLS flows are being 
adopted in the first place. The goal of HLS is to increase design and 
verification productivity. This primary objective must be kept in 
mind when making modeling decisions at higher levels of 
abstraction. 
 
To help with design productivity, models must be kept as abstract as 
possible. This makes them simpler to write (less lines of code, fewer 
chances of errors), easier to debug (less details to worry about), and 
faster to simulate (less simulation overhead). 
 
To help with verification productivity, enough detail must be kept 
where it matters so design behavior can be predictable and consistent 
throughout the flow. As a result, the RTL will be guaranteed to 
match the high-level specification, greatly reducing the burden on the 
RTL verification team. 
 
The principles of simplicity and sufficient detail are dependent upon 
two essential parameters that can be abstracted when moving up to a 
higher level: timing and structure. When determining the levels of 
timing and structural information to be coded in the source, one 
should keep these two productivity principles in mind and answer 
these two basic questions:  

• Is the functionality time-dependent or not, and if so, to 
what extent? 

• Do I want to lock down hierarchy and parallelism, or do I 
want to be able to explore different solutions? 

 
In the following sections, we will show how to answer these 
questions for the various parts of a complete imaging pipeline and 
how to most efficiently write the code. 
 

  



3. AN IMAGE SIGNAL PROCESSOR  
With the emergence of smart phones and broadband wireless 
networks, cameras have quickly evolved from niche features to 
mandatory functionality for handheld devices. Tightly coupled to the 
CMOS image sensor, the image signal processor (ISP) defines the 
image quality of the handheld camera subsystem. In this very 
dynamic market, differentiation is achieved through proprietary 
algorithms for defect correction and image improvement [3]. 
 
 

 
Our reference design implements canonical ISP functions—such as 
pixel defect correction, white balancing, color filter array (CFA) 
interpolation, resizing—and various lens artifact correction 
functions—such as pincushion and barrel distortion. Our design also 
provides a standard AMBA AHB[4] interface to transfer the image 
from the ISP to the rest of the system (Fig.1). 
 
In the rest of this article, we will focus on two particular blocks: the 
image resizer and the AHB bus. These two blocks exhibit the 
different properties and requirements of algorithmic units and 
control-logic blocks. As such, they are representative and 
pedagogical examples.  
 

4. THE IMAGE RESIZER 
The resizer block takes an input image and resizes it to a new height 
and width. The algorithm performs a 4x4 bicubic interpolation; it 
estimates the color of a pixel in the resized image based on 16 pixels 
surrounding the closest corresponding pixel in the source image. 
Line buffers are used to cache the incoming image data and provide 
the appropriate 16 pixels in parallel to the bicubic kernel. (Fig.2). 
This allows the resizer to sustain a throughput of 1 pixel per clock on 
the output. The inputs and outputs of this block are in the form of 
point-to-point (P2P) pixel streams.  

 
Figure 2. Image resizer block diagram. 

 

4.1 Structure of the High-Level Model 
In RTL, a similar block would be decomposed into several sub-
blocks and many processes, corresponding to the line buffers and 
scaling function. The same structural decomposition using dedicated 
modules and processes is possible in a language like SystemC. With 
the SC_MODULE macro, SystemC provides a way to explicitly 
model hierarchy in a way that is easy to understand, looks like 
Verilog, and is familiar to hardware designers. However, the 
decomposition of the design into sub-modules becomes 
counterproductive when taken too far because, by hard-coding 
structure and parallelism in the source, the potential to explore 
different implementation alternatives is severely restricted. 
Moreover, adding superfluous processes and threads in a SystemC 
model significantly slows down simulation performance due to 
increased context switching. All of this greatly diminishes some of 
the major benefits of an HLS flow.  
 
Instead of hard-coding structure and parallelism, modern HLS tools 
allow users to create arbitrary hierarchical design boundaries from an 
abstract model. The HLS tool leverages user constraints to partition 
loops or functions into separate concurrent blocks. Because they are 
not hard-coded in the source, the boundaries for hierarchy are much 
more flexible than if expressed with SystemC modules. This 
flexibility is an advantage when optimizing for performance and area 
in order to improve QoR.  
 
Following our guiding principles, we kept our model as abstract as 
possible, avoiding any unnecessary details. The entire resizer is 
modeled as a single SC_MODULE with only one SC_THREAD 
implementing both the line buffering and the bicubic interpolation. 
 
SC_MODULE(resizer) 
{ 
  public: 
 
  sc_fifo_in<pix_t >  pix_in; 
  sc_fifo_out<pix_t > pix_out; 
  sc_in<params_t>     params; 
   
  SC_CTOR(resizer) { 
    SC_THREAD(proc); 
  } 
 
 private: 
      
  void proc () 
  { 
    lbuf_c<pix_t> lbuf(IMG_W, IMG_H); 
     
    while(1) { 
      if (lbuf.ramping_down()==false) 
        lbuf.shiftin(pix_in.read());  
      else 
        lbuf.shiftin(0);  
      if (lbuf.ramping_up()==false) { 
        pix_t pix = interpolate(lbuf); 
        pix_out.write(pix);  
      } 
    } 
  } 
}; 
 

 

Figure 1. Image signal processor block diagram. 



4.2 Interfaces of the High-Level Model 
In RTL, the P2P interfaces would be implemented with a data line 
and a pair of signals, obeying a typical request/acknowledge 
protocol. While optional, the handshake is good design practice as it 
allows building safe data transfers and latency-insensitive designs 
(LIS) [5]. 
 
In SystemC, it would also be possible to model each individual 
interface signal and their cycle-accurate behavior in the form of a 
small finite state machine (FSM). However, HLS tools support a 
more productive modeling approach. The implementation details can 
be abstracted away; yet the model remains true to the core nature of 
the protocol: in this case, providing a safe P2P data transfer where no 
data gets dropped. 
 
The SystemC sc_fifo constitutes a very convenient way of modeling 
P2P connections, easing the shift from clocks and signals to more 
abstract producers and consumers [6]. Using the sc_fifos blocking 
reads and writes, we guarantee safe data transfers by making simple 
function calls, and we can delegate the implementation of a 
corresponding RTL interface to the HLS tool. This approach 
eliminates the need to develop, debug, and maintain custom interface 
models; it is faster to simulate than equivalent cycle-accurate 
models; and it makes the overall modeling experience a lot simpler.  
 
Following our guiding principles, as detailed timing is not of essence 
in P2P connections, we prefer the more abstract, untimed modeling 
style. The interfaces of the resizer, and all the P2P connections in the 
ISP, are modeled with sc_fifos. This establishes a simple, safe, and 
deterministic design approach. 
 

4.3 Memory Architecture of the  
High-Level Model 
An important design aspect that needs to be described is the desired 
memory architecture. HLS tools provide a number of automatic 
optimizations and constraints; such as memory splitting, interleaving, 
and merging. Designers should assume that the memory access 
patterns in the hardware design will reflect those in the high-level 
model. Since memory accesses can often be performance bottlenecks 
in a design, it is essential to write the C++ array accesses in a way 
that will not limit performance in the RTL.  
 
To model the 1D and 2D sliding windows, we followed the 
recommendations detailed in chapter 7 of the High-Level Synthesis 
Blue Book [7].  
 

4.4 Behavior of the High-Level Model 
In the resize, as in most other blocks in our ISP, time is not an 
attribute of functionality. Rather, time, expressed in the form of 
throughput and latency, is an artifact of the implementation. In other 
words, the resizer could be implemented in several different ways, 
resulting in different timing scenarios, yet the result would still be 
true to its specification. 
 
In HLS, parallelism can be extracted from sequential sources through 
data flow graph (DFG) analysis and various loop transformations 
[7][8]. Similarly, time is added during scheduling [7][9].  
 
For example, the interpolation functions are implemented using a 
sum-of-products (SoP). These are easily modeled in C++ using a 
simple “for” loop. The loop can be unrolled and/or pipelined to 
generate different RTL implementations, ranging from a serial 
multiply-accumulate to a fully parallel architecture with a balanced 
adder-tree (Fig 3). Thus, there is no advantage in describing timing 

or this level of parallelism in the source itself, but it does create more 
work and more overhead: more coding, slower simulations, and 
harder debug. 
  
  //interpolator operates on line buffer data 
  void interpolate (lbuf_c<pix_t> lbuf)  
  {     
    uint2    x = lbuf.x(); 
    uint2    y = lbuf.y(); 
    accumt_t t = 0; 
    for (int m=0; m<4; m++) { 
      for (int n=0; n<4; n++) { 
        t += lbuf(m,n) *  
             coefs[x][m] * 
             coefs[y][n]; 
      } 
    } 
    return t; 
  } 

 
Figure 3. HLS extracts parallelism from sequential sources, 

targeting multiple architectures from a single abstract model. 

 

5. THE BUS INTERFACE 
The bus interface block of our ISP implements an AHB master. It 
receives the processed image in the form of a stream of pixels and 
writes it to the system memory using DMA burst transfers. 
 

5.1 Interfaces of the High-Level Model 
On one side, the bus interface receives pixels through a P2P 
connection from the lens artifact correction (LAC) block. The LAC 
has the same characteristics as the image resizer and is implemented 
the same way: in a purely untimed fashion with sc_fifo interfaces. 
The bus interface therefore receives the pixel data through an sc_fifo. 
Using this standard and abstract interface allows connecting any 
block—such as the LAC or the resizer— to the bus interface very 
easily and in a protocol-agnostic fashion. 
 

 
Figure 4. AHB bus interface. 

On the other side, the bus interface implements the AMBA AHB 
master protocol. This is a multi-point (MP) fabric connecting more 
than two blocks together (Fig.4). For such protocols, timing is 
obviously an integral part of the functionality. In this case, cycle-by-
cycle behavior is very important for verification purposes. With this 



level of fidelity, one can accurately simulate and analyze how data is 
being transferred, what level of traffic is happening at any given time 
on the bus, and how multiple requests are being arbitrated. Modeling 
these MP (complex bus) interfaces at the cycle-accurate level 
provides the ability to properly verify the system and the benefit of a 
highly predictable path to RTL using HLS. For this reason, we 
implemented the AHB interface using sc_signals. 
 
Yet, even when working with sc_signals, we can encapsulate and 
abstract the complexity of the AHB interface. We achieve this by 
creating a reusable AHB_master_if class that contains all the 
necessary signals and provides a convenience layer, allowing for the 
behavioral model to interact with the interface through simple 
method calls; such as a burst_write(). 
 
SC_MODULE(AHB_master) 
{ 
  sc_in<bool>             clk; 
  sc_in<bool>             rst; 
  AHB_master_if           bus_if; 
  sc_fifo_in<rgb_t >      pix_in; 
   
  SC_CTOR(AHB_master) { 
    SC_METHOD(proc); 
    sensitive << clk.pos(); 
  } 
 
 private: 
  int state, i; 
     
  void proc() 
  { 
    if ( rst.read() ) { 
      bus_if.reset(); 
      state = IDLE; 
      i = 0; 
    } else {  
      switch (state)  
      { 
        case IDLE: 
          if ( pix_in.num_available()>7 ) 
            state = WAIT_FOR_GRANT; 
          break; 
        case WAIT_FOR_GRANT: 
          bus_if.request(); 
          i = 0; 
          if ( bus_if.is_granted() ) { 
            bus_if.start_burst_write( 
              BASE_ADDR + i); 
            state = BURST; 
          } 
          break; 
        case BURST: 
          bus_if.request(); 
          if ( bus_if.is_ready() ) { 
            if ( i < 7 ) { 
              bus_if.burst_write( 
                BASE_ADDR + i, 
                pix_in.read()); 
            } else { 
              bus_if.finish_burst_write( 
                pix_in.read()); 
              state = IDLE; 
            } 
            i++; 
          } 

          break; 
      } 
    } 
  } 
}; 

 

5.2 Behavior of the High-Level Model 
Our bus interface effectively bridges the untimed world of sc_fifos 
with the timed, cycle-accurate world of sc_signals. The untimed 
domain synchronizes on data availability, while the time domain 
synchronizes on the edge of a given clock. For deterministic 
behavior in simulation and synthesis, our bus interface must honor 
these two synchronization schemes.  
 
In this case, the behavior is most naturally expressed using a finite-
state machine (FSM) description, where each state transition occurs 
on a clock edge, allowing accurate modeling of the AHB protocol. 
Whenever appropriate, the behavioral FSM interacts with the sc_fifo 
interface using non-blocking calls. The num_available() method 
returns an integer value corresponding to the number of elements in 
the sc_fifo and indicating when it is safe to read data from it.  
 
In our model, when at least eight pixels are present in the FIFO, a 
burst transfer is initiated knowing that the bus interface will not 
starve. The burst transfer is decomposed in the subsequent states of 
the FSM. Upon completion of the transfer, the bus interface FSM 
polls the sc_fifo interface again, checking if enough pixels are 
available for the next burst. 
 

6. SUMMARY 
To summarize, designers need to choose the appropriate level of 
information on the structural axis (explicit or implicit parallelism) 
and on the timing axis (cycle-accurate or untimed).  
 
While it is possible to model a full system in a cycle-accurate way 
with explicit hierarchical boundaries, it is also by far the less 
productive approach. This would require adding a lot of design detail 
to the model, which not only results in a greater source of errors, but 
also in slower simulations and more painful debugging sessions. 
 
The most efficient and productive path to full-chip HLS relies on a 
mixed-abstraction modeling strategy. The guiding principle is to 
keep things simple and avoid unnecessary detail in the source. Our 
recommendations are summarized as follows: 

• Model explicit hierarchy at the functional boundary, but 
keep it uncommitted underneath 

• Analyze and write array access patterns to avoid memory 
bottlenecks 

• Keep processing and point-to-point communications 
strictly untimed 

• Use cycle-accurate models for complex, multi-point 
communications; such as bus interfaces 

 
Only a few years ago, HLS tools were applied only at the block 
level. Today, mixed-language HLS flows enable full-chip synthesis; 
including high-quality data paths, control logic, processors, 
interfaces, and complex interconnects. By paying attention to the 
proper mix of abstraction levels, HLS users will improve design and 
verification productivity while delivering high-quality SoCs. 
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