
High-Level Synthesis Walks the Talk:
Synthesizing a Complete Graphics Processing Application

Thomas Bollaert
Mentor Graphics, Corp.
8005 SW Boeckman Rd.

Wilsonville, OR 97070
503-685-4752

thomas_bollaert@mentor.com

ABSTRACT
In this paper, we will describe how a complete graphics processing
pipeline was implemented using an HLS methodology. As with most
real-life applications, this design consists of a complex mix of
control logic, datapaths, interfaces, and hierarchy. We will show how
these four essential ingredients are addressed in the context of HLS,
and we will review the capabilities of current-generation HLS
technology and its applicability for complex applications.

In doing so, this paper will focus on the best coding style and
suitable abstractions for the various parts of the design. We will
dissect and compare the modeling requirements for the control and
algorithmic portions of the system. We will conclude by providing
guidelines for choosing when high-level models are optimally
expressed in a cycle-accurate manner versus the more abstract,
purely untimed modeling style, and we will show how to efficiently
combine both kinds of models. Thus, the reader will not only see that
HLS walks the talk, but they will walk away having learned the
correct way to put HLS to work for them today.

Categories and Subject Descriptors
B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]:
Design Aids –automatic synthesis, optimization, simulation,
verification

General Terms
Algorithms, Design, Experimentation, Languages, Verification

Keywords
High Level Synthesis, Electronic System Level, Design,
Verification, Mixed Language Flow, Abstraction, Methodology,
Control Logic, Datapaths, Interfaces, Hierarchy, Coding Style, ISP

1. INTRODUCTION
The shift to a higher abstraction is becoming mandatory to address
today’s ASIC and SoC design challenges. Just as design teams
transitioned from gates to RTL in the mid-90s, new thresholds in
design complexity are calling for the move from RTL to C++ and
SystemC-based modeling, verification, and synthesis.

Consequently, during the past couple of years, high-level synthesis
(HLS) has become much more prevalent in design flows, widened its
applicability, and entered the mainstream of hardware design [1][2].
However, designers need the know-how to put it into practice in the
best possible way.

In this paper, we will show how this is done by describing how a
complete graphics processing pipeline was implemented using an
HLS methodology. We will demonstrate how today’s mature HLS
technologies handle the complex mix of control logic, datapaths,
interfaces, and hierarchy. We will share the best coding style and
suitable abstractions for each of these parts of the design, compare
the modeling requirements for the various portions of the system,
and provide guidelines for choosing abstraction levels. First, we’ll
review the primary objectives of designing at higher levels of
abstraction.

2. GUIDING PRINCIPLES
The various abstraction levels serve different design needs; for this
reason they complement each other to great advantage in a “full-
chip” HLS flow. But how does one choose the proper modeling style
and most efficient abstraction-level for specific design tasks? The
answer to these questions is found in the reason HLS flows are being
adopted in the first place. The goal of HLS is to increase design and
verification productivity. This primary objective must be kept in
mind when making modeling decisions at higher levels of
abstraction.

To help with design productivity, models must be kept as abstract as
possible. This makes them simpler to write (less lines of code, fewer
chances of errors), easier to debug (less details to worry about), and
faster to simulate (less simulation overhead).

To help with verification productivity, enough detail must be kept
where it matters so design behavior can be predictable and consistent
throughout the flow. As a result, the RTL will be guaranteed to
match the high-level specification, greatly reducing the burden on the
RTL verification team.

The principles of simplicity and sufficient detail are dependent upon
two essential parameters that can be abstracted when moving up to a
higher level: timing and structure. When determining the levels of
timing and structural information to be coded in the source, one
should keep these two productivity principles in mind and answer
these two basic questions:

• Is the functionality time-dependent or not, and if so, to
what extent?

• Do I want to lock down hierarchy and parallelism, or do I
want to be able to explore different solutions?

In the following sections, we will show how to answer these
questions for the various parts of a complete imaging pipeline and
how to most efficiently write the code.

3. AN IMAGE SIGNAL PROCESSOR
With the emergence of smart phones and broadband wireless
networks, cameras have quickly evolved from niche features to
mandatory functionality for handheld devices. Tightly coupled to the
CMOS image sensor, the image signal processor (ISP) defines the
image quality of the handheld camera subsystem. In this very
dynamic market, differentiation is achieved through proprietary
algorithms for defect correction and image improvement [3].

Our reference design implements canonical ISP functions—such as
pixel defect correction, white balancing, color filter array (CFA)
interpolation, resizing—and various lens artifact correction
functions—such as pincushion and barrel distortion. Our design also
provides a standard AMBA AHB[4] interface to transfer the image
from the ISP to the rest of the system (Fig.1).

In the rest of this article, we will focus on two particular blocks: the
image resizer and the AHB bus. These two blocks exhibit the
different properties and requirements of algorithmic units and
control-logic blocks. As such, they are representative and
pedagogical examples.

4. THE IMAGE RESIZER
The resizer block takes an input image and resizes it to a new height
and width. The algorithm performs a 4x4 bicubic interpolation; it
estimates the color of a pixel in the resized image based on 16 pixels
surrounding the closest corresponding pixel in the source image.
Line buffers are used to cache the incoming image data and provide
the appropriate 16 pixels in parallel to the bicubic kernel. (Fig.2).
This allows the resizer to sustain a throughput of 1 pixel per clock on
the output. The inputs and outputs of this block are in the form of
point-to-point (P2P) pixel streams.

Figure 2. Image resizer block diagram.

4.1 Structure of the High-Level Model
In RTL, a similar block would be decomposed into several sub-
blocks and many processes, corresponding to the line buffers and
scaling function. The same structural decomposition using dedicated
modules and processes is possible in a language like SystemC. With
the SC_MODULE macro, SystemC provides a way to explicitly
model hierarchy in a way that is easy to understand, looks like
Verilog, and is familiar to hardware designers. However, the
decomposition of the design into sub-modules becomes
counterproductive when taken too far because, by hard-coding
structure and parallelism in the source, the potential to explore
different implementation alternatives is severely restricted.
Moreover, adding superfluous processes and threads in a SystemC
model significantly slows down simulation performance due to
increased context switching. All of this greatly diminishes some of
the major benefits of an HLS flow.

Instead of hard-coding structure and parallelism, modern HLS tools
allow users to create arbitrary hierarchical design boundaries from an
abstract model. The HLS tool leverages user constraints to partition
loops or functions into separate concurrent blocks. Because they are
not hard-coded in the source, the boundaries for hierarchy are much
more flexible than if expressed with SystemC modules. This
flexibility is an advantage when optimizing for performance and area
in order to improve QoR.

Following our guiding principles, we kept our model as abstract as
possible, avoiding any unnecessary details. The entire resizer is
modeled as a single SC_MODULE with only one SC_THREAD
implementing both the line buffering and the bicubic interpolation.

SC_MODULE(resizer)
{
 public:

 sc_fifo_in<pix_t > pix_in;
 sc_fifo_out<pix_t > pix_out;
 sc_in<params_t> params;

 SC_CTOR(resizer) {
 SC_THREAD(proc);
 }

 private:

 void proc ()
 {
 lbuf_c<pix_t> lbuf(IMG_W, IMG_H);

 while(1) {
 if (lbuf.ramping_down()==false)
 lbuf.shiftin(pix_in.read());
 else
 lbuf.shiftin(0);
 if (lbuf.ramping_up()==false) {
 pix_t pix = interpolate(lbuf);
 pix_out.write(pix);
 }
 }
 }
};

Figure 1. Image signal processor block diagram.

4.2 Interfaces of the High-Level Model
In RTL, the P2P interfaces would be implemented with a data line
and a pair of signals, obeying a typical request/acknowledge
protocol. While optional, the handshake is good design practice as it
allows building safe data transfers and latency-insensitive designs
(LIS) [5].

In SystemC, it would also be possible to model each individual
interface signal and their cycle-accurate behavior in the form of a
small finite state machine (FSM). However, HLS tools support a
more productive modeling approach. The implementation details can
be abstracted away; yet the model remains true to the core nature of
the protocol: in this case, providing a safe P2P data transfer where no
data gets dropped.

The SystemC sc_fifo constitutes a very convenient way of modeling
P2P connections, easing the shift from clocks and signals to more
abstract producers and consumers [6]. Using the sc_fifos blocking
reads and writes, we guarantee safe data transfers by making simple
function calls, and we can delegate the implementation of a
corresponding RTL interface to the HLS tool. This approach
eliminates the need to develop, debug, and maintain custom interface
models; it is faster to simulate than equivalent cycle-accurate
models; and it makes the overall modeling experience a lot simpler.

Following our guiding principles, as detailed timing is not of essence
in P2P connections, we prefer the more abstract, untimed modeling
style. The interfaces of the resizer, and all the P2P connections in the
ISP, are modeled with sc_fifos. This establishes a simple, safe, and
deterministic design approach.

4.3 Memory Architecture of the
High-Level Model
An important design aspect that needs to be described is the desired
memory architecture. HLS tools provide a number of automatic
optimizations and constraints; such as memory splitting, interleaving,
and merging. Designers should assume that the memory access
patterns in the hardware design will reflect those in the high-level
model. Since memory accesses can often be performance bottlenecks
in a design, it is essential to write the C++ array accesses in a way
that will not limit performance in the RTL.

To model the 1D and 2D sliding windows, we followed the
recommendations detailed in chapter 7 of the High-Level Synthesis
Blue Book [7].

4.4 Behavior of the High-Level Model
In the resize, as in most other blocks in our ISP, time is not an
attribute of functionality. Rather, time, expressed in the form of
throughput and latency, is an artifact of the implementation. In other
words, the resizer could be implemented in several different ways,
resulting in different timing scenarios, yet the result would still be
true to its specification.

In HLS, parallelism can be extracted from sequential sources through
data flow graph (DFG) analysis and various loop transformations
[7][8]. Similarly, time is added during scheduling [7][9].

For example, the interpolation functions are implemented using a
sum-of-products (SoP). These are easily modeled in C++ using a
simple “for” loop. The loop can be unrolled and/or pipelined to
generate different RTL implementations, ranging from a serial
multiply-accumulate to a fully parallel architecture with a balanced
adder-tree (Fig 3). Thus, there is no advantage in describing timing

or this level of parallelism in the source itself, but it does create more
work and more overhead: more coding, slower simulations, and
harder debug.

 //interpolator operates on line buffer data
 void interpolate (lbuf_c<pix_t> lbuf)
 {
 uint2 x = lbuf.x();
 uint2 y = lbuf.y();
 accumt_t t = 0;
 for (int m=0; m<4; m++) {
 for (int n=0; n<4; n++) {
 t += lbuf(m,n) *
 coefs[x][m] *
 coefs[y][n];
 }
 }
 return t;
 }

Figure 3. HLS extracts parallelism from sequential sources,

targeting multiple architectures from a single abstract model.

5. THE BUS INTERFACE
The bus interface block of our ISP implements an AHB master. It
receives the processed image in the form of a stream of pixels and
writes it to the system memory using DMA burst transfers.

5.1 Interfaces of the High-Level Model
On one side, the bus interface receives pixels through a P2P
connection from the lens artifact correction (LAC) block. The LAC
has the same characteristics as the image resizer and is implemented
the same way: in a purely untimed fashion with sc_fifo interfaces.
The bus interface therefore receives the pixel data through an sc_fifo.
Using this standard and abstract interface allows connecting any
block—such as the LAC or the resizer— to the bus interface very
easily and in a protocol-agnostic fashion.

Figure 4. AHB bus interface.

On the other side, the bus interface implements the AMBA AHB
master protocol. This is a multi-point (MP) fabric connecting more
than two blocks together (Fig.4). For such protocols, timing is
obviously an integral part of the functionality. In this case, cycle-by-
cycle behavior is very important for verification purposes. With this

level of fidelity, one can accurately simulate and analyze how data is
being transferred, what level of traffic is happening at any given time
on the bus, and how multiple requests are being arbitrated. Modeling
these MP (complex bus) interfaces at the cycle-accurate level
provides the ability to properly verify the system and the benefit of a
highly predictable path to RTL using HLS. For this reason, we
implemented the AHB interface using sc_signals.

Yet, even when working with sc_signals, we can encapsulate and
abstract the complexity of the AHB interface. We achieve this by
creating a reusable AHB_master_if class that contains all the
necessary signals and provides a convenience layer, allowing for the
behavioral model to interact with the interface through simple
method calls; such as a burst_write().

SC_MODULE(AHB_master)
{
 sc_in<bool> clk;
 sc_in<bool> rst;
 AHB_master_if bus_if;
 sc_fifo_in<rgb_t > pix_in;

 SC_CTOR(AHB_master) {
 SC_METHOD(proc);
 sensitive << clk.pos();
 }

 private:
 int state, i;

 void proc()
 {
 if (rst.read()) {
 bus_if.reset();
 state = IDLE;
 i = 0;
 } else {
 switch (state)
 {
 case IDLE:
 if (pix_in.num_available()>7)
 state = WAIT_FOR_GRANT;
 break;
 case WAIT_FOR_GRANT:
 bus_if.request();
 i = 0;
 if (bus_if.is_granted()) {
 bus_if.start_burst_write(
 BASE_ADDR + i);
 state = BURST;
 }
 break;
 case BURST:
 bus_if.request();
 if (bus_if.is_ready()) {
 if (i < 7) {
 bus_if.burst_write(
 BASE_ADDR + i,
 pix_in.read());
 } else {
 bus_if.finish_burst_write(
 pix_in.read());
 state = IDLE;
 }
 i++;
 }

 break;
 }
 }
 }
};

5.2 Behavior of the High-Level Model
Our bus interface effectively bridges the untimed world of sc_fifos
with the timed, cycle-accurate world of sc_signals. The untimed
domain synchronizes on data availability, while the time domain
synchronizes on the edge of a given clock. For deterministic
behavior in simulation and synthesis, our bus interface must honor
these two synchronization schemes.

In this case, the behavior is most naturally expressed using a finite-
state machine (FSM) description, where each state transition occurs
on a clock edge, allowing accurate modeling of the AHB protocol.
Whenever appropriate, the behavioral FSM interacts with the sc_fifo
interface using non-blocking calls. The num_available() method
returns an integer value corresponding to the number of elements in
the sc_fifo and indicating when it is safe to read data from it.

In our model, when at least eight pixels are present in the FIFO, a
burst transfer is initiated knowing that the bus interface will not
starve. The burst transfer is decomposed in the subsequent states of
the FSM. Upon completion of the transfer, the bus interface FSM
polls the sc_fifo interface again, checking if enough pixels are
available for the next burst.

6. SUMMARY
To summarize, designers need to choose the appropriate level of
information on the structural axis (explicit or implicit parallelism)
and on the timing axis (cycle-accurate or untimed).

While it is possible to model a full system in a cycle-accurate way
with explicit hierarchical boundaries, it is also by far the less
productive approach. This would require adding a lot of design detail
to the model, which not only results in a greater source of errors, but
also in slower simulations and more painful debugging sessions.

The most efficient and productive path to full-chip HLS relies on a
mixed-abstraction modeling strategy. The guiding principle is to
keep things simple and avoid unnecessary detail in the source. Our
recommendations are summarized as follows:

• Model explicit hierarchy at the functional boundary, but
keep it uncommitted underneath

• Analyze and write array access patterns to avoid memory
bottlenecks

• Keep processing and point-to-point communications
strictly untimed

• Use cycle-accurate models for complex, multi-point
communications; such as bus interfaces

Only a few years ago, HLS tools were applied only at the block
level. Today, mixed-language HLS flows enable full-chip synthesis;
including high-quality data paths, control logic, processors,
interfaces, and complex interconnects. By paying attention to the
proper mix of abstraction levels, HLS users will improve design and
verification productivity while delivering high-quality SoCs.

8. ACKNOWLEDGMENTS
Thanks to Todd Burkholder, Senior Writer, Mentor Graphics for
editorial support.

9. REFERENCES
[1] University of Oulu Rapid Scheduling of Efficient VLSI
Architectures for Next-Generation HSDPA Wireless System Using C
Synthesis]

[2] F.Baray, H.Michel, P.Urard and A.Takach. C Synthesis
Methodology for Implementing DSP Algorithms, GSPx 2004.

[3] http://www.mentor.com/esl/success/STMicroelectronics-
success/fileContent/STMicro_Catapult_C_success_story_11-18-
09.pdf.

[4] AMBA, www.arm.com.
[5] L.P. Carloni, K.L. McMillan and A.L. Sangiovanni-Vincentelli,
"Theory of Latency-Insensitive Design" in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 20(09):
18, Sept 2001.

[6] Thorsten Grötker, Stan Liao, Grant Martin, Stuart Swan, System
design with SystemC, Springer.

[7] M. Fingeroff. “The High-Level Synthesis Blue Book”, Xlibris.

[8] A. Takach, B. Bower, and T. Bollaert. “C based hardware design
for wireless applications”. DATE, 2005.

[9] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the
behavioral synthesis of ASICs” in IEEE Transactions on Computer-
Aided Design, vol. 8, pp. 661–679, June 1989.

