

1

Heterogenous Virtual Prototyping for IoT

Applications

Mark Burton, GreenSoCs, Bordeaux, France (mark.burton@greensocs.com)

Luc Michel, Antfield, Grenoble, France (luc.michel@antfield.fr)

Paul Ehrlich, Karsten Einwich, COSEDA Technologies, Dresden, Germany

(paul.ehrlich|karsten.einwich@coseda-tech.com)

Abstract—New technologies like IoT demand extended virtual prototyping technologies and a seamless integration

of different worlds. This paper describes how different techniques can be combined to create virtual prototypes which

represent the whole analog, digital hard/soft-ware system and the physical environment.

Keywords—IoT, Virtual Prototyping SystemC, SystemC-AMS, Qemu, Continous Integration, Multi-domain modelling

I. INTRODUCTION

From the blinkered perspective of simulation technologies, to our dismay, the world seems to be increasingly

heterogeneous. IoT (Internet of Things) devices combine state of the art computational platforms with analog,

electrical and non-electrical sensor technologies. Furthermore such devices interact with each other to control

analog physical quantities like temperature, humidity or lighting with increasingly complex control algorithms. So

it becomes essential to understand the interaction between the different components, both digital and analogue,

increasingly the complexity is in the interaction, rather than the individual devices. As the entity of interest moves

inexorably from the device to the network of interconnected devices, hardware prototyping of IoT devices and

networks will be very costly if not impossible. Additionally, of course, devices in an IoT network will be provided

and developed by different vendors. The classical “design by (paper) Spec” approach will be stressed to breaking

point, leading to time consuming and costly re-spins, unsatisfied customers or very conservative designed systems

with high costs and non-competitive performance.

The solution is (of course) virtual prototyping. But not at the level of individual devices, rather at the level of

the collection of devices, in a heterogeneous system, spanning both the digital, analogue and ‘real’ worlds. Virtual

prototyping allows engineers to play with architectures and the devices without the availability of any hardware

components and, crucially, without the need for specific environmental conditions! Furthermore virtual prototypes

can be used to check the compatibility of different party’s devices with the remaining IoT network and they permit

a much better introspection and debugging. So application and especially failure scenarios can be verified which

cannot easily be checked in reality (or only at high costs). This gains importance for safety and security critical

systems as numerous scenarios and security attacks can easily be verified. This combines well with modern

verification technologies for virtual prototypes, which allow continuous integration techniques to be applied. So,

after each change to the hardware or software components all verification scenarios can be automatically executed

immediately identifying issues. This increases the design efficiency significantly and makes the design process

much more predictable due the reduced risk of the integration phases.

Virtual prototypes are of course the solution, but, on the whole, today’s virtual prototypes tends to be separated

into a pure digital hardware/software world or a mixed-signal world. Combining both has, hitherto, been somewhat

tricky. SystemC has been adopted as the unifying technology for virtual prototypes, it aims to fulfill requirements

such as high simulation performance, model exchangeability and integration into a continuous integration flow.

With the recent introduction of SystemC-AMS, all the required base technologies for creating heterogeneous

mixed-signal prototypes are now available. For digital system modelling the IEEE1666 standard has been used for

more than a decade, and includes modelling technologies like discrete event and TLM (transaction level modelling)

as well as libraries for e.g. verification and parameter handling. The SystemC AMS IEEE1666.1 standard adds on

mailto:mark.burton@greensocs.com
mailto:luc.michel@antfield.fr

2

top of SystemC feature for modelling analog continuous time behavior. So it adds timed dataflow, signal flow and

conservative system modelling – all technologies to enable abstract modelling and thus the creation of extremely

fast running models. However, although both parts of the SystemC standard live under the same roof, the ability to

truly build heterogeneous simulations has not really been put to the test. In each domain, impressive developments

have been reported, with state-of-the-art virtualization technologies provided by commercial vendors or the open

source community (e.g. with the Qemu platform), and likewise impressive analogue simulation performance being

demonstrated in mixed signal environments. The missing link is to show them working successfully together.

 This paper will present exactly this combination of TLM virtualization, booting linux in near real-time, while

including SystemC AMS components that interact with models of the real-world and mixed signal circuitry.

Combining powerful virtual prototypes for the hardware and software design of IoT devices and their integration

into an IoT application. Especial focus is given to the interfaces and integration of the different technologies. The

integration of a Qemu based platform via TLM and the use of loosely time and quantum based techniques will be

discussed. Different solutions for the modelling of the digital analog interface based on TLM and signal based

interfaces are discussed. Technologies for modelling different physical domains based on SystemC AMS will be

presented. To illustrate the presented techniques we will conclude with an example of a multi-physical system

controlled by an ARM processor based host controller.

II. QEMU SYSTEMC INTEGRATION

Using Qemu as a CPU simulation kernel has a number of advantages. It not only covers a wide variety of

architecture (including ARM, PPC, x86, Mips, etc), but it is also efficient, and can be flexible in terms of what is

modeled. One of the advantages Qemu brings is the ability to run a number of CPU cores in separate threads. This

yields extremely high performance simulations, but care must be taken when integrating Qemu with SystemC

specifically synchronization must be managed.

A number of attempts have been made to integrate Qemu and Tlm/SystemC (e.g. see [9]). Several approaches

have been made to synchronize the two. The issue is that different solutions seem to be favorable in different

circumstances. The approach we take is somewhat more flexible and consists of some distinct parts.

The SystemC kernel provides a mechanism to receive events from an asynchronous thread. We make use of

this mechanism to signal that Qemu is ready to communicate to the SystemC model. However, we must first deal

with a problem within SystemC’s itself. When the SystemC kernel runs out of events, it exits. In this case, it may

be that an asynchronous event would have arrived later. In other words, we need a mechanism to prevent SystemC

exiting if there are (potentially) pending asynchronous events.

We can arrange this in SystemC, but to allow different model sources, patches have been proposed to the

SystemC kernel and will be in SystemC 2.3.1 which will provide a suitable central mechanism. A single central

semaphore enables any number of models to be combined.

In our implementation, we can use either our own semaphore, or the central one provided by the kernel;

performance is indistinguishable.

The second issue we deal with is the execution of SystemC models within the SystemC thread. This is critical

for SystemC models, as they rely on light-weight processing, and that's highly susceptible to which thread executes.

Model 1 SystemC
Simulation Model 2

Thread 1 Thread 2 Thread 0

3

Therefore, we must ensure that SystemC code is (in general) executed by the same SystemC thread. We provide a

bridging mechanism – which uses the asynchronous event mechanism above.

The third part of the integration involves synchronization itself. Several approaches to this can be taken. We

have investigated two. The first is simply no synchronization at all. In this case we allow SystemC and Qemu to

run (and advance their notion of time) as quickly, and as much as they can, or want to. This approach is not always

appropriate, and is clearly not appropriate for many mixed analogue models. However it can be appropriate even

when (for instance) hardware is in the loop. It may be that Qemu is being used to drive the Hardware, and the ‘local’

Qemu time is not actually relevant to the hardware under test. The second approach is a windowing approach. This

attempts to keep both the SystemC and Qemu sides as closely synchronized as possible, by adjusting time (or, if

that proves impossible) slowing down one side or the other. This is a development of the ‘windowing’ approach

proposed by [10]. However, what we have discovered is that in general, we can not make any guarantees about the

synchronization with respect to the quantum. (A model may always call ‘wait’, and we have no control how far

time will move. Any attempt to control this will trivially end in a deadlock of course.) None the less, using this

approach, we have successfully modeled the mixed digital/analogue system presented in this paper.

III. DIGITAL ANALOG INTERFACE MODELLING

The SystemC AMS standard defines a synchronization between SystemC signals and the different SystemC

AMS modelling domains. The SystemC AMS synchronization is based on a sampling approach that means at each

AMS calculation time the current value of the discrete event signal is sampled or assigned respectively.

On top of this SystemC AMS standard interaction other schemes can be realized. As an example of such a

synchronization we will describe the interfacing between a TLM based interactions with an analog sub-module. An

example for such interaction is a peripheral like an adc (analog digital converter) or a dac (digital analog converter)

which is connected to a bus system. Thereby the TLM transaction can be loosely timed and using timing annotation.

The adc and dac as well as analog modules like filter are usually modelled in the timed dataflow (TDF) SystemC

AMS domain.

* Identify applicable sponsor/s here. If no sponsors, delete this text box (sponsors).

Figure 1: SystemC - SystemC-AMS interaction

4

Figure 2 Principle TLM - analog interaction

Therefore the “loosely time” of the transaction must be synchronized to the “strict” time of an AMS simulation.

A simple realization for this synchronization is shown in Figure 2. In this case a SystemC target module receives

the transaction and writes the content to a SystemC signal at the corresponding time points. The SystemC sc_signal

is connected to the analog TDF module via a converter port and thus uses the standard SystemC-SystemC AMS

synchronization. This form of synchronization is well suited for the case that the time distance between

transactions to an analog module is lesser than the analog time step. For the case the time step between transactions

is in the same order and this communication may will become performance limiting, a more complicated

mechanism can be used, where the loosely timed transactions are buffered and proceeded without an explicit

synchronization by the TDF module.

IV. MODELLING PHYSICAL DOMAINS WITH SYSTEMC-AMS

The SystemC AMS standard defines an electrical linear network (ELN) modelling domain. ELN is a so called

conservative modelling approach relying on the Kirchoff’s law (the sum of all currents flowing into a node is zero,

the sum of the voltages across elements in a loop is also zero). This principle can also applied for other physical

domains. Generalized we speak about across values (corresponds to the voltage in the electrical domain) and

through values (corresponds to the current). The defined ELN elements of the SystemC AMS standard allow to

describe any linear equation system. So via so called analogy relation [8] any physical system, which can be

described by linear DAE (differential algebraic equations) can be described with the available ELN elements.

A. Principle analogy relation

To illustrate the principle of analogy relation we will use the modelling of a mechanical system using electrical

elements. Principally two kinds of analogies can be used, the force-voltage and the force-current analogy. The

second is more practical for our application, due how we will see later, the wiring will not change. So we define

that the force f becomes the through value and thus corresponds to the current i. additionally we define that the

velocity vel is the across value and thus corresponds to the voltage v. Demonstrative this fits, due if we consider

one node, than the sum of all forces must be zero and if we add the velocities in an arbitrary loop the sum must

be also zero. This is equivalent to the electrical currents and voltages. To illustrate this we will use the spring-

mass system of Figure 3.

Figure 3 Mechanical mass-spring-damper system

For the forces F we can setup the following equation: 𝐹𝑚 + 𝐹𝑟 + 𝐹𝑛 = 𝐹

Whereby 𝐹𝑚 is the force resulting from the mass 𝑚𝑝and thus (acceleration of gravity not considered):

𝐹𝑚 = 𝑚 ∗ 𝑣𝑒𝑙̇

𝐹𝑛 is the force resulting from the spring: 𝐹𝑛 = 𝑘 ∗ 𝑠 = 𝑘 ∗ ∫ 𝑣𝑒𝑙 ∗ 𝑑𝑡

whereby s is the distance.

𝐹𝑟is the force resulting from the damper and calculated by: 𝐹𝑟 = 𝑚 ∗ 𝑣𝑒𝑙

5

If we have a closer look to the equations, it can be easily recognized, that the equation of the mass corresponds to

the equation of a capacitor: 𝑖 = 𝐶 ∗ �̇�

the spring corresponds to an inductor: 𝑖 =
1

𝐿
∗ ∫ 𝑣 ∗ 𝑑𝑡

and the damper corresponds to a resistor: 𝑖 =
1

𝑅
∗ 𝑣

and finally the force F trivially corresponds to a current source. The sum of the forces corresponds to the sum of

the currents due Kirchoff’s current law. Using this analogies, we can redraw the mechanical system of Figure 3

to the electrical system of Figure 4

Figure 4 Electrical analogy of mass-spring-damper system

The nice thing of this analogy relation is, that each mechanical element corresponds to an electrical element. This

enables us to create a library of mechanical elements based on a library of electrical elements.

Such analogy relations can be found for any other physical domain.

For example, in a thermal domain the across value corresponds to the temperature and the through value to the

energy/heat flow. An isolation (like a wall) corresponds to a resistor and a heat storage like the mass of the wall

or the floor corresponds to a capacitor. Similar analogy relation can be setup for domains like magnetic and

hydraulic. The interaction between different domains like in a motor relates usually to an ideal transformer.

Based on this consideration any physical domain can be modelled using electrical elements.

Doing so, will lead to models which can be understood by experts only. The first attempt to solve this issue is to

create model libraries for each physical domains, so that modules for a mass, friction or a heat storage are

available.

B. Physical domain libraries based on SystemC-AMS

As described before, choosing the corresponding analogy relation, most physical components can be directly

mapped to electrical components. Thus in the first attempted a physical domain library can be simply created by

using the object oriented nature of SystemC-AMS – the mechanical elements can be simply derived from the

corresponding electrical elements.

Figure 5 Principal implementation of a spring

Doing so, the nodes will be still electrical nodes. This has disadvantages like, that nodes of different domains or

using different analogy relations can be connected and while reading the model or tracing signals the different

physical quantities cannot be distinguished.

To solve this issues, the same principle can be applied to the nodes (corresponding in SystemC to signals) and

terminals (corresponding in SystemC to ports). Thus we can derive domain specific nodes and terminals from

the standard SystemC-AMS electrical nodes and terminals.

Using C++ feature, this principle can be generalized in a way, that the nodes and terminal definition becomes a

template with the domain information as a template parameter. This leads to a syntax, which fits very well to the

SystemC sc_signal syntax, where the template argument is the datatype.

#include <systemc-ams>

class spring : public sca_eln::sca_l
{
public:
 spring(const char* nm,double k) : sca_eln::sca_l(nm,1.0/k)
 {}
};

6

Figure 6 Principal implementation of a generalized physical domain node

Figure 7 Example for usage of generalized physical domain nodes and terminals

Using this approach, libraries of different physical domains can be easily created. Thus libraries for mechanical,

magnetic, fluidic and radiant domains where implemented.

V. USING OPEN SOURCE QEMU AND SYSTEMC (AMS) TO SOLVE THE PROBLEM OF INDUSTRIAL CONTINUOUS

INTEGRATION (CI)

A. Whats special about CI

Today, continuous integration (CI) using complex hardware/software environments is expensive and resource

constrained.

The hardware diversity leads to expense, both related to the devices themselves and to the manpower needed to

maintain them. Equally debug for each environment can be different and painful to setup and use. The more board

you have, the more issues you encounter that require manual and time consuming interventions.

Hence, this does not scale well. As more and more projects require a larger and larger number of components, this

gets worse and worse.

A natural solution to this issue is to replace the hardware parts with virtual platforms.

Virtual platforms simulate a system at the functional level, that is, everything needed to run the software stack.

Virtual platforms are fast, provide a great opportunity for scalability, have a consistent interface, no need for

specific debug environments and are portable. They can be used on an engineer’s desk top.

B. How models fit

Virtual platforms can be used to model virtually any kind of systems, including both digital and analogue

components. It brings great flexibility compared to the real hardware, by allowing better reconfigurability and

observability of the system. For example, one can easily pause the simulation and observe the registers of a given

peripheral, without being intrusive. But equally, (depending on the business model and costs), there is no limit to

the number of virtual platforms that can be run. This is especially useful to test mass IoT applications. This

approach scales naturally, by adding more compute nodes to simulate more devices. And their flexibility allows

for virtual platforms to be easily integrated in a standard development flows. Furthermore, the fit naturally into a

continuous integration environment as they can be run in a ‘headless’ batch mode, requiring no human

intervention.

C. Industrial case

Successful deployment in an industrial environment shows a real advantage of having virtual platforms within a

CI flow. Each commit in firmware repositories triggers the integration tests to be re-run, and gives a quick

feedback if something goes wrong. Removed the hardware allows for total and reliable automation, while greatly

reducing the integration costs.

namespace sca_ln
{
class sca_node_base : public sca_eln::sca_node
{…};

template<class PDOMAIN>
class sca_node : public sca_ln::sca_node_base,
 public sca_ln::sca_node_if<PDOMAIN>
{…};
}

sca_ln::sca_node<sca_translational> mech_node;

class spring : public sca_eln::sca_l
{
public:
 sc_ln::sca_terminal<sca_translational> t1;
 ...
};

7

D. Economic challenge

Our virtual platforms are based on Open Source software like QEMU, the well-known system emulator and the

well-established standard SystemC to model the hardware. This means the the size of the CI test farm is not a

financial consideration in terms of models.

VI. APPLICATION EXAMPLE

Typical IOT systems consist of numerous independent sensors as well as control units. A subset of a more

complex model could be the thermal house model discussed below. It includes a QEMU based digital heat controller

running a control firmware as well as a complex heterogeneous environment around it.

The QEMU platform includes an ARM-A7 processor and computes the control signal for the heater based on

the user input as well as the current indoor temperature of the house. The firmware reads in the temperature from

an analog voltage via an ADC and writes the controls to digital outputs.

The surrounding mixed signal environment consists of a thermostat, a weather model, a heater and the house

model itself. The thermostat converts the actual temperature into an analog voltage for the controller. The weather

model provides the ambient temperature to the house by modeling a day and night cycle around the average ambient

temperature. The heater provides a conditional heat power based on its digital controls.

The house model itself takes the ambient temperature as well as the conditional heat power as input to calculate

the current indoor temperature. The energy flow relates to the temperature (stored energy) via the volume and

average heat capacitance of the house. To calculate the resulting energy flow the model considers the heat power

Figure 8 Thermal house model – toplevel view

Figure 2 a) house b) heat loses

8

as well as a number of loses (wall, window, roof, floor plate ...), which each depend on their corresponding area

and heat conductivity in relation to the supplied ambient temperature.

Additionally the model provides some calculation blocks to integrate the energy flow up to a consumed energy

and its corresponding cost.

A. Results and Performance

The simulation run represents 3 day night which were equally split into 72000 steps. To computational afford

is very fast and consumes around 81seconds. The results show in the waveform are the ambient and indoor

temperature, the digital control of the heater as well as the consumed energy cost. It shows that the heating is

triggered more frequently during the night and totally switched of during the day (ambient temperature peeks),

where the indoor temperature increases due to the high ambient temperature.

Figure 9 Simulation result

REFERENCES

[1] IEEE Computer Society, 1666-2005 IEEE Standard SystemC Language Reference Manual

[2] IEEE Computer Society, 1666.1-2011 IEEE Standard SystemC Analog/Mixed Signal Extensions Language Reference Manual

[3] Einwich, K.; Uhle, T. (2010): SystemC AMS - holistic analog, digital, hardware and software system-level modeling. In: EDA Tech

Forum Journal 7 (1), S. 28–33.

[4] R. Lerch, G. M. Sessler and D. Wolf, Technische Akustik: Grundlagen und Anwendungen, Springer Berlin Heidelberg, 2009, pp. 281-

289.

[5] Bellard, Fabrice. "QEMU, a fast and portable dynamic translator." USENIX Annual Technical Conference, FREENIX Track. 2005.

[6] Fowler, Martin, and Matthew Foemmel. "Continuous integration." Thought-Works) http://www. thoughtworks. com/Continuous

Integration. pdf (2006): 122.

[7] Neul, R. et al.: A modeling approach to include mechanical microsystem components into system simulation. Proc. Design, Automation

& Test Conf. (DATE’98), Paris, 1998, pp. 510-517.

[8] R. Lerch, G. M. Sessler and D. Wolf, Technische Akustik: Grundlagen und Anwendungen, Springer Berlin Heidelberg, 2009, pp. 281-

289.

[9] Montón, Màrius, Jordi Carrabina, and Mark Burton. "Mixed simulation kernels for high performance virtual platforms." Specification

& Design Languages, 2009. FDL 2009. Forum on. IEEE, 2009.

[10] G. Delbergue, M. Burton, B. Le Gal and C. Jego. Multi-threaded Virtual Platform Simulation: An open-source approach, using SystemC

TLM-2.0, and QEMU. In Proceedings of the Forum on specification & Design Languages (FDL’15), Barcelona, Spain, September 14-

16, 2015.

x-webdoc://02BE5427-EE76-42D7-AF06-24A62D53502A/
x-webdoc://02BE5427-EE76-42D7-AF06-24A62D53502A/

