
© Accellera Systems Initiative

USB 3.0/3.1/3.2 usage has been increasing exponentially with time, be it in Mobile

phones, computers or any other device.

Robustness, completeness and scalability of USB verification environment is needed to

be strengthened for the current advanced usage at subsystem levels with low power,

high throughput being the need of hour

Scalable verification component that is flexible enough to verify a USB Host Controller

at IP, sub-system as well as system level is required

Problem Statement/Introduction

Implementation Details/Diagram

Proposed Methodology/Advantages

Implementation Details/Flow Chart

Generic Interface. For RTL and subsystems, various protocols like

PCIe, AXI or AMBA are used for connecting these blocks, since the

interface is not pre-defined in any of the USB specifications.

xHCD is the software part that creates relevant data or

commands understood by xHC to perform relevant

operations.

A generic register-based interface has been defined for

programming.

Software managed memory which makes it easier to configure

the setup and program sequences.

Option for internal and external memory instantiation

Callback based mechanism to connect any possible interface

through a glue logic. Any memory protocol can be adapted to

work between xHCD and Host Control

Navneet Jha
Vipin Chauhan

Wasiq Zia

Hardware verification through software

scheduling for USB using xHCI

The USB 3.2 Specification released on September 22, 2017 and ECNs | USB-IF

eXtensible Host Controller Interface for Universal Serial Bus (xHCI) (intel.com)

Results Table Conclusion

Tests written at xHCD level help mimic real system stimulus as full chip is being

controlled through the driver.

It models real traversal of data in a system thus giving a clear picture of host

controllers interaction with memories for packetization and control.

Great model for software controlled verification using classing design verification

components. It can work with stimulus generated through high level languages like

C++ as well as verification languages like Verilog etc.

It gave us flexibility not just within the USB stack but also allowed for re-using the

same environment for cross protocol interactions with subsystems that consume USB.

For e.g. tunneling the USB3 traffic through USB4 model. It is easier to control traffic

through the higher layers. It allows interaction at controller level.

There have been issues in designing verification components for USB Host Controller

which are tied to specific interface.

The proposed implementation creates an interface independent verification

component while allowing for reuse across all levels of the system hierarchy.

It is flexible and robust enough to allow porting any existing host controller sequence

library to this model

The existing USB3 sequences can be ported and scaled to work with tunneling

requirements of sub-system protocols like USB4

The solution was used for systems employing PCIe, AXI as connection interfaces and

seamlessly connected with both.

REFERENCES

Test sequences driven from a higher abstraction layer, so that the same sequences can

be used at IP/System Level.

Generic interface connecting the Host Controller Driver(xHCD), the system memory

for data access and the Host Controller(xHC) was defined.

A translation layer to convert the memory-based transactions to protocol data units

for easy interpretation of verification engineers.

Platform agnostic : Definition at driver level ensures that it can work with

acceleration as well as simulation

Input to the driver

in the form of

transactions.

Driver creates packed data for TRB memory writes from the

transactions and based on the memory map provided by user. Output

available through callback to be written to DUT memory through AXI

interface

https://www.usb.org/document-library/usb-32-specification-released-september-22-2017-and-ecns
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/extensible-host-controler-interface-usb-xhci.pdf

