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Abstract—In modern ASIC/SoC design, the hardware and 

software have to work seamlessly together to deliver the 

functions, requirements and performance of the embedded 

system.  To accelerate time-to-market and to reduce overall 

development cost, it is crucial to co-verify the software code with 

the hardware design prior to tape-out.  The software team can 

start developing and debugging their code with the actual 

hardware RTL code to shorten their overall development cycle.  

The hardware team can use the software code to identify 

performance bottlenecks and incorrect functional behaviors early 

in the development cycle which helps to reduce the risk of 

increasingly expensive device revisions. 

The current approach to co-verification is primarily running the 

software on the embedded processor inside the hardware design, 

either within the simulator or with ICE (in-circuit emulation).   

The disadvantage of this approach is slow debug turnaround time 

and the higher cost is procuring and supporting a dedicated 

emulation box or FPGA platform.  In addition, the software is 

running in isolation relative to the testbench, hence it is often 

challenging and inconvenient to integrate the software with other 

verification IP in the testbench. 

In this paper, we will present an alternate approach on how to 

integrate the software driver into the simulator using Specman 

and SystemC with TLM ports.  The software is running in the 

same memory space as the testbench, both of which run through 

the simulator on the Linux host.   The advantage of this approach 

is fast execution speed of the software and the interoperability of 

the software with other verification components in the testbench.  

The software code runs in zero simulation time and the testbench 

has full control of the software using TLM ports and direct 

memory access via pointers.  In addition, the software code can 

invoke gdb or any other C debugger to make debugging easier. 

Keywords: Specman, System C, TLM, software, hardware, co-

verification, ISX, CVL 

I.  INTRODUCTION 

In the past, software usually comes as an afterthought in 
relation to hardware deliverables and the development of 
device drivers or firmware happens late in the ASIC product 
development cycle or even after silicon is available.    Imagine 
delivering silicon to a customer with a register document 
spanning thousands of pages with untested or absent device 
drivers or software to abstract those registers. In modern 
ASIC/SoC designs, software is eclipsing hardware as the main 
driver of system development cost.  Customers now demand 
that semiconductor companies deliver hardware and software 

as an integrated and completely functioning system. The 
quality and the availability of the software becomes a main 
differentiator in the semiconductor market.  Co-verification, 
that is, testing the hardware and software working together 
before tape out, is a critical factor contributing to the success of 
an ASIC/SoC project. [1][2] 

Co-verification provides three primary benefits.   First, co-
verification gives the software engineer early access to the 
hardware.  They can start debugging the software code early in 
the project without having to wait for the silicon to execute the 
software on the hardware.   By the time the silicon comes back 
to the lab, there is already working software with most of trivial 
bugs ironed out.   Engineers can focus on testing system 
integration and use the software to qualify the silicon for 
production.  Thus, co-verification can pull in the project 
schedule and shorten the time-to-market cycle.   Second, co-
verification provides additional testing for the hardware design.  
The verification engineers can use the software executing on 
the hardware in the simulation environment to generate 
stimulus that mimics the true operation of the system, which 
yields better corner cases coverage than using stimulus 
generated by artificially models from the testbench.  Co-
verification can identify system integration bugs before tape-
out when the bugs are less costly to fix.  Third, co-verification 
provides better visibility in debugging the software and 
hardware interaction.  When the software is running in the 
silicon, it is a black box system with limited peeks and pokes 
making it more difficult for verifiers to diagnose bugs in the 
software and hardware integration.   When the software is 
running in a co-simulation environment, verifiers have white 
box access to the internal operation of the complete system.  
Co-verification can increase the productivity of the verifiers in 
debugging system problems. 

In this paper, the authors are searching for a co-verification 
solution for a new embedded SoC, networking project.  
Specman and the Cadence simulator are the mainstream tools 
available to the project team.  After evaluated the existing 
methods available, they decided to develop an alternative co-
verification approach that utilize Specman’s unique powerful 
features to overcome the disadvantages of existing methods.   

The paper is organized as follows:  In Section 2, we 
introduce a generic SoC testbench architecture and outline the 
problem statement of co-verification in general.  Then we 
briefly discuss existing methods and highlight their pros and 
cons.  In the subsequent sections, we describe the co-



verification approach using Specman and SystemC with TLM 
ports, with the advantages and challenges of this method. 

II. EVALUATE EXISTING CO-VERIFICATION METHODS 

A. Generic Embedded SoC Testbench Architecture 

Figure 1 shows a generic architecture of an embedded SoC 
and its testbench.  The embedded SoC has a CPU, along with 
network interconnect (NIC) which connects the CPU and 
various RTL IP blocks via an AXI bus.  The RTL IP blocks 
may consist of data processing units or external interfaces that 
connect to the pins of the chip.  The software executes on the 
embedded CPU and communicates with the RTL IP blocks via 
AXI transactions.  In the software’s point of view, the complex 
RTL hierarchy of the device is abstracted into a set of 
accessible register and memory address space. 

Our testbench platform is implemented using Specman 
coupled with UVM (Unified Verification Methodology). The 
testbench is controlled by a central virtual sequence that co-
ordinates the AXI transactions and interaction with the RTL IP 
blocks.  In the absences of the CPU, the AXI UVC (Unified 
Verification Component) is acting as the BFM (Bus Function 
Model) of the CPU that drives the AXI transactions sequence 
from the testbench into the NIC.  Coming from a verification 
background, the most important criteria of co-verification is 
compatibility with the existing testbench architecture.  When 
executing our testcases, we should able switch between using 
our own AXI sequences and using the software driver with 
minimal effort.  The software should seamlessly communicate 
with the other components in the testbench so that we can reuse 
the scoreboard and checkers in the testbench to avoid re-
writing parts of the testbench. Other criteria which are 
important for a co-verification solution are execution speed and 
ease of debug, so that we can minimize any productivity hit of 
testing the software together with the hardware. 

Our device uses a commercially available embedded CPU 
core and RTOS, which minimizes the verification of the low 
level integration of the software and hardware operation.  Our 
verification focus is on the application layer of the software by 
testing its functionality and its interaction with the RTL IP 
blocks.  From a hardware verification engineer’s perspective, 

the software is nothing more than a collection of C functions 
issuing register reads and writes operations into the AXI bus.  
Thus, the problem statement of co-verification involves 
answering three simple questions: 

1) How to call a C function from the testbench? 

2) How can a C function initiate AXI transactions on the 

AXI bus through the BFM? 

3) How to check that the AXI transactions and the targeted 

RTL IP blocks demonstrate the correct behavior? 

 

In the search for the best technical solution which meets our 

needs, we investigated three alternatives: acceleration / 

emulation, ISX/ISS and sockets/CVL. These alternatives are 

outlined below, before we present the solution which we 

finally adopted, the Specman to SystemC TLM bridge. 

B. Acceleration/Emulation 

The acceleration/emulation co-verification method uses 
special equipment to emulate the RTL design.  The CPU core 
is synthesized into the emulation box and the software is 
running on the CPU cycle by cycle.  The Cadence Palladium 
XP (UXE) [3] acceleration platform supports both In-Circuit 
Emulation (ICE) and Simulation Acceleration (SA) mode of 
operation.  The advantage of co-verification with the ICE mode 
is speed of execution, but there is essentially no reuse of the 
testbench in ICE mode.  In SA mode, we can reuse most of the 
testbench, however the speed drops to that what is imposed by 
the testbench.  In addition, this mode still requires us to 
integrate the software into the testbench using one of the 
methods described below.  As a result, the software is painfully 
slow to run even with the 40x simulation speed up in SA mode.  
Above all, the biggest disadvantage of this method is the price 
tag, which means the equipment is limited to a very small 
number of engineers working on the most critical pieces of the 
system. 

C. ISX/ISS 

This co-verification method uses the Cadence Incisive 
Software Extension (ISX) technology [4].  ISX provides debug 
support of the software code running on an RTL model of the 
CPU core in the simulator or running on a 3rd party Instruction 
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Figure 1.  Generic Embedded SoC Testbench Architecture 

 



Set Simulation (ISS) models.  ISX integrates with our Specman 
testbench very well; we can execute the software like it is a 
native component of the testbench environment.  However 
running the software in SA mode is already painfully slow, 
running it in pure simulation is a hundred times worse, so it is 
out of the equation.  Using ISX with an ISS model yields good 
performance by giving up cycle by cycle accuracy.   The 
software code is running in a much faster abstraction model of 
the CPU and ISX takes care of the AXI bus connections.  
Although this method is not as expensive as UXE, the use of 
ISX/ISS still requires purchase of additional licenses.  Under 
some scenarios when we need to test low level integration, 
ISX/ISS is indeed the best co-verification solution.  We still 
have a hard time justifying the cost of extra licenses when 
testing high level C code given that the next alternative is free. 

D. Socket/CVL 

This co-verification method uses a UNIX socket 
communication as an interface mechanism between the 
hardware and the software [5].  A client server model is 
implemented to interface the testbench and software via a set of 
API functions to facility calling C functions from the testbench 
and calling testbench functions from the software.  Specman 
has built in support of this co-verification method via the Co-
Verification Link (CVL) library [6]. The advantage of this 
method is speed and ease of implementation.  The software is 
compiled as a native executable running on a powerful Linux 
host, which runs faster than the embedded CPU inside the 
silicon.  Hooking up the testbench to the software only involves 
setting up the socket connection.  The testbench calls external 
C function like calling native Specman methods. This method 
almost meets all our evaluation criteria except for two 
shortcomings.  The first problem is the CVL link only support 
pass by value but not pass by reference.  The software cannot 
access internal data structure of the testbench and vice versa 
without writing extra CVL API functions.  Being able to peek 
across the language boundary is a very handy feature that 
allows us to insert customized testbench code into the software 
to help us debug or carry out white box testing.  The second 
problem is the implementation of Specman CVL requires the 
testbench relinquish the control to the software.  In CVL, the 

software is a layer above the testbench, so the C code is the 
master and the testbench is the slave.  Although it is relatively 
easy to write a small piece of code that always passes the 
control back to the testbench, we believe the software on top 
architecture is fundamentally wrong conceptually.  In a 
verification environment, the testbench should be the master of 
everything for efficient testing.  It should have absolute control 
over all the verification components, the RTL code and the 
software code.   

We would have settled for CVL co-verification method if 
we did not come up with the Specman and SystemC with TLM 
co-verification method.  This method is detailed below. 

III. SPECMAN TO SYSTEMC TLM SOFTWARE BRIDGE 

A. Overview 

Specman has excellent integration support with C code.  
The Specman C interface is designed for implementing parts of 
the testbench in C [7]. It provides full access to the Specman 
memory space in C via an auto-generated C header file which 
defines all the data structure in the Specman testbench.  
Specman can call any C function and vice versa through the 
built-in method interface.  However there is a limitation in the 
Specman-C interface, it does not support TCM (time 
consuming method) across the language boundary.  The C 
functions can only be executed in zero simulation time.  This is 
a major issue since the software code has to aware of the 
simulation time because register read and write operations from 
the CPU to the RTL will cause the simulation time to advance 
in the simulator. 

Consequently, this limitation forced us to investigate 
SystemC as Specman also has excellent integration support 
with SystemC code.   Specman can interface with SystemC 
directly using TLM ports via the built in UVM-ML (multi-
language) library [8].  A blocking TLM port connects a 
Specman TCM to a SystemC thread, which understands the 
notation of simulation time.  SystemC is an extension to C++ 
which is inter-operable with plain C code.  In the Cadence 
simulator, Specman code and SystemC code are executing 
under the same memory space.   By wrapping the Specman-C 
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interface inside a SystemC module, we found a way to let C 
code be aware of the simulation time and invoke Specman 
TCM methods which initiate the register read/write operations. 
Thus the Specman – SystemC solution presented the best 
approach and overcame the limitation inherent with CVL, 
while not requiring the additional license that the ISX/ISS 
solution presented. 

Given the cross language boundary problem is solved, we 
developed a Specman/SystemC TLM software bridge shown in 
Figure 2.  The core of the software bridge is pair of blocking 
put TLM ports; one for the Specman to C calls and other for C 
to Specman calls.  For scalability consideration, we decided to 
tunnel all function calls into two TLM ports instead of creating 
separate TLM port for each function.  Connecting a TLM port 
from Specman to SystemC requires a small piece of code (aka, 
the bridge) in both language domains.  It is easier to maintain 
the bridge by having a fixed permanent connection than keep 
updating it to support every new function in the software code. 

In the following sections, we illustrate the connection inside 
the software bridge using a simple software function as an 
example: 

int foo(int arg1, int arg2, int arg3); 

B. TLM port and data structure 

A TLM port can transport a data structure across the 
language boundary and we use this data structure to store all 
the information contained within the function call.  The data 
structure has only two fields, the name of the function and a 
pointer pointing to the memory address of another Specman 
data structure which stores all the arguments and the return 
value for the function call. 

struct func_call_s { 

func      : func_name; 

arg_ptr   : uint; 

} 

 

In this example, the function name enum type extension 
and argument data struct looks like this: 

extend func_name_t : [foo]; 

struct foo_arg_s { 

arg1   : int; 

arg2   : int; 

arg3   : int; 

return_value : int; 

} 

 

The TLM port will automatically convert the Specman data 
structure into an equivalent SystemC data structure under the 
hood.  Therefore we have to generate an equivalent data 
structure of the Specman func_call struct in the SystemC 
domain.  The Cadence UVM-ML library has a handy utility 
(mltypemap) that auto-generates a SystemC uvm_component 
class from a Specman struct.  With the two matching data 
structure defined in both language domains, next we have to 
implement the auto converting function for the TLM port.  
Since the func_call data structure only has two scalar fields, the 
converting function is very simple to implement.  At last we 
have to declare the TLM ports in the software bridge: 

e2c : out interface_port of tlm_blocking_put_if of 

(func_call_s) is instance; 

c2e : in interface_port of tlm_blocking_put_if of 

(func_call_s) is instance; 

C. Specman to C software functions calls 

There are wrapper functions at both sides of the TLM port.  
On the Specman side, the software bridge has to define a TCM 
that looks exactly like the software function, in which it fills in 
the argument data structure and the func_call data structure, 
and then passes the data structure into the TLM port.  Since the 
software function wrapper appears to be a plain TCM to the 
rest of the testbench,  VR_AD sequence can simply call the 
software functions like calling any other native Specman TCM 
without knowing the implementation of the TCM is actually 
located in the C domain. 

foo(arg1 : int, arg2 : int, arg3 : int) : int 

@sys.any is { 

 var foo_arg : foo_arg_s = new with { 

 .arg1 = arg1; 

 .arg2 = arg2; 

 .arg3 = arg3; 

   }; 

   var func_call : func_call_s = new with { 

 .func = foo; 

 .arg_ptr = foo_arg.get_pointer(); 

   }; 

e2c$.put(func_call); 

return foo_arg.return_value; 

}; 

 

On the C side, the body of the TLM port implementation is 
a big case-switch statement that unrolls the func_call data 
structure.  First it has to determine which function to call, and 
then it will resolve the pointer of argument data structure, call 
the software function with the argument values and store the 
return value back into the argument data structure.  Note that 
the C domain has full access to the memory address of the 
argument pointer, so it is possible to support pass by reference 
arguments in software function call. 

switch (func_call->func)  { 

 case SN_ENUM(func_name_t, foo) : 

 SN_TYPE(foo_arg_s) arg = (SN_TYPE(foo_arg_s))    

           func_call->arg_ptr; 

arg->return_value = foo(arg->arg1,  

    arg->arg2, arg->arg3); 

 break; 

 

D. C to Specman system methods calls 

When the software code needs to issues a read or write 
operation on the CPU bus, it has to call system wrapper 
functions.  Two of the most commonly use function are system 
write that write a value to a given address on the CPU bus and 
system read that fetch the value of a given address from the 
CPU bus.  These two functions will stage the func_call data 
structure and pass it into the c2e TLM port just like the above 
examples.   Here is an example of the system call wrapper 
functions: 

int sys_read(int addr){ 

 func_call_s func_call; 

 SN_TYPE(sys_read_arg_s) sys_read_arg = new; 

 sys_read_arg->addr = addr; 

 func_call.func = sys_read; 

 func_call.arg_ptr = &sys_read_arg; 



 c2e->put(func_call); 

 return sys_read_arg->return_value; 

}; 

 

In the Specman side, the func_call data structure is unrolled 
in a similar manner and then calls the corresponding VR_AD 
operation in the VR_AD sequence driver.  The system 
functions are not limited to system read and write, the 
testbench can extend the list of the supported system functions 
depends on the requirement of the software.  The following is a 
list of system functions supported in our software bridge 
implementation: 

1) sys_write 

2) sys_read 

3) sys_read_modify_write 

4) sys_burst_write 

5) sys_burst_read 

6) sys_poll_busy_bit 

7) sys_wait 
 

Most of the system functions can be implemented using 
basic read and write, but sometimes it is more efficient to let 
the testbench handle some of the repetitive operation to 
minimize the cross language boundary handshake.  The only 
except is sys_wait, in which the software can indicate it wants 
to sleep for a period of time, so it pass the control back to the 
testbench to allow the simulation time to advance. 

E. Software Bridge to Testbench Integration 

The core of the software bridge is implemented in a 
reusable Specman unit and a SystemC module that contains the 
permanent binding of the TLM ports that is capable of 
supporting any software function.   The testbench writer has to 
implement a wrapper function pair in the e domain and in the C 
domain for each of the supported software functions.  This is a 
tedious and repetitive task that is prone to human error.   In our 
current implementation, we automate the generation of the 
software wrapper.   First, we use a document extraction tool, 
such as Doxygen, to convert function prototypes in the C code 
to XML.  Then we use a Perl script to parse the XML and 
output the e wrapper method and c wrapper function, in which 
we use the Specman built-in SC2e utilities to auto-generate 
conversion functions for the data types used in the arguments 
of the software functions 

Most of the software functions are passive functions; they 
are only executed when they are called by VR_AD sequences 
in the testcase.   However some functions are reactive software 
functions, such as an interrupt service routine.  The testbench 
has to trigger those software calls upon detecting a change on 
an interrupt pin in the DUT.   The following example illustrates 
how to hook up the interrupt service route in the software using 
a Specman event port. 

interrupt : in event_port is instance; 

 keep bind (interrupt,external); 

 keep interrupt.edge() == rise; 

 keep interrupt.hdl_path() == “dut.int”; 

     

event interrupt_triggered is @interrupt$; 

on interrupt_triggered { 

 start isr(); 

}; 

    

isr() : int @sys.any is { 

 var isr_arg : isr_arg_s = new; 

    var func_call : func_call_s = new with { 

  .func = isr; 

  .arg_ptr = isr_arg.get_pointer(); 

    }; 

 e2c$.put(func_call); 

}; 

 

Furthermore, in simulation, when there are lots of register 
operations in the testcase, although each operation takes a small 
amount of simulation time, when aggregated they consume the 
majority of the simulation time.   Sometimes it is desirable to 
speed up the register operation by depositing the value into the 
register or fetching the value from the registers directly without 
going through the AXI bus.  Since our software bridge 
implementation connect to the AXI UVC via VR_AD, we can 
just enable backdoor access in VR_AD to allow all the 
software write or read transactions to the DUT occurs in zero 
simulation time to speed up the simulation. 

IV. ADVANTAGE AND BENEFITS 

There are many advantage of the Specman with SystemC 
over TLM port co-verification method over existing methods.  
First of all, it is free if the testbench is already implemented in 
Specman.  Our method requires no extra license cost or 
purchase of expensive hardware equipment.   Specman and 
SystemC are natively supported in the Cadence simulator.  The 
tools used to auto-generate the wrapper functions are either 
open source (Doxygen) or come with the Specman package 
(SC2e utilities and UVM library utilities).   

Our method has very good execution speed since the 
software code is compiled and executed on the Linux host 
alongside with the simulator.   Our method is convenient to 
debug and no extra work is required to hook up a C debugger.  
The software C code is compiled into SystemC, which allows 
us to use the built-in SystemC debugger present in the Cadence 
Simvision tool.  We can set break points in the C code, inspect 
any data structure during function calls and we can even step 
across the e/C language boundary.  Transactions of software 
function calls can displayed alongside the RTL signals in the 
waveform viewer using strip chart. 

Our method is scalable.  Since the software function call is 
wrapped by a Specman TCM method, we can easily swap in a 
VR_AD sequence to replace the software function call using a 
WHEN subtype of the wrapper function.  It allows the verifiers 
to bypass the software code temporary if the software becomes 
a road block to verifying the DUT.  We can also swap in ISX 
for cycle accurate simulation using the golden RTL model of 
the CPU in order to verify the low level system integration.  
The wrapper function TCM can have another WHEN subtype 
that passes the function call into ISX’s GSA (generic software 
adapter) interface. 

Our method can also provide coverage on software 
function.   Since all of the software function arguments are 
encapsulated in a Specman struct and all the function names are 



listed in an enum type, we can easily generate coverage groups 
on the software function arguments within the automated 
wrapper generation script.  The software bridge will emit a 
coverage event every time a software function is called.  We 
can also use the VR_AD built-in coverage to collect coverage 
of the register and memory space addressed by the software 
functions. 

V. CHALLENGES AND FUTURE DEVELOPMENT 

The biggest challenge of this co-verification is debugging 
errors in the C code that are related to pointer handling, which 
has the effect of crashing the simulator.  Since the simulator 
and the software are running in the same memory space, 
segmentation fault in the software can bring down the 
simulator and bad pointer assignments can corrupt memory in 
the simulator kernel or Specman engine which often results in a 
core dump.  Pointer problems are the most common and most 
nasty source of errors in C programming and it is both the 
power and the weakness of the language.  There is nothing 
much the verifiers can do since the root cause of the problem is 
bad C code.   In our co-verification guidelines, we require that 
the software team thoroughly tests their C code before 
integrating with the hardware in co-verification.  The use of 
memory debugging tools, such as Valgrind, is advised to make 
sure there is no memory problem in their code before releasing 
their code over to the verification team. 

The second challenge of this co-verification method is 
debug turnaround time of the software C code.  Since the C 
code is compiled into SystemC, which is compiled and 
statically linked to the RTL simulation snapshot during the 
elaboration phase, we cannot fix the bugs in the C code in the 
middle of simulation without going through the whole RTL 
elaboration process.  In the future, we plan to use  dynamically 
loaded shared library to resolve this problem.  Instead of 
statically linking the software C code into the SystemC 
software bridge, we can compile the software C code into a 
shared object.  Then the SystemC software bridge can use the 
Linux built-in dynamic linking loader library to dynamically 
load the software shared object and obtain the address of the 
symbols of the software functions at the beginning of the 
simulation.   If a bug is identifier in the C code during 
simulation, the verifier can manually drop the loaded software 
image, fix the C code and recompile the shared object, then 
reload the software image without quitting the simulator. 

In addition, the current implementation of the software 
bridge for this co-verification method only supports Specman 
based testbenches.  We have plans to enhance the software 
bridge to support this co-verification method for System 
Verilog testbenches.  However there are several technical 
challenges we have to overcome to make the System Verilog 
implementation a reality.  Both Specman and System Verilog 
support TLM port connection to SystemC under UVM, but 

native TLM port binding can only support pass by value.  One 
alternative for the System Verilog implementation is giving up 
the support of passing by reference and only supports the use of 
pass by value in the function arguments.  Another alternative is 
using VPI (Verilog Procedural Interface) to manipulate 
pointers of System Verilog objects directly in the software 
bridge.  Given that the problem of passing data type between 
the System Verilog and C language boundary can be resolved, 
we still have to implement the equivalent of the Specman 
utilities library for automated type conversion in System 
Verilog for the software function wrapper generation script.  In 
theory it is feasible to port this co-verification method to 
System Verilog, however it requires more research to prove its 
practicality. 

VI. CONCLUSION 

In this paper, the authors developed an alternative 
methodology for hardware software co-verification using 
standard verification language and industry interface standards.  
There are many advantages of this co-verification method 
including the low cost, the fast execution speed, the transparent 
visibility in debug and the ease of use when setting up the 
environment.   This allows our existing Specman testbench 
evolve into a hardware software co-verification platform.  The 
software team gain early access to the hardware design in order 
to test the software and hardware integration issues and the 
verification team has more accurate stimulus generated from 
software operation for testing the RTL code. 
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