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Abstract — Hardware construction is a structural design approach that involves algorithmic generation of circuit 

netlist using high-level programming language. Languages that support this approach are known as hardware 

construction languages (HCL). Among the best-known HCLs are Chisel and Bluespec, adopted both in industry and 

in academia. On the other side, C++ and SystemC are known in context of high-level synthesis (HLS), a process that 

involves automatic transformation of untimed behavioral models into RTL. Clearly, these two approaches are 

complementary and can be potentially implemented in a single language and synthesis flow. We explored opportunity 

to bring hardware construction support to SystemC, identified missing pieces in library and tools, and implemented a 

robust elaboration tool that supports full power of C++ language for synthesizable designs. 
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I.  INTRODUCTION 

Structural hardware modeling is often perceived as a manual process of assembling and wiring a complete 

system from various building blocks. Those building blocks can be as primitive as NAND gates, or as complex as 

complete CPU cores, but structural coding mostly remains the same: for each module designer writes a code to 

instantiate a module and connect its IO ports. As a number of building blocks grows this process becomes very 

tedious and error-prone. That is why hardware designers often write scripts and other software tools to generate 

structural HDL code automatically from concise specifications. This works especially well when structure of 

generated hardware is regular and IO interfaces are standardized. Examples of such tools are arithmetic circuit 

generators (FFT generators for example) and SoC IP assembly tools. Importance of automatic circuit generation 

has been recognized and some hardware description languages have built-in support for this approach. Hardware 

generation capabilities are different in each language. Verilog and VHDL have very primitive support for circuit 

replication using generate statement. On the other side, Chisel [1] was specifically designed for circuit generation 

and is advertised as a hardware construction language (HCL) to emphasize this feature.  

In this paper, we explore an opportunity to bring hardware construction support to SystemC language. SystemC, 

like many other hardware description languages can be used to describe both structural and behavioral aspects of 

electronic circuits. The execution of SystemC application consists of elaboration phase followed by simulation 

phase. Elaboration results in creation of module hierarchy, port bindings and process instances. Elaboration code 

consists of module constructors and elaboration phase callbacks [2]. Arbitrary C++ code can be executed during 

elaboration; every structural aspect of the design can be parameterized. Thus, SystemC has all abilities of hardware 

construction language. However, modern SystemC synthesis tools are mostly concerned about behavioral aspect 

of design and supported hardware construction features are very limited. In this paper, we identify missing pieces 

and show how to integrate hardware construction into SystemC synthesis flow. 

Structure of the paper is the following: 

 First, we introduce a small code example to explore hardware generation in SystemC. 

 Then we discuss required support for hardware construction in synthesizable subset and library. 

 Finally, we present a prototype of a tool that extracts generated netlist from SystemC executable model. 

II. HARDWARE GENERATOR IN SYSTEMC: PRACTICAL EXAMPLE 

To understand a field of hardware construction in SystemC let us consider a toy example. Suppose we need to 

generate a SoC subsystem that consists of multiple memory-mapped slave devices selected by address bus, as 

shown on Figure 1. 
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Figure 1 Generated system 

We want system to be configurable by specifying number of devices, their types and address ranges in a text 

configuration file. Format of the file is the following: first line specifies number N - number of devices, each of 

next N lines contains device specification in the following order: start address, end address, device type, device 

name. Example of file is shown on Listing 1. 
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0x0000  0x0fff  apb_i2c   i2c_0 

0x1000  0x1fff  apb_uart  uart_0 

0x2000  0x28ff  apb_i2c   i2c_1 

Listing 1 Configuration file example 

We will implement a generator for this system in C++/SystemC. For this demonstration, exact functionality of 

each device is not important and they are implemented as black box modules with only a single input port - en. We 

will assume that there are only two possible device types: apb_i2c and apb_uart. 

struct apb_i2c : sc_module { 

    sc_in <bool>   en{"en"}; 

    apb_i2c(sc_module_name) {} 

}; 

 

struct apb_uart : sc_module { 

    sc_in <bool>   en{"en"}; 

    apb_uart(sc_module_name){} 

}; 

Listing 2 Source code for blackbox device modules 

A code for address decoder is shown on Listing 3. We represent address range of each slave device by 

address_range type (1). Module address_decoder (2) has input port for address (3) and vector of output 

ports slave_select (4).  Since we do not know number of devices and their address ranges at compile-time, 

we need to pass this information during elaboration. Here we pass it in addr_map (5) parameter of module 

constructor. Size of addr_map defines number of slave_select ports (6), each vector element represents an 

address range for device. The module has a single SC_METHOD process that implements address decoding logic 

(8). 

template <typename AddrT> 

struct address_range {  (1) 

    AddrT start_addr; 

    AddrT end_addr; 

}; 

 

template <typename AddrT> 

struct address_decoder : sc_module { (2) 

 

    sc_in <AddrT>            address{"address"}; (3) 

    sc_vector<sc_out<bool>>  slave_select{"slave_select"}; (4) 
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    address_decoder(sc_module_name,  

                    std::vector <address_range<AddrT>> addr_map) (5) 

        : address_map(std::move(addr_map))  

    { 

        slave_select.init(address_map.size());  (6) 

 

        SC_HAS_PROCESS(address_decoder); 

        SC_METHOD(slave_select_method); 

        sensitive << address; 

    } 

 

    const std::vector <address_range<AddrT>>  address_map; (7) 

 

    void slave_select_method() { (8) 

        for (size_t i = 0; i < address_map.size(); ++i) { 

            slave_select[i] = false; 

            if (address >= address_map[i].start_addr && 

                address <= address_map[i].end_addr) 

                slave_select[i] = true; 

        } 

    } 

}; 

Listing 3 Source code for address decoder 

Source code for top-level module test_system (9) shown on Listing 4. In that module we assemble a system 

of slave devices connected to address decoder. Module consist of address bus (10), vector of slave_select 

signals (11), dynamically allocated decoder module (12), and vector of dynamically allocated device modules (13). 

Actual process of hardware construction takes place in module constructor (14). First, we read number of slaves 

from file (15) and initialize slave_select vector size (16). Next, for each device (17) we read its type and 

address map from file (18), instantiate it, and bind en port (19), (20). Finally, we instantiate address_decoder and 

bind its ports (21). 

template <typename AddrT> 

struct test_system : sc_module { (9) 

 

    sc_signal<AddrT>            address{"address"}; (10) 

    sc_vector<sc_signal<bool>>  slave_select{"slave_select"}; (11) 

    address_decoder<AddrT>      *decoder; (12) 

    std::vector<sc_module*>     devices; (13) 

 

    test_system (sc_module_name, std::string config_file) { (14) 

        ifstream ifile(config_file); 

        ifile >> hex; 

        unsigned N_DEVICES; 

        ifile >> N_DEVICES; (15) 

        slave_select.init(N_DEVICES); (16) 

        std::vector <address_range<AddrT>>  address_map; 

 

        for (unsigned dev_id = 0; dev_id < N_DEVICES; ++dev_id) { (17) 

            unsigned start_addr, end_addr; 

            std::string device_type, device_name; 

            ifile >> start_addr >> end_addr  

                  >> device_type >> device_name; (18) 
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            if (device_type == "apb_uart") { (19) 

                apb_uart * adev = new apb_uart(device_name.c_str()); 

                adev->en(slave_select[dev_id]); 

                devices.push_back(adev); 

            } 

            else { (20) 

                apb_i2c * bdev = new apb_i2c(device_name.c_str()); 

                bdev->en(slave_select[dev_id]); 

                devices.push_back(bdev); 

            } 

 

            address_map.push_back({start_addr, end_addr}); 

        } 

 

        decoder= new address_decoder<AddrT>("decoder",address_map);(21)  

        decoder->address(address); 

        for (size_t dev_id = 0; dev_id < N_DEVICES ; ++dev_id) 

            decoder ->slave_select[dev_id](slave_select[dev_id]); 

    } 

}; 

Listing 4 Source code for top-level module 

 

As we see from this example, arbitrary C++ code and libraries can be used to generate SystemC models. Next, 

we discuss what is required to make this code synthesizable.  

III. HARDWARE CONSTRUCTION SUPPORT IN SYSTEMC LIBRARY AND SYNTHESIZABLE SUBSET 

As we have shown in our example, structure of the design can be created dynamically during elaboration phase 

of execution. During this phase, module constructors and elaboration-time phase callbacks are called. Thus, 

hardware construction in SystemC is all about elaboration-time programming. SystemC synthesizable subset [3] 

however does not distinguish elaboration and simulation phases and imposes the same constraints on process 

functions and constructor code. In practice, the elaboration-time language subset offered by modern SystemC 

synthesis tools is often more limited than the language subset supported for processes. In our example we have used 

vector, sc_vector and file streams – none of them is currently supported by synthesizable subset.  

To enable hardware construction in SystemC, elaboration and simulation phases should be clearly separated in 

synthesizable subset. During elaboration, arbitrary C++ code and libraries can be allowed, since we do not need to 

translate them into RTL. Only results of elaboration matter for synthesis.  

Now consider interface between elaboration code and synthesizable processes code. This interface is 

represented by variables that are referenced from processes. The variables that are not used during simulation have 

no effect on behavior of system and structure of generated hardware. The only process in our example design is 

address_decoder::slave_select_method (8). This process is not synthesizable in terms of current 

synthesis subset because it references two dynamic data structures: vector for address_map (7) and 

sc_vector for slave_select (4). If however, we replace address_map with static const array and 

slave_select with constant-sized array like shown on Listing 5 this code becomes synthesizable. Now sizes 

of arrays and values of address ranges are compile-time constants. This is a common requirement for synthesis – 

all data structures in design should have a fixed size so they can be represented in generated hardware as arrays of 

modules, ports, fixed-sized RAMs or register files. If we want to generate ROMs or LUTs, all values should be 

compile-time constants. 
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sc_out<bool>  slave_select[3]; 

static const address_range<AddrT>  address_map[3] = {{0x0000, 0x0fff},..}; 

Listing 5 Synthesizable arrays for address decoder 

If we look again at original source code we notice that while address_map  and slave_select sizes are 

not compile-time constants, they are constant during simulation runtime. Once elaboration of the model finishes, 

sizes of these vectors cannot be changed. Values of address_range are also constant during simulation. This 

brings us the idea of elaboration-time constant – a value that is defined during elaboration, but constant during 

simulation. Such a value can be considered a constant for the purpose of hardware generation.  

In our example we’ve used existing datatypes to model elaboration-time constness: we’ve used sc_vector<> 

that can be only initialized once with an init() method and const std::vector<> that can only be 

initialized in constructor member initializer list. While that worked for demonstration purposes, such an API can 

be too restrictive and inconvenient in practice. Instead, future SystemC standard and synthesis subset can consider 

modeling a notion of elaboration-time constness explicitly in code by introducing new datatypes. For example, we 

can define two new types: sc_elab_const<T> to model a value defined during elaboration and 

sc_elab_vector<T> to model a vector, which size is defined during elaboration. Variables of these types 

should be mutable during elaboration, for example, we can emplace new elements into sc_elab_vector. 

During simulation, any attempt to mutate them should trigger runtime error. 

Another C++ feature that can be utilized for hardware construction is ability to define types of polymorphic 

objects at runtime. In our demo example, we define a type of each slave device during elaboration. Array of devices 

is modeled as std::vector<sc_module*>. Here sc_module* is a pointer, but raw pointers in C++ do not 

assume ownership of dynamically allocated object, instead we can use std::unique_ptr<T> from C++ 

standard library that has this semantics. If we combine it with sc_elab_vector<T> introduced in previous 

paragraph, we can express our design intent explicitly in code: 

 sc_elab_vector<std::unique_ptr<sc_module>> devices; 

 

 Here devices is a vector of modules, size of vector and type of each device is defined during elaboration. 

This concludes our overview of features required to enable hardware construction in SystemC. Let us 

summarize them: 

1. Synthesizable subset should distinguish elaboration and simulation phases of execution. Arbitrary C++ 

can be allowed during elaboration. 

2. Interface between elaboration and simulation phases is represented by variables referenced from 

processes. Values, sizes and types of these variables can be defined during elaboration. 

3. For the purpose of hardware construction synthesizable subset should support types that allow to 

express following semantics: 

a. Elaboration time constant 

b. Elaboration time sized vector 

c. Owning pointer for objects of polymorphic type. 

 In the next section, we explore a possible implementation of SystemC elaboration tool that will support all 

described concepts. 

IV. DYNAMIC ELABORATION FOR SYSTEMC SYNTHESIS 

Most of existing SystemC HLS tools use static analysis methods at elaboration phase. Usually they consume 

abstract syntax trees (ASTs) and control/data flow graphs (CDFGs) produced by C++ compiler front-end as shown 

on Figure 2.  With static analysis, however, it is hard to support every C++ feature, so HLS tools impose restrictions 
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on supported language subset. Modern SystemC synthesis tools prohibit C++ standard library, have limited support 

for dynamic allocations and polymorphism. This limited language subset is simple enough for HLS tools to extract 

structural information by analyzing constructor bodies. In contrast, hardware construction languages usually utilize 

dynamic approach: they execute elaboration code and use code reflection information to extract generated design 

structure. We propose to combine dynamic and static approaches for SystemC synthesis: use dynamic approach for 

elaboration and static approach to handle behavioral code of process functions as shown on Figure 3. Such a hybrid 

approach to SystemC elaboration was already applied before by Pinapa [4] and PinaVM [5] SystemC front-ends. 
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Figure 2 Structure of modern SystemC HLS tool 
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Figure 3 HLS flow with dynamic elaboration 

Unlike many modern programming languages, C++ has no built-in support for runtime reflection. Instead, 

information about datatypes and their memory layout had to be obtained in some other way. Pinapa [4] obtains 

information about classes and data member offsets from GCC AST. Tool links with simulator executable to extract 

structure of design from memory. PinaVM [5] gets information about datatypes from LLVM IR. It utilizes JIT 

compilation to execute elaboration phase and sequences of instructions that compute data member offsets. Pinapa 

and PinaVM provide both structural and behavioral representations of design. Couple of research projects utilize 

debug information as a source for reflection. GDB-MI interface was used in [7] to extract SystemC design 

hierarchy. Windows PDB debug symbols were used in [7] to implement TLM model visualization.  

Unfortunately, no one of existing dynamic SystemC elaboration tools is actively maintained. To experiment 

with hardware construction we have implemented our own tool to extract SystemC design structure from runtime 

data and generate elaboration database. In our tool, we use GDB debugger Python API [8], as it provides simple 

high-level interface to debug data. From this database, we generate complete Verilog netlist, but without always@ 

process bodies. Unlike previous research in this area, our focus is solely on hardware generation. We believe that 

existing HLS tools can be easily enhanced by replacing static analysis of constructor bodies with a similar dynamic 

elaboration tool.  
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Figure 4 GDB-based SystemC elaboration flow 

Next, we describe some implementation details of our Python script for GDB that extracts elaboration database 

for SystemC model.  
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Serialization format for elaboration database is based on Google Protocol buffers [9]. Protocol buffer compiler 

is a convenient tool that automatically generates binary serialization format and library for various programming 

languages based on a human-readable text schema. In our case, we generate database from Python and can consume 

it in C++ HLS tool. 

 Short outline of protocol buffers schema we use is shown on Listing 6. We hope that language is simple enough 

to be understood by unprepared reader. All type names used in design are stored in array (22), thus every type has 

a unique ID – type index in this array. We store messages describing all objects instantiated in design in another 

array (23), so every object has unique ID as well. There are multiple kinds of object messages in our schema, but 

we classify them into three groups (27): primitives, records and arrays. Primitives are types like integers, pointers 

and pointer-like objects (sc_ports and sc_exports). Records are collections of named fields. Arrays are collections 

of indexed elements. For each object we store its unique ID (24), ID of its type (25), and ID of its parent object (26) 

(that can be either array or record). Records and arrays store IDs of their child objects (28), (29). Top-level module 

has ID = 0. Elaboration database can be visualized like a tree, with top-level module as a root and primitive objects 

in leaves. 

message SCDesign { 

    repeated string types;    // list of C++ type names used in design (22) 

    repeated Object objects;  // list of objects in design, objects[0] == Top module (23) 

} 

 

// Object in memory, member of design hierarchy 

message Object { 

    required uint32 id;       // Unique ID of object, starts from 0 (24) 

    required uint32 type_id;  // Unique ID of object type name, starts from 0 (25) 

 

    // ID of parent object.  

    repeated uint32 parent_id; (26) 

 

    enum ObjKind { (27) 

        PRIMITIVE = 1; // Object is design "primitive", like integer value, port, pointer.. 

        RECORD = 2; // Object is struct or class, a container of data members 

        ARRAY = 3;  // Object is array 

    } 

 

    required ObjKind kind; // object kind 

 

    optional Primitive primitive; 

    optional Record record; 

    optional Array array; 

    ... 

} 

message Record { 

    repeated uint32 member_ids = 1; (28) 

... 

} 

message Array { 

    repeated uint32 element_ids = 3; (29) 

... 

} 

... 

// Raw pointer or port 

message Pointer { 

    optional uint32 pointee_id; // ID of pointee object (30) 

} 

//... other types of primitives and aggregates 

Listing 6 Outline of protocol buffers schema used for serialization 
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Pointer and pointer-like primitives store an ID of their pointee (30) objects. This transforms our design tree into 

a directed graph. 

Algorithm of Python GDB script implements following steps: 

 Set breakpoint after elaboration phase, before start of simulation. 

 Run executable, stop at breakpoint. 

 Get pointer to top-level module from simulation context. 

 Recursively traverse all design objects. 

o Create message descripting each object. 

o Put memory address range for every object into interval tree. This will be used later to resolve 

pointer-pointee links. 

 For each pointer or pointer-like object in design find its pointee by address in interval tree. 

One limitation of C++ is that it leaves no information for debugger about dynamic allocations (operator 

new). For example, if we write int * p = new int[3] debugger can’t identify number of integers in array. 

Another issue is that raw pointers do not have ownership semantics, so we can point to same dynamic object from 

pointers in different SystemC modules. As a workaround for these issues, we impose following constraints on 

coding style: 

1. Pointers should always model ownership. Multiple raw pointers to same dynamic object are not 

supported. 

2. To model dynamically-sized arrays std::vector should be used instead of explicit operator 

new[]. 

 Reference Accellera SystemC kernel [10] deletes information about hierarchical bindings during elaboration. 

For example if we bind input port to another input port, information about those bindings will not be stored. This 

information however is important to preserve port names in generated RTL, so we modified SystemC kernel to 

retain this data. 

To validate our elaboration tool we have used a set of HLS SystemC designs we have implemented in recent 

years. Those designs were written for commercial HLS tool and do not utilize elaboration-time programming 

features described in this paper. The largest of them is shared memory, a highly parameterizable memory hierarchy 

design template that supports on-chip and off-chip bus protocols, caching, various types of memory banks, multiple 

design topologies. Largest instance consists of 587 module instances and 27739 primitive objects. Those are 

relatively small numbers for RTL or gate-level designs, but in HLS world, such a design can be considered large. 

Runtime of Python GDB elaboration script is 14 minutes. For comparison, synthesis for this module in HLS tool 

usually takes about 3 hours. 

Presented approach has couple of drawbacks. Some compilers do not produce DWARF debug information, for 

example Microsoft C++ compiler. Performance of elaboration will not be sufficient for low-level RTL and gate-

level designs with millions of design primitives. During development, we also discovered that sometimes type 

names generated by recent g++ and clang compilers in DWARF debuginfo and mangled RTTI symbols do not 

match. As a result dynamic type identification in GDB does not work correctly. Most recent compiler that does not 

have this issue is g++ 6.4. 

V. CONCLUSIONS 

Bringing hardware construction to SystemC makes it a truly universal electronic system-level design language 

that supports all modern modeling styles. We have shown how dynamic elaboration can be applied for SystemC 

language. Our approach removes limitations on language subset supported during elaboration. Highly 

parameterizable designs, such as a bus fabrics and hierarchical memory subsystems can benefit a lot from proposed 



 

9 

 

approach, increase code reuse and eliminate a lot of manual, error-prone work. We hope that this approach can be 

adopted by HLS vendors, removing existing limitations in the established tools. 
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