
Hardware Acceleration for UVM Based CLTs

Mohamed Saheel
Rohith M. S.
Andrew Tan

1

Agenda

• Need for simulation Acceleration

• Simulation accelerator requirements

• CLT preparation to port over to accelerator

• Simulation accelerator Runtime

• Results and Benefits

2

Need for Simulation acceleration
• Simulation of CLTs going up exponentially
• Integration on new design features which need thorough

validation
• Project requirements to add multiple debug features
• Aggressive project execution time and need to hit validation goals
• Need to run real work testcases
• Drive to achieve better performance and throughput in validation

environment.

3

Simulation Accelerator Requirements
• Requirement to support UVM on hardware emulation platform.
• Ability to port over CLT form pure simulation to accelerator with minor

tweaks to achieve functionality.
• Ability to support both signal and transaction based modeling
• Provide minimal acceleration out of box
• Support additional debug features like assertions, coverage, etc
• Support interactive debug environment for RTL/UVM debug
• User friendly performance profiler

4

Porting CLT to Accelerator

CLT on pure
simulation

Accelerator CLT
on pure simulation

Code modification
for functionality

CLT compiled for
accelerator

Run on
Accelerator/Debug

Debug/Code
modification

Performance
Profiling Code modification Deploy for

production usage

5

CLT Setup on Accelerator
• Signal based modeling was chosen to make porting over CLT easier
• The below setup provided sizeable performance gains while requiring minimal

code changes.
• User chooses the hardware top and compiler automatically partitions the

design

SW Simulator Emulator

UVM
Testbench DUT

6

Runtime Acceleration Challenges
• Out of box performance is not achievable always given that design

might have lot of unfriendly code for acceleration
• Some of the common bottlenecks

– Too many HW-SW Port’s
– Clock generation in Testbench which requires frequent synchronization
– Accessing DUT clocks/signals from testbench frequently
– Too many force/release from TB to DUT
– Runtime access to design registers

• Performance bottlenecks needs to be identified through a runtime
profiler

7

Case Study 1
• First CLT identified was a small portion of the design just to measure the

potential benefit
• Out of box performance seen on initial bring up was 5-10x

• Profiler showed lot of communication overhead which slows down
runtime

Mode Test1 Test2 Test3

SIMULATION 11 Min 80 Min 2 Days??

SIMULATION
(Without Assertions)

1 Min 8 Min 8Hrs

Accleration 10 Sec 1 Min 6 Sec ~40 minutes

SW(Simulator) HW (Emulator)

HW-SW Communication

8

Case Study 2
• A bigger CLT was chosen
• Dut bring up was easy as we choose to preserve

signal based modeling.
• Due to presence of sequencer and checker, a lot

of transaction are seen on every clock edge.
Which is leading to sizable slowdown.

• Optimization being added to reduce transaction
between HW/SW boundary

Data If Register
If

Clocks
DUT

Emulator

UVM Sequence Wrapper

UVM Checker Wrapper

Simulator

Simulator

9

Case Study 2 - Cont
• Profiler helps to identify the bottlenecks
• Explored ways to reduce the time spent in TB and HW-SW boundary

10

Runtime Acceleration
• Identified unwanted port’s across HW/SW which are not needed for

functionality
• Moved the clock generation to HW side – Clock generation on HW is

much faster and reduces overhead

• Optimized the clock access in TB side – access only when needed
ORIG MODIFIED
forever @(posedge clk) if (ack)
… do something @(posedge clk)

… do something

SW Simulator Emulator

UVM
Testbench

DUT
CLKGEN

11

Runtime Acceleration - Cont
• Moved some of the Trackers to DUT

– Trackers record transactions and sends it to C side
– These can be synthesized – Dependency on simulator can be reduced

12

Simulation Acceleration Results

• Set up simulation acceleration on a large UVM cluster level test bench
with long test runtimes and compared performance.

• Significant reduction of runtime:
Mode Small test Large test
Simulation 103 seconds 870 minutes
Accelerator 27 seconds 41 minutes

• Performance gain of about 20x after performance adjustments.
• Still able to use waveform debugger tools with simulation acceleration.

13

Benefits and Applications
• Straight forward porting of code between simulation and acceleration

– Minimal changes to TB and DUT.
• Ease of integration of inhouse compile and run tools
• Significant reduction of test runtimes.
• Can run more tests and collect results much more quickly.

– More randomized test cases can be run, better coverage.
– More data for machine learning applications.

• Requires bulk amounts of varied data.
• Easier performance analysis

– Accelerator profiler reports time spent on individual partitions and modules.

14

Benefits and Applications – Cont
• Seamless debug methodologies help to debug the issues exposed in HW
• Incremental compile feature helps when there is only TB changes are needed – No need to

wait for long as in initial compile
• Accelerated VIP’s can be added here seamlessly which gives additional Performance

Benefit
• Assertion and Coverage can be enabled in the platform which gives additional verification

15

Limitations and Improvements
• Emulator Compile times are more than Simulation – Reduces overall

throughput if we consider from start to end
• TB will need modifications to avoid the bottlenecks

– A proper Guidelines needs to be shared to Verification folks on writing it in
emulation friendly way

– Unnecessary usage of clock events can be avoided in TB side
– Transactor based acceleration is more suitable when the gains are less – Need

investment for the existing verification flow

• A dynamic profiler which tells us where exactly or at what time the
runtime slows down

16

	Hardware Acceleration for UVM Based CLTs
	Agenda
	Need for Simulation acceleration
	Simulation Accelerator Requirements
	Porting CLT to Accelerator
	CLT Setup on Accelerator
	Runtime Acceleration Challenges
	Case Study 1
	Case Study 2
	Case Study 2 - Cont
	Runtime Acceleration
	Runtime Acceleration - Cont
	Simulation Acceleration Results
	Benefits and Applications
	Benefits and Applications – Cont
	Limitations and Improvements

