

1

Handling Asynchronous Reset(s) Testing by

building reset-awareness into UVM testbench

components

Wei Wei Cheong, Xilinx, Edinburgh, United Kingdom (weiweic@xilinx.com)

Katherine Garden, Xilinx, Edinburgh, United Kingdom (kgarden@xilinx.com)

Ana Sanz Carretero, Xilinx, Dublin, Ireland (asanzcar@xilinx.com)

Abstract— Reset testing is a very common and crucial procedure to be carried out on the Device-Under-Test (DUT)

in order to verify that the DUT is able to enter and exit reset phase cleanly and its performance still conforms to its

specification after the reset process. Conventionally, an asynchronous reset that happens at a random point in the

simulation, where the DUT maybe actively processing some in-flight traffic, is considered one of the most disruptive

reset testing to the DUT and it is certainly one of the most problematic events to the testbench as well. Although there

are some existing testbench architecture and techniques designed to handle reset testing at different complexity levels,

this paper aims to present an alternative approach in scheduling one or more asynchronous resets throughout a

simulation and handling these random reset events in the UVM testbench components by using the fork-disable_fork

structure.

Keywords— UVM; asynchronous reset; random reset; on the fly reset; reset awareness; testbench; UVM components;

I. INTRODUCTION

Typically, whenever a reset is asserted, the DUT is expected to halt its operations and return its internal states

to default states, whereas on the other hand, the testbench needs to be able to synchronize with the DUT’s behavior

and able to react appropriately upon detecting the reset. Among the existing testbench solutions, there are mainly 2

testbench approaches in handling the reset events, one is by utilizing the UVM phasing and phase jumping method

[4][5] and another one is by building reset awareness into UVM testbench components[1][2][3]. Although UVM

has a built-in reset phase that is originally meant for tackling the reset testing, the lack of examples and

documentation around UVM phasing methodology makes this method only suitable for verification engineers who

have advanced UVM knowledge and the ability to do a deep dive into the UVM source code in order to implement

it. The technique introduced by this paper has some similarities with [1][2][3] where all these techniques handle

the reset events by making the UVM components and sequences aware of the reset events so that the testbench is

able to respond to a random reset in a synchronized way. However, from the implementation point of view, this

paper introduces an alternative approach in building the reset-aware mechanism. This approach has been

implemented and used in a testbench that has a structure as shown in Figure 1. Other than the clock agent, all the

elements and interfaces shown in Figure 1 reside in the same reset domain. From the DUT’s reset specification

point of view, any incomplete in-flight traffic, which is seen at the reset assertion point, will be discarded.

II. RESET INTERRUPTION ON SEQUENCE EXECUTION FLOW

Figure 2 shows a conventional sequence execution flow a testbench would have. First, a sequence is started at the

test or virtual sequence level to generate stimulus in a UVM testbench. One or multiple sequence_items can be

setup in the sequence, and they will be sent to the driver via the driver-sequencer communication mechanism. The

driver then converts the information carried in a sequence_item into interface level activities. After consuming the

sequence_item, the driver calls item_done and with that it completes the driver-sequencer handshake. It is very

important to note that any uncompleted sequence threads, i.e. driver-sequencer handshakes, will lock up the

sequencer and leave the driver-sequencer flow in deadlock. As a random reset event can be injected at any point of

the simulation, it is very likely that a reset happens at the middle of a driver-sequencer handshake. Therefore, when

mailto:weiweic@xilinx.com
mailto:kgarden@xilinx.com
mailto:asanzcar@xilinx.com

2

building the reset handling element, some attentions on the driver-sequencer flow are required to ensure that both

sequencer and driver can response to the reset in a synchronized way and able to drive stimulus again once reset is

lifted.

Figure 1 Testbench block diagram used by the reset handling technique proposed

3

Figure 2 Sequence execution flow

III. RESET HANDLING IMPLEMENTATION OVERVIEW

This section focuses in explaining the reset handling technique from these perspectives below:

A. Stimulus generation flow

A top virtual sequence at the test level is used to contain the stimulus generation flow. In the virtual sequence,

there are mainly 2 threads running, the reset thread and the main stimulus generation thread. The reset thread

contains the reset sequence that drives a reset event at a random point in time. The number of reset events to be

scheduled, randomly but sequentially, in a simulation can be controlled by a knob defined in the test configuration.

The main stimulus generation thread contains the sequence that drives all the input transactions. The virtual

sequence is structured in a way that upon the completion of a reset sequence in the reset thread and the reset is

asserted, the main stimulus thread will be killed cleanly by the disable_fork and restarted again after the reset is

lifted. And this process will be repeated as many times as the number of reset events set in the simulation. Then

eventually the virtual sequence ends when all the reset events have happened, all the input transactions have been

sent and all the expected output transactions have been received. Code example is shown in Figure 3.

B. Reset generation flow

In a UVM testbench, there are a few ways to generate a reset event, to detect and propagate a reset event, then

react to it. In this methodology, a reset agent (which contains a reset driver, sequencer and a monitor) and sequences

are used to generate and drive the reset sequence item. It is a requirement that all the other testbench components

that needs to be reset-aware to have a reset TLM port or TLM FIFO to receive the reset sequence item that has been

detected and broadcasted by the reset monitor.

C. Input and Output agents

Both input and output agents consist of a driver, a monitor and a sequencer. Each of these agents and their UVM

components forks the run_phase into 2 threads, one is used as a reset detection thread and another one is used to

execute normal operation of that component. When a reset is detected, the normal operation thread together with

the reset polling thread will be killed by the disable_fork, then some pre-defined non-blocking clean-up activities

can be serviced, and all these threads will be restarted after reset is lifted. The reset detection in the drivers and

monitors are based on the reset assertion on the pin level whereas at the agent and sequencer level, the reset is

4

class base_vseq extends uvm_sequence;

 `uvm_object_utils(base_vseq)

 `uvm_declare_p_sequencer(base_vseqr)

 bit all_done;

 test_config test_cfg_h;

 initial_reset_seq init_rst_seq;

 single_reset_seq during_reset_s;

 send_txn_seq send_txn_s;

 protected int unsigned reset_count = 0;

 rand int unsigned reset_delay; // Waiting time before asserting reset

 rand int unsigned reset_clk_duration; // The duration that reset staying asserted

 function new(string name="base_vseq");

 super.new(name);

 endfunction : new

 function void config_setup ();

 test_cfg_h = p_sequencer.env_cfg_h.test_cfg_h;

 endfunction : config_setup

 // Task: body

 task body();

 config_setup();

 do_poweron_reset();

 do begin

 fork

 begin : reset_thread

 if (reset_count < test_cfg_h.resets_during_test) begin

 schedule_reset_during_test();

 end else begin

 wait(0); // no more resets to drive

 end

 end

 begin : main_thread

 // Do data processing as required by the test configuration

 send_transactions();

 // Wait for all output transactions to be received from the DUT, with a timeout

 wait_for_output_transactions(all_done);

 end

 join_any

 // Either the main stimulus generation sequence has finished, or a reset occured

 disable fork;

 end while (!all_done);

 endtask : body

 // Task: send_transactions

 task send_transactions();

 send_txn_s = send_txn_seq::type_id::create("send_txn_s",, get_full_name());

 if (!send_txn_s.randomize())

 `uvm_fatal("RANDOMIZE_FAIL", "Failed to randomize send_txn_s")

 send_txn_s.start(p_sequencer.din_seqr_h, this);

 endtask : send_transactions

// Task: schedule_reset_during_test

 task schedule_reset_during_test();

 if (!this.randomize(reset_delay, reset_clk_duration))

 `uvm_fatal("RAND_ERR", "Failed to randomize reset_delay and reset_clk_duration")

 during_reset_s = single_reset_seq::type_id::create("during_reset_s", , get_full_name());

 if (!during_reset_s.randomize() with {seq_pre_reset_clk_duration == reset_delay;

 seq_reset_clk_duration == reset_clk_duration;})

 `uvm_fatal("RANDOMIZE_FAIL", "Failed to randomize during_reset_s")

 during_reset_s.start(rst_sqr_h, this);

 reset_count++;

 endtask : schedule_reset_during_test

5

Figure 3 Example code of stimulus generation that includes reset events generation and handling

detected by receiving a reset sequence item broadcasted by the reset monitor. In the sequencer, upon detecting the

reset, stop_sequences is executed to stop any running sequence. It is worth noting that there should be no hanging

and uncompleted driver-sequencer handshakes after reset services in both the driver and sequencer are executed

and the stimulus generator sequence should only be started again after the reset is lifted. Code examples for driver,

monitor and sequencer are shown in Figure 4, Figure 5, and Figure 6, respectively.

Figure 4 Example code of inserting reset handling in a driver

 // Task: wait_for_output_transactions

 task wait_for_output_transactions (output bit all_done);

 all_done = 0

 fork begin

 fork begin

 wait (p_sequencer.txn_scoreboard_h.all_done);

 all_done = 1;

 end

 begin

 #(test_cfg_h.timeout_from_last_input);

 `uvm_fatal("TIMEOUT", $sformatf("All outputs not received within %t after the

last input was sent", test_cfg_h.timeout_from_last_input))

 end

 join_any

 disable fork

 end join

 endtask : wait_for_output_transactions

endclass : base_vseq

class din_driver extends uvm_driver #(din_txn,din_txn);

 `uvm_component_utils(din_driver)

 din_vif vif;

 task run_phase(uvm_phase phase);

 vif.reset(); // Reset the DUT din interface to its reset state. Note that this

doesn’t drive the reset

 vif.wait_posedge_aclk();

 vif.wait_areset_deassert();

 while (1) begin

 fork

 begin : ACTIVE

 // the main task that executes get_next_item and item_done in a forever-loop

 run_active();

 end

 begin : RESET_SERVICE

 // Detects a reset at pin level

 vif.wait_areset_asserted();

 end

 join_any

 disable fork;

 // Reset the DUT din interface to its reset state. Note that this doesn’t drive

the reset

 vif.reset();

 // Wait until reset is lifted

 vif.wait_areset_deassert();

 `uvm_info(get_name(), $sformatf("RESET Released"),UVM_LOW)

 end

 endtask

endclass : din_driver

6

Figure 5 Example code of inserting reset handling in a monitor

Figure 6 Example code of inserting reset handling in a sequencer

D. Scoreboard

The scoreboard detects the reset by receiving a reset transaction broadcasted by the reset monitor. Upon

detecting the reset, it resets all the necessary elements in scoreboard such as clearing the queue that storing the

predictions generated by the model. A code example for this section is shown in Figure 7.

E. Other UVM components such as Model

The reset handling in the model is the same as the scoreboard.

class din_monitor extends uvm_monitor;

 `uvm_component_utils(din_monitor)

 din_vif vif;

... ...

 virtual task run_phase(uvm_phase phase);

 vif.wait_posedge_aclk();

 vif.wait_areset_deassert();

 while (1) begin

 fork

 begin : ACTIVE

 run_active();

 end

 begin : RESET_SERVICE

 // Polling for a reset

 vif.wait_areset_asserted();

 end

 join_any

 disable fork;

 `uvm_info(get_name(), $sformatf("RESET DETECTED"),UVM_LOW)

 // Waiting until reset is lifted

 vif.wait_areset_deassert();

 end

 endtask : run_phase

... ...

endclass : din_monitor

`uvm_analysis_imp_decl(_reset)

class din_seqr extends uvm_sequencer #(din_txn);

 `uvm_sequencer_utils(din_seqr)

 // TLM analysis imp to receive resets from the reset agent

 uvm_analysis_imp_reset #(bit, din_seqr) resetflag_export;

... ...

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 // Build TLM components

 resetflag_export = new("resetflag_export", this);

 endfunction : build_phase

 // Handle reset

 virtual function void write_reset(bit t);

 // Stop any running sequence

 stop_sequences();

 // Reset any variables that should be reset e.g. the din_txn count

 din_txn_count = 0;

 endfunction : write_reset

endclass : din_seqr

7

F. An example in extending this reset handling method in a layered agent

Previously, the input and output agents are viewed as simple agents that schedule and drives sequence items at

their simplest form without any translation from another higher abstracted sequence item. However, in the real

testbench with this reset handling technique implemented, layered agents and sequences have been used. For

example, the sequence_item created at the send_txn_seq is with din_txn type and it is handled by an upper layer

abstracted din_agent and din_sequencer. The din_txn sequence item is then being translated into an AXI-Stream

type via a translator sequence. Then the AXI-Stream type sequence_item is sent to an AXI-S driver via an AXI-S

type sequencer. When a reset event happens, the din_txn sequencer and AXI-S sequencer should both be reset and

their stop_sequences function should be executed. A code example for this section is shown in Figure 8.

class scbd extends uvm_component;

 `uvm_component_utils(scbd)

 // TLM port for flags from the reset monitor (core has been reset)

 uvm_analysis_export #(bit) resetflag_export;

 // Receive monitored reset events

 uvm_tlm_analysis_fifo #(bit) resetflag_fifo;

... ...

 virtual function void build_phase(uvm_phase phase);

 resetflag_export = new ("resetflag_export", this);

 resetflag_fifo = new ("resetflag_fifo", this);

 endfunction : build_phase

virtual function void connect_phase(uvm_phase phase);

 resetflag_export.connect(resetflag_fifo.analysis_export);

 endfunction : connect_phase

 virtual task run_phase(uvm_phase phase);

 forever begin

 fork

 begin : ACTIVE

 run_active();

 end

 begin : RESET_SERVICE

 handle_reset();

 end

 join_any

 disable fork;

 end

 endtask : run_phase

 task handle_reset();

 bit resetflag;

 // Wait until a reset occurs

 resetflag_fifo.get(resetflag);

 // Display the transactions that will be flushed

 `uvm_info(get_name(), $sformatf("Reset occurred: [matches = %0d, mismatches = %0d]:

removing %0d unmatched transactions (+ %0d unmatched transactions)",

m_matches, m_mismatches, received_data.size(),actual_received_data.size()), UVM_LOW)

 // Reset the variables that needed to be reset

 received_data.delete();

 actual_received_data.delete();

 exp_count = 0;

 act_count = 0;

 all_done = 0;

 endtask: handle_reset

... ...

endclass : scbd

Figure 7 Example code of inserting reset handling in a scoreboard

8

class din_agent extends uvm_agent;

 `uvm_component_utils(din_agent)

... ...

 din_cfg cfg;

 // TLM port for flags from the reset monitor (core has been reset)

 uvm_analysis_export #(bit) resetflag_export;

 // Receive monitored reset events

 uvm_tlm_analysis_fifo #(bit) resetflag_fifo;

 // Higher level sequencer to create din_txn which contains stimulus with higher level of

abstraction

 // This is a just a handle. The instance will be created in the env and then pass into

this handle.

 // This is the same sequencer being used in base_vseq to start the send_txn_seq

 din_seqr din_sequencer_h;

 // AXIS transaction sequencer which handles sequence that

 // creates axis_transaction based on stimulus info translated from din_txn

 axis_mst_sequencer axis_sequencer;

 // AXI-S Data Input interfaces - this is a "Translator Sequence"

 // start() is called on this sequence here and it runs forever

 axis_mst_din_base_seq axis_mst_din_s;

 // AXI-Stream agent environments

 axis_mst_env axis_env;

 virtual function void build_phase(uvm_phase phase);

... ...

 // Build TLM components

 resetflag_export = new ("resetflag_export", this);

 resetflag_fifo = new("resetflag_fifo", this);

 // Build layered axis agent env

 axis_env = axis_mst_env::type_id::create("axis_env", this);

 // Create the Translator Sequence

 axis_mst_din_s =

axis_mst_din_base_seq::type_id::create("axis_mst_din_s",,get_full_name());

 axis_mst_din_s.din_sequencer_h = din_sequencer_h;

 endfunction : build_phase

 virtual function void connect_phase(uvm_phase phase);

 // Hook up sequencer used by axis agent and sequence

 axis_sequencer = m_din.agent.sequencer;

 // Connect reset to agent components

 resetflag_export.connect(mon.resetflag_fifo.analysis_export);

 resetflag_export.connect(resetflag_fifo.analysis_export);

 endfunction :connect_phase

 // Start the translator sequence, which runs forever

 virtual task run_phase(uvm_phase phase);

 super.run_phase(phase);

 forever begin

 fork

 begin : ACTIVE

 run_sequence();

 end

 begin : RESET_SERVICE

 handle_reset();

 end

 join_any

 disable fork;

 end

 endtask : run_phase

9

Figure 8 Example code of reset handling in a layered agent

IV. ACKNOWLEDGMENT

We would like to extend our appreciation to our senior colleague at Xilinx, Chris Clegg who owned the original

version of this reset methodology, for sharing his testbench knowledge and allowing us to present this

methodology in this paper.

V. CONCLUSIONS

This paper presents a reset testing flow that has these benefits: (a) enables the testbench to trigger one or more

reset events in some random points of a simulation, and (b) ensures the various parts of the testbench are capable

to terminate their active threads cleanly when a reset event is detected, and (c) enables the normal operation to be

restarted in a synchronized way after the DUT exits from reset.

VI. REFERENCES

[1] Mark Peryer, “On the fly reset,” Mentor Graphics. (references)

[2] Cristian Slav, “How to handle reset in UVM,” http://cfs-vision.com/2016/04/18/systemverilog-how-to-handle-reset-in-uvm/ (online

references).

[3] Cristian Slav, “How to handle reset in UVM part2,” http://cfs-vision.com/2017/06/14/systemverilog-how-to-handle-reset-in-uvm-part-

2/ (online references).

[4] Brian Hunter, Ben Chen, Cavium. Rebecca Lipon, Synopsys, “Reset Testing Made Simple with UVM Phases,”.

[5] “How to handle Reset in UVM,” www.learnuvmverification.com (online references).

[6] “UVM cookbook”, Verification Academy (references)

 task run_sequence();

 // Start the translator sequence using axis sequencer

 axis_mst_din_s.start(axis_sequencer);

 endtask: run_sequence

 task handle_reset();

 bit resetflag;

 // Wait until a reset occurs

 resetflag_fifo.get(resetflag);

 // Stop sequences on axis agent sequencers

 axis_sequencer.stop_sequences();

 endtask: handle_reset

... ...

endclass : din_agent

http://cfs-vision.com/2016/04/18/systemverilog-how-to-handle-reset-in-uvm/
http://cfs-vision.com/2017/06/14/systemverilog-how-to-handle-reset-in-uvm-part-2/
http://cfs-vision.com/2017/06/14/systemverilog-how-to-handle-reset-in-uvm-part-2/
http://www.learnuvmverification.com/

