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Abstract— As the size of hardware (HW) design increases significantly, massive number of regression tests are 

required to validate its functional correctness with a huge amount of data generated during the design simulation for 

every test scenario. Debugging regression failures is a tedious and time consuming task. This paper addresses the 

challenge of reducing the debugging effort required to validate the changes between HW model iterations of the same 

design. It proposes the utilization of clustering machine learning technique to learn the design good behavior through 

the passing regression tests. Good tests grouped into testcases clusters such that the buggy test can be detected when it 

failed the assignment to any of the identified test clusters in the design regression test suite. Our framework utilizes x-

means clustering techniques to identify the trace segment, design module name as well as design signals which are 

suspected to be the culprit of the bad behavior tests. Additionally, our work tackles two main challenges in the learning 

process. Firstly, signal selection step is done to decide which design signals should be included as the test features during 

the machine learning phase. Signal selection is based on the signal type as well as its connectivity network. Secondly, 

Big-Data processing technique, namely, Map-Reduce is used to overcome the challenge of processing huge trace dump 

resulted from design simulation. Our experimental results demonstrate the feasibility of the proposed approach to 

detect multiple design injected faults using mutation testing with HW designs. 

Keywords— Functional Verification, Regression Analysis, Machine Learning, Big Data 

I.  INTRODUCTION  

One of the most time consuming and challengeable task in the functional verification cycle is debugging the 

failures and analyzing the massive amount of data that is produced from design simulation. Simulation sessions run 

thousands of tests for a long time to exercise the complete behavior of the design. As a result, thousands of GBs of 

debugging data are analyzed by the verification engineers to examine the huge full design trace history and verify 

repeatedly the results. A critical challenge in the manual debugging effort occurs when the execution result 

mismatches the reference behavior for the design under verification. The verification engineer must identify the 

root cause of the bug and narrow down the problem by recognizing the cycle and the critical design signals involved 

in the bug occurrence. Clearly, any attempt to automate bug detection with the execution trace window in which 

the buggy behavior is observed will be of great help to accelerate the debugging effort. Additionally, identifying 

the design module and the suspected signals which own the buggy behavior will be a plus added value. This work 

leverages the power of machine learning techniques to learn the correct design behavior from passing regression 

test execution traces. The learnt model is then used to differentiate the failing behavior and identifying the trace 

window, design module as well as the signals that are the root of the buggy behavior. We demonstrate the utilization 

of a distributed big-data processing techniques, namely MapReduce to overcome the challenge of processing huge 

traces result from the execution of the long tests to accelerate the data encoding step for ML operation. Finally, we 

control the number of design signals to be considered during feature selection for the ML step using the signal 

selection algorithm. Signal selection is based on the Cone of Influence (COI) analysis to identify which signals to 

observe during design simulation.  

The rest of the paper is organized as follows. Section II briefly reviews the previous work of analyzing execution 

trace for anomaly detection. Section III formulates the problem and explains our proposed framework. Section IV 
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demonstrates the feasibility of our approach against a real design case and explains the use of mutation testing as 

our bug injection method. Finally, concluding remarks and future work directions is given in section V. 

II. RELATED WORK 

 Recent improvements in design verification strive to automate the error-detection process and greatly enhance 

engineers’ ability to detect functional errors. However, the process of diagnosing the cause of these errors and fixing 

them remains difficult and requires significant ad-hoc manual effort. Many of the previous attempts of bug-

localization from the dynamic analysis of HW design simulation are inspired by a prior work for the automatic 

detection of software program invariants using the dynamic analysis of program runs [1] [2] [3] [4] to list a few. 

The work in [5], Inferno uses the principle of least astonishment to understand what constitutes the common 

behavior of a system and use this to detect any anomaly in the design. It analyzes the results of the design’s 

simulation trace and automatically extract high level diagram representing the design’s transaction activity across 

all design interfaces.  These diagrams are used for automatic generation of design checkers that can then be used to 

detect any future bad changes in the design behavior. The bug localization algorithm in [6] is based on statistical 

analysis of dynamically covered HDL code items (statements, branches and conditions) of processor designs. It 

presents an approach that is based on two main iterative phases: dynamic slicing and a statistical ranking of the 

HDL statements in the design that are suspected to be the root cause of the error. The dynamic slicing reduces the 

debugging analysis to all the statements that actually affect the design’s faulty behavior for a given stimulus. Then, 

the suspicion ranking assigns a suspicion score to each statement present in the dynamic slice. Similar approach is 

used in [7] where information from regression suite results about failed and passed testcases and a number of 

statements executed by each test is used to find the highly candidate statement that may be responsible for this 

incorrect behavior.  In this work, we introduce a clustering based machine learning approach to learn the correct 

behavior of the design under test using the entire design regression passing testcases. Any new failing test case that 

fails the assignment to any of the learned test clusters is recognized as a buggy test. The bug localization module 

will identify the buggy trace segment time associated with the design module and the signals related to the detected 

bug. Our work leverages the use of Map-Reduce method is to accelerate the processing of the huge resulted 

execution trace from the design simulation during trace encoding and feature extraction for machine learning 

operation. 

 

Figure 1. ML Based Regression Testing Bug Detection Proposed Framework 

III. PROPOSED FRAMEWORK 

 Figure 1, describes the major building blocks of the proposed framework. It starts with the RTL regression 

simulation step. The execution traces are stored in a comma separated value format for the trace dump analyzer. 

The trace dump analyzer processes the trace file for data encoding and feature extraction. The trace dump analyzer 
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is based on Map-Reduce method to speed up the processing of huge data resulted from the design simulation. 

Clustering Machine Learning is used to train cluster modules for the design good behavior using passing regression 

tests. Once the model is developed any new test is checked against the recognized clusters. If the test failed to be 

assigned to any of the recognized clusters it is identified as buggy test. Nearest-Neighbor Classifier is then used to 

assign the buggy trace window to the class of its closest neighbor in the feature space. The list of suspected buggy 

design signals are detected by differing the buggy trace window with the nearest neighbor signal features. 

Additionally, the design module name and the trace window number for the observed buggy behavior are also 

reported to the verification team. The following subsections explain in more details the main steps in our proposed 

solution for bug detection module as described in Figure 1. 

A. Data Pre-Processing and Feature Extraction for Machine Leaning Operation 

Clustering is un-supervised machine learning method. Unsupervised learning is a task of inferring hidden structure 

from “unlabeled” data. In cluster learning, each cluster is identified by its center (centroid) as well as its shape. The 

main goal of clustering is to assign similar input data points to groups such that all the data points within the same 

cluster are more similar to each other than those in other clusters [8]. 

Equation (1) demonstrates a typical data set for any clustering algorithm. Typically a vector of N input data-set X 

is used to extract feature vectors h0 (xi), h1(xi),….. hD (xi) for each input xi, where D is the number of input features. 

The extracted features are then fed to train the clustering model which is going to predict for any future input test 

case (xi) a cluster label assignment (yi). 
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In our problem formulation, the testcases trace dumps are virtually divided into “N” trace windows where every 

window has a fixed length of simulation cycles. A separate clustering model is built for every trace window (ѡi), 

where the inputs are the regression test case trace window dump and the features are the number of every design 

signal value changes to 1’b1 within this trace window [9]. To reduce the number of design signals that are 

incorporated in the feature extraction step, our proposed framework conducts a light RTL static analysis to suppress 

design elements such as memories, counters and equivalent signals from being included in the feature selection 

step. It focuses on the selection of design control signals, FSM state signals and internal registers with large number 

of design registers in their cone of influence. Accordingly, there is no need to record any design signals except the 

ones used for trace windows encoding and feature extraction steps. Our main goal is to pick up a subset of design 

signals with a good probability to propagate the functional error during simulation.  

RTL design elaboration at the beginning of the simulation [10], is used to extract some useful static attributes about 

the design under verification, such as signal types, design elements such as counters, memories, clocks or reset 

signals. Cone of influence analysis is done to identify which design signals are influencing the logic value changes 

for another design signal. Our approach builds signal connectivity graph by identifying recursively the cone of 

influence of each design signal. A standard network analysis algorithm is run on the graph and scores signals based 

on their influence score. Our algorithm uses a DFS (Depth First Search) tree rooted at each design signal and scores 

its influence by calculating the number of child nodes. Signals with influence score greater than a threshold value 

are picked up for feature extraction step. 

To accelerate feature extraction step, feature extraction is done for all clustering modules all at once using Map-

Reduce [11]. The MapReduce is a framework that was first introduced by Google. It parallelizes problems that 

require large datasets processing using a large number of computing nodes. There are many state-of-the-art 

frameworks to automatically schedule parallel map and reduce functions on distributed system to manipulate big 

input date, our approach uses Apache Hadoop [12]. Figure 2, demonstrates how MapReduce is used for feature 
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extraction step. The MapReduce consists of three main steps: Mapper, Shuffle Step and Reducer. MapReduce 

operation starts by dividing large trace dump file into blocks of 128Mbs, every data block is assigned a computing 

node (Mapper). The list of design signals whose values are logged in the simulation trace dump is stored as a header 

file that is shared among all processing nodes (Mappers). The trace chunk at each mapper is then divided by 

applying a sliding window of width (ѡi) on the trace sequences, as shown in Figure 3.  

 

Figure 2: MapReduce For Feature Extraction Step 

The map function processes each individual line in the input trace dump window (ѡi). The design signal values are 

checked against their previous values. For each signal, if the signal value does not change from its previous value, 

it will not be considered for feature extraction step. Feature extraction counts the number of times the signal value 

changes to 1’b1 within every trace window wi. The mappers will read the trace dump chunks in parallel and emit 

a key-value pair, where the key is the window_id (ѡi) and the value is the count of design signals values change to 

1’b1 within that window. The map step is followed by shuffle step that Hadoop does automatically to sort and 

consolidate intermediate data from all mappers and before reduce tasks start. During this step every (key, value) 

pair is assigned a computing node such that all the occurrence of the signal changes for window (wi) lands on the 

same machine. The final step is the Reduce step, where the aggregation sum is done to collect all transitions to 1’b1 

counts for every design signal within same trace window wi .  

 
Figure 3: Dividing execution trace into trace windows: ti is the simulation cycle time, Ei is the list of design signal value changes at ti 

B. Clustering Machine Learning 

The main functionality of the bug detection module is to group similar trace windows across all regression tests 

into clusters such that buggy tests can be identified as outliers which fail to be assigned to any of the identified 

clusters. In our problem formulation, a separate clustering model is built for every trace window, ѡi.  Clustering 

machine learning methods aim to group a collection of patterns into clusters based on similarity metric. Similarity 

is a measure that reflects the strength of the relationship between two data items, it represents how similar two data 

patterns are. This similarity measure in most applications is based on distance functions such as Euclidean distance. 

Generally, there are a lot of clustering algorithms present in the machine learning literature [8], our framework 

utilizes an extension of the traditional k-means clustering method. The objective of k-means is to assign input data 

points to the appropriate cluster that minimizes the accumulated distance from each element in the cluster to its 

centroid. K-means algorithm starts by random initialization for the cluster centroids. It then calculates the distance 

between every input data point and the k-clusters centroids. The input data is assigned to the corresponding cluster 
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with minimum distance from its centroid. A second iteration starts by updating the position of cluster centroids 

using the data points that have been assigned to them in the previous iteration. The new cluster centers are obtained 

by calculating the mean of the cluster data points. The algorithm iterates the assignment of data points to the new 

clusters centers followed by cluster centers update until it converges. One of the main challenges in k-means is to 

decide on the best cluster count (k). Our proposed bug detection framework utilizes X-Means clustering algorithm 

[13], which is an extended K-Means that tries to automatically determine the number of clusters based on statistical 

score, Bayesian Information Criterion (BIC). It starts with only one cluster, goes into action after each run of K-

Means, making local decisions about which subset of the current centroids should split themselves in order to better 

fit the data. The splitting decision is done by computing the (BIC) as explained in [13]. Euclidean distance, equation 

1, is the similarity metric that is used within our K-means clustering algorithm. Where 𝑋𝑞, 𝑋𝑘 are the feature vectors 

for two input data points. 

∑𝑋𝑞[𝑖]. 𝑋𝑘[𝑖] … (1)

𝐷

𝑖=1

 

 

Figure 4: Bug Localization Algorithm 

Figure 4, explains the bug localization algorithm, it starts by splitting the training data and testing datasets into 

multiple trace windows. For all trace windows (ѡi) across the training dataset, X-Means Clustering model is used 

to group similar trace windows into the same cluster. Once the clustering models are generated. They can be used 

to predict for any new test whether its trace windows belong to any of the identified clusters or not. If the trace 

window fails the assignment, it is identified as buggy trace window. One Nearest-Neighbor Classifier [14] is used 

to assign the buggy trace window to the class of its closest neighbor in the feature space. The list of suspected buggy 

design signals are detected by differing the buggy trace window with the nearest neighbor signal features. Our 

method reports the design module name, the signal’s list and the trace window number for the observed buggy 

behavior 

IV. EXPERIMENTAL RESULTS 

 Our experimental result utilizes Ethernet MAC IP Core downloaded from [15]. The Ethernet IP Core is a MAC 

(Media Access Controller). It connects to the Ethernet PHY chip on one side and to the Wishbone SoC bus on the 

other. The training data constitutes of 1,500 testcases among the different test classes of the design, namely, Register 
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Access, Register Reset, Transmitter Packet, Transmitter CRC and Transmitter-Receiver. These 1,500 tests were 

generated by feeding different seeds to the Ethernet constraint random System Verilog testbench environment. The 

test lengths ranged from about 1,167 to 2 million cycles. The size of trace dumps varying from 40MBs up-to 5.5 

GBs, Figure 5.  

 

Figure 5: No of Regression Tests in Ethernet across Different Testing Classes and the Size of Each Test case Trace Dump in GBs 

Recall that our workflow creates a clustering model for every trace window (ѡi). Our algorithm uses trace windows 

of size 100 cycles. Table 1, lists the number of trace windows extracted from every regression test. The number of 

windows depends on trace cycle numbers divided by the width of the sliding window (100 cycles). The clustering 

step in our approach utilizes X-means Clustering model to group similar trace windows of (ѡi) into the same cluster.   

X-means automatically determines the number of clusters based on statistical score, Bayesian Information Criterion 

(BIC). Maximum number limit of clusters for X-means operation in our experimental work is set to = 20. 

Table 1: Training Tests Chracteristics  

 

Clustering machine learning starts with the feature extraction step. Our model utilizes the number of times the 

design signal value changes to 1’b1 within the simulation trace window as the main feature metric. In order to 

reduce the number of design signals included in the feature extraction step and hence reduce the clustering model 

complexity, our framework utilizes COI analysis as well as RTL static analysis as the main methods to select 

important design signals that have a large number of signals in their cone of influence logic with a good probability 

to propagate the functional error during simulation. COI score for a given design signal is defined as the number of 

signals in its COI logic. Signals with influence score greater than a threshold value are picked up for feature 

extraction step. This threshold value is calculated by examining the distribution of design signal influence scores 

and selecting a midway threshold value to prune the connectivity graph in the first iteration. This process is iterated 

until reaching a threshold value that achieves a good reduction ratio and sustains good coverage for design signals. 

Figure 6, demonstrates the COI score distribution for the Ethmac design signals (2342 signals). In this experiment, 

we pick up a threshold value of “10” which reduces the number of design signals included in the feature extraction, 

but guarantee good coverage for design value changes during the simulation run. 

 

Figure 6:  COI score distribution for Ethmac Design Signals 

Test Class Name

Number of 

Regression Tests Per Each Test Class

Test Length

 in Cycles No of Windows 

Ethmac_Register_Access_Test 100 1,167 12

Ethmac_Registre_Reset_Test 150 13,071 131

Ethmac_TX_Packet_Test 300 1,509,759 15098

Ethmac_Tx_CRC_Test 300 1,021,719 10217

Ethmac_Rand_RxTx_Test 700 2,000,000 20000
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Recall that the Bug Localization Module utilizes the distributed data processing method, namely Map-Reduce, to 

accelerate the design trace processing and feature extraction for ML modules. During our experiment we built 

Hadoop cluster of four nodes (3.4GHz Intel Core i7, Quad Core, and 16GBs Memory). Figure 7, plots the 

processing time in seconds of the trace dump encoding and feature extraction steps for the five test classes of the 

Ethernet IP with and without the use of Map-Reduce. Figure 7, demonstrates that the Map-Reduce accelerates the 

trace dump encoding as well as feature extraction steps by a factor of 2.7x faster than the sequential data processing 

techniques. 

 

 

Figure 7:  MapReduce Speedup for Feature Extraction Step 

The testing dataset has been generated by injecting bugs to the design RTL using mutation-based-testing 

technique. Mutation-based testing originated in the early 1970s in software research to guide the software testing 

towards the most effective test sets possible [16]. A "mutation" is an artificial modification in the tested program, 

induced by a fault operator. It changes the behavior of the tested program. Our mutation generator creates a set of 

faulty versions of the original description by injecting one fault per version. These faults are small and 

syntactically correct modifications of the original instructions. The set of the used mutation operators, the mutated 

design modules, signals and the number of bugs injected are listed in Table 2a. The logical and Unary operators 

mutations are done based on the work published in [17] and summed at Table 2b. 

Table 2a.) Mutated Modules, Signals, Injected Bugs for Testing Data-Set, 2b.) Mutation Operators Replacement Scheme 

  

To judge the effectiveness of the proposed framework to help in analyzing the regression test failures. A group of 

faulty regression tests across all the test classes have been introduced to the clustering ML framework to identify 

the buggy trace window, the name of buggy signals and modules. Model accuracy reflects the ability of the model 

to make correct predictions. The accuracy of the created model is judged by counting the ratio of tests for which 

the clustering model managed to detect the exact injected bugs (Success) or to detect a superset of design signals 

that contains the buggy signals and other un-impacted signals (Partial Success) vs the number of times the clustering 

module failed to detect the injected bugs in the faulty regression tests. Additionally, we calculate the bug detection 

latency which is the difference between the cycles where the bug has been injected versus the cycle in which it has 

been detected.  Figure 8, plots the model accuracy for all test classes, in indicates that on average our proposed 

framework demonstrates an average of 81% full success, 13% partial success and 6% failure ratio of the model 

Mutated Module Mutated Signals No of Injected Bugs Mutation Operators Used

eth_maccontrol MuxedAbort 11 Logical operator replacement

eth_macstatus LatchedCrcError, InvalidSymbol, 27

constant replacement 

Logical opreator replacement

eth_rxaddrcheck MulticastOK 2

logical operator replacement

unary operator insertion

eth_transmitcontrolBlockTxDone 6 constant replacement

eth_wishbone Flop, BDWrite, TxBDReady 19

Logical operator replacement

Relational operator replacement

ethmac

CarrierSense_Tx1, RxEnSync, 

TxPauseRq_sync1

 TxPauseRq, RxAbort_latch, 

Collision_Tx2, TPauseRq 24

unary operator insertion

unary operator removal

logical operator replacement

wishbone TxEn_needed 9 constant replacement
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ability to detect injected bugs in the design regression tests. Additionally, figure 8, indicates that on average 83% 

the bugs are detected in the same clock cycle of the bug injection cycle. 

  

Figure 8:  Bug Detection Success and Bug detection latency across all Test Classes 

V. CONCLUSION 

This paper proposes a framework that facilitates functional verification regression failure analysis. It utilizes 

clustering machine learning to learn the design good behavior through the passing regression tests. Good tests 

grouped into clusters such that any buggy test can be detected when it failed the assignment to any of the identified 

test clusters of the design regression test suite. The proposed bug detection solution can identify the buggy trace 

segment time associated with the design module and the buggy signals list. Map-Reduce technique is used to 

accelerate the processing of the largely generated simulation trace dump during the feature extraction step. We 

demonstrate an average of 2.7x speed up using Map-Reduce versus traditional sequential data processing methods. 

Additionally, our results indicate that the bug-detection module manages to detect the injected bug with up to 81% 

accuracy.  
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