
Guaranteed Vertical Reuse – C Execution In a UVM Environment

Rachida EL IDRISSI, ST-Ericsson, Rabat,

Morocco,

Phone: 00 212 5 37 67 86 71

Email: rachida.el-idrissi@stericsson.com

Alain GONIER, Mentor Graphics, France

Phone: 00 33 1 40 94 7452

Email: alain_gonier@mentor.com

Introduction

At ST-Ericsson Rabat, Morocco, we develop

hardware design IP and related driver software for

wireless mobile platforms created elsewhere

within the company. Our verification team has to

achieve high levels of quality and provide

verification deliverables that can be reused by

integration teams to make their work more

effective.

We recently adopted the Universal Verification

Methodology (UVM) since it provides an open-

source, vendor-independent, consistent

architecture that allows us to share verification

components and stimulus throughout the

company. This paper describes a C-API package

built on top of the UVM that allows us to develop

software early in the life of a design IP. Our results

are twofold: first, we are able to deliver software

tests that can be reused by hardware integration

and verification teams; second, we are able to

deliver fully functional driver code to software

developers early in the overall project cycle.

Project background

We developed the C-API package during

development of new design IP for the MIPI Low

Latency Interface (LLI). The LLI allows two chips to

share resources over a point-to-point high-speed

interface.

The LLI architecture is described in figure 1.

Our UVM verification environment was used to

meet an exhaustive verification plan for the LLI

design IP using sequence-based stimulus. The

environment is comprehensive and allowed us to

use multi-channel constrained random stimulus

combined with scoreboarding and functional

coverage analysis that checked each physical and

logical layer of the LLI protocol.

Figure 1- LLI logical layers

One of our required deliverables was a set of test

cases that could be run as software by platform

integration teams. ST-Ericsson has a SoC software

framework that defines how these test cases

should work and their interfaces. We realised that

we could reuse the UVM environment to develop

these test cases by developing an API package

based on the use of the SystemVerilog Direct

Programming Interface (DPI).

The LLI UVM verification architecture

The LLI DUV has several standard interfaces, some

of which are design specific. The standard

interfaces are the AMBA APB3 and AXI3, together

with the MIPI LLI physical interface. The design-

specific interfaces concern low-level control and

interrupts.

The APB3 interface is used to program the

registers within the LLI subsystem. A UVM register

model was developed to abstract sequence-based

register stimulus.

The AXI interfaces are used for data transfer

between the two sides of the LLI. The LLI

subsystem has four physical channels that are used

for this purpose: a low latency (LL) master

interface; a LL slave interface; a best effort (BE)

master interface; and a BE slave interface. Each

interface was connected to a master or slave AXI3

Questa Verification IP (QVIP) in order to source or

sink data transfer across the LLI link as shown in

figure 2

Figure 2- UVM Testbench architecture

A LLI QVIP connected to the PHY signals was used

to represent the behaviour of a partner LLI device.

The QVIP supports a transactional interface that

makes it straightforward to configure and send

different types of LLI traffic, including sourcing and

sinking LL and BE data transfers. Both the LLI

subsystem and the LLI QVIP could be configured as

a master or a slave LLI device.

Scoreboards and functional coverage monitors

were developed that used the different

transaction types available within the environment

to check for correct device behaviour and to

collect functional coverage.

C-API integration with the UVM environment

To support the use of a C-API, an optional layer

was created for the UVM testbench. This was

implemented as the lli_c_api SystemVerilog

package. The C-API layer is implemented using the

SystemVerilog DPI, which allows a number of

SystemVerilog tasks and functions to be made

available to C programs and executed as depicted

in the Figure 3- SystemVerilog DPI mechanism.

Figure 3- SystemVerilog DPI mechanism

Furthermore, you can refer to Mentor Graphics

Verification Academy located at

http://verificationacademy.com/uvm-

ovm/CBasedStimulus for a detailed description of

C/UVM tests integration principles.

In our environment, the exposed API provides

access to four main areas of functionality as shown

in Figure 4 below.

Figure 4- C API access block diagram

The package implements the testbench side of the

API as either DUT-centric (by configuring hardware

registers via an APB3 QVIP and sending data traffic

using DMA via the AXI3 QVIPs), or as LLI QVIP-

centric (by configuring the QVIP and streaming

data traffic through it to emulate DMA transfers).

C test cases were developed using this API using a

runtime parameter to determine which side of the

test bench the stimulus was directed to.

The 4 main areas are:

1. Register reads and writes using an

address map implemented in the

package.

a. DPI_HAL_READ32 ()

b. DPI_HAL_WRITE32 ()

2. DMA Controller API, used for setting up a

DMA transfer between the DUV and the

LLI QVIP on LL and BE channels. The list of

functions used are below

a. DPI_dmac_drv_enable

b. DPI_dmac_drv_disable

c. DPI_dmac_drv_is_dma_enabled

d. DPI_dmac_drv_get_dma_enable

d_channels

e. DPI_dmac_drv_start_channel

f. DPI_dmac_drv_is_channel_done

g. DPI_dmac_drv_clear_channel_d

one

h. …

A code snippet below shows how one function is

implemented:

 function automatic byte

DPI_dmac_drv_is_dma_enabled (device_type_e

device);

 return DMAC[device].get_dma_enable();

 endfunction: DPI_dmac_drv_is_dma_enabled

It is then exported in the lli C API package as

shown below and thus callable by the C test

// DMA Functionality DPI Method Exports:

export "DPI-C" function DPI_dmac_drv_enable;

export "DPI-C" function DPI_dmac_drv_disable;

export "DPI-C" function

DPI_dmac_drv_is_dma_enabled;

….

…

3. Memory block functions, used for setting

up and checking areas of memory used by

the DMA controller.

a. DPI_init_mem

b. DPI_get_mem

A code snippet below shows how one function is

implemented:

function automatic int DPI_get_mem(device_type_e device, int addr);
`uvm_info("get_mem",$sformatf("%s get_mem at @:%08x START ... \n",device,addr), UVM_MEDIUM)
if((addr >= `LMI_MEMORY_BASE_ADDRESS) && (addr <= (`LMI_MEMORY_BASE_ADDRESS +

`LMI_MEM_RANGE)))
return LMI[device].get(addr);//local LMI memory init
else if ((addr >= `EMI_MEMORY_BASE_ADDRESS) && (addr <= (`EMI_MEMORY_BASE_ADDRESS +

`EMI_MEM_RANGE)))
return EMI[device].get(addr);//local EMI memory init
else//anything else is just stored temporarly into a "virtual" memory
return mem[device].get(addr);
endfunction: DPI_get_mem

4. Delay functions.

the main goal of those functions is to insert

some delays in ns or us and also to establich

the synchronisation between the C and SV

domains.

a. wait_n_ns

b. wait_n_us

c. esw_sync

A code snippet below shows how one function is

implemented:

 task automatic wait_n_ns(int n);

 time p;

 p = 1ns;

 p = p * n;

 #p;

endtask: wait_n_ns

To link the DPI functions/tasks to the C test, during

compilation a header file is automatically

generated declaring all exported/imported

functions prototypes to be use either from SV to C

or from C to SV. In our case the generated file is

called lli_c_api.h. and contains the few functions

detailed previously.

C test execution example

We will take a concrete example to illustrate a C

test/UVM testbench interaction. As an example,

one of our tests generates LL channel traffic

concurrently on both the DUT and TB side to check

that the link is working properly. Note, except

during the initial setup process, both the DUT and

the TB side are generally running the same SW.

In that test, on the DUT and TB side, a call to the

API will be done to request an LL channel transfer.

The C test will call the API function

DPI_HAL_READ32 through the DPI, requesting a

32-bit read access in the range of the LL channel to

happen in the UVM TB.

A code snippet of that API function is shown

below:

task automatic DPI_HAL_READ32(input device_type_e device, input int address, output int data);

`uvm_info("DPI_HAL_READ32",$sformatf("%s: HAL READ %0h STARTED ********************\n", device,

address),UVM_LOW);
// MF Address range:
if((device==DUT && ((address >= `mf_base) && (address <= (`mf_base + `mf_length))))//DUT READ ALL MF

ADDRESSES
|| (device==TB && (address == `ALL_DONE_STATUS_OFFSET || address == `OUTPUT_DONE_OFFSET)) //TB

ONLY READ MF STATUS)
do_mf_read(device,address, data);
// AXI Address range:
else if((address >= `LLI_LL_BASE_ADDRESS) && (address <= `LLI_LL_BASE_ADDRESS + `LLI_MEM_RANGE))
do_ll_be_read(device, LL, 32, address, data);
else if((address >= `LLI_BE_BASE_ADDRESS) && (address <= `LLI_BE_BASE_ADDRESS + `LLI_MEM_RANGE))
do_ll_be_read(device, BE, 32, address, data);
else begin

// Anything else:
if(device == DUT)

apb_read(device, address[15:0], data);
else begin
//decode QVIP read access to local/remote registers
….

end
`uvm_info("DPI_HAL_READ32",$sformatf("%s: HAL READ %0h @ %0h COMPLETED ********************\n",

device, data, address),UVM_LOW);
endtask: DPI_HAL_READ32

As we can see in the code above, the call to the

API function by the DUT translates into a call to

do_ll_be_read with parameter device=DUT,

channel=LL, size=32 and address equal to the

address location to be read; data will return the

read value. Whilst a call by the TB will call the

same function but with the device parameter set

to TB.

The code below shows the function do_ll_be_read:

task automatic do_ll_be_read(input device_type_e device,input rw_seq_channel_t channel, input int size, input

int address, output int data);

lli_ll_be_seq_base ll_rd_seq;//base class for LL/BE transfer
lli_ll_be_read_DUT_seq ll_rd_seq_DUT= lli_ll_be_read_DUT_seq::type_id::create("ll_rd_seq_DUT");
lli_ll_be_read_TB_seq ll_rd_seq_TB= lli_ll_be_read_TB_seq::type_id::create("ll_rd_seq_TB");
//specialized sequence depending on initiator
case(device)

DUT: $cast(ll_rd_seq,ll_rd_seq_DUT);
TB $cast(ll_rd_seq,ll_rd_seq_TB);
endcase
//setup transaction -> AXI request if DUT and QVIP LL request if TB
// constrain transfer size to "size" bits
if (!ll_rd_seq.randomize() with
{
ll_rd_seq.addr == address;
transfer_byte_size == (local::size/8);
}
)
……..
ll_rd_seq.transfer_channel = channel;
ll_rd_seq.start(v_sqr);
……

data = ll_rd_seq.data[0];
endtask: do_ll_be_read

Eventually, the C test call to DPI_HAL_READ32 is

translated into a UVM sequence generating the

appropriate read transaction. If the function is

called by the DUT, it will translate into a sequence

generating an LL read transaction of the LL AXI

interface.

The code below shows the DUT LL sequence:

// DUT->TB LL/BE READ REQ
class lli_ll_be_read_DUT_seq extends lli_ll_be_DUT_seq_base;
……
task body;

axi_atomic_read_seq read_seq = axi_atomic_read_seq::type_id::create("read_seq");

super.body();
if (!read_seq.randomize() with
{
addr == local::this.addr;
transfer_byte_size==local::this.transfer_byte_size;
}
)
….
read_seq.start(transfer_channel_sqr[transfer_channel]);
//return data and response
data = new[read_seq.data.size()];
foreach(data[i])

data[i] = read_seq.data[i];
resp = new[read_seq.resp.size()];
foreach(resp[i])
resp[i] = read_seq.resp[i];

endtask: body
endclass: lli_ll_be_read_DUT_seq

In the case of the TB, it will translate into a sequence generating an LL read transaction but on the QVIP LLI LL

interface.

The code below shows the sequence generating the TB LL sequence:

// TB->DUT LL/BE READ REQ
class lli_ll_be_read_TB_seq extends lli_ll_be_TB_seq_base;
…..
task body();

lli_atomic_read_t read_seq= lli_atomic_read_t::type_id::create("read_seq");
int j=0;

super.body();

if (!read_seq.randomize() with
{
Addr == local::this.addr;
transfer_byte_size== local::this.transfer_byte_size;
}
)
case(transfer_channel)
LL: read_seq.m_ch_id_user = MGC_LLI_CH_LL_REQ;
BE: read_seq.m_ch_id_user = MGC_LLI_CH_BE_REQ;
endcase
read_seq.start(v_sqr.lli_sqr);
….
//fill in data
data[j] = '0;
foreach(read_seq.m_read_data[i])
begin
data[j] = data[j] | (read_seq.m_read_data[i]<< ((i % (AXI_LL_MASTER_PARAMS::AXI_WDATA_WIDTH/8))*8));
if((i+1) % (AXI_LL_MASTER_PARAMS::AXI_WDATA_WIDTH/8) == 0)
begin
j++;//go to next data word

data[j] = '0;//initialize data word
end
end
endtask: body
endclass: llih_ll_be_read_TB_seq

In order to start the C program, DPI tasks need to

be called from SystemVerilog start_DUT_c_code()

and start_TB_c_code();

task run_phase(uvm_phase phase);
…
phase.raise_objection(this);
//specific C test sequences to be launched

//launch both SW and response sequence for QVIP LL/BE requests
fork
start_DUT_c_code();
start_TB_c_code();
be_slave_seq.start(m_env.v_sequencer.axi_ll_slave_sqr);//slave sequence to get QVIP->DUT BE req LLI->AXI
ll_slave_seq.start(m_env.v_sequencer.axi_be_slave_sqr);//slave sequence to get QVIP->DUT LL req LLI->AXI
join
phase.drop_objection(this);
endtask: run_phase

In the C code, we need to implement a function

call with the same name,

int start_DUT_c_code()
{
set_hal_mode(DUT);
//-- Initialize LLI Driver

lli_test_initialize(&lli_local, INSTANCE_NAME, 0, INSTANCE_MPHY, INSTANCE_REF_CLK);
//-- Run Test
run_test(&lli_local);
printf(" ************ %s Test Done ! ************\n", INSTANCE_NAME);

return(0);
}

int start_TB_c_code()
{
set_hal_mode(TB);
//-- Initialize LLI Driver
lli_test_initialize(&lli_local,INSTANCE_NAME, LLI_SVC_BASE_ADDRESS,INSTANCE_MPHY, INSTANCE_REF_CLK);
//-- Run Test
run_test(&lli_local);

printf(" ************ %s Test Done ! ************\n", INSTANCE_NAME);
return(0);
}

The UVM testbench should call the above

functions during an active UVM phase such as the

run_phase; in our case, in order to start C

execution.

Horizontal reuse across UVM tests and C tests

The overhead to execute a C test is limited, only

residing in writing the C API package defining the

DPI tasks. The UVM sequences described in the

previous section will be reused for writing pure SV

tests and generate traffic on the different

interfaces. The result, depicted below with an

example of C test and SV test both initiating LL

read transfer on the DUT side, is easier test

development and maximized reuse and maturity

of the TB.

Figure 5- C vs. UVM test reuse

C tests contribution to coverage

Since we are running the C tests on a SV UVM

testbench containing our coverage model, we can

measure the coverage contribution of our C test

suite and more importantly, check which

functionalities are covered and which are not by

the test suite. It is then up to the verification team

to choose to address the coverage holes using a C

test or a SV test.

Figure 6- Functional coverage snapshot

For instance, the snapshot above shows the

coverage contribution of one C test on the APB3

interface protocol test plan. We can see that

almost 85% of the protocol is covered running that

single test. Other C tests—for instance setting

LL/BE transfers—will contribute to the coverage of

the AXI protocol as it is the interface used for the

transfer.

C/SV tests regression system

Our regression system is using a text file as an

input to define the regression test suite to be run.

By adding a new attribute ”GROUP,” it was

adapted to allow users to choose between running

UVM sequence based tests and/or C-based tests.

Figure 7- Regression suite input

For compilation we have a top makefile that takes

care of SV compilation and calls another dedicated

makefile that handles C compilation (tests and

driver).

The top makefile has a C_TESTNAME variable that

can be overridden at invocation to define the C

test name to be compiled. If we run an SV test, we

can omit C_TESTNAME:

<command>if ((%GROUP%) == "C_tests")

then</command>

<command>make -f (%MAKE_COMPILE%) all

C_TESTNAME=(%TEST_NAME%)

QUESTA_MVC_HOME=(%QUESTA_MVC_HOME%)

</command>

<command>else </command>

<command>make -f (%MAKE_COMPILE%) all

QUESTA_MVC_HOME=(%QUESTA_MVC_HOME%)

</command>

<command>endif </command>

In the case of a C test, C_TESTNAME will be

passed to the C compilation makefile and thus

create the according .so files to be loaded at

simulation.

In the simulation phase, to run a C test we need to

load the shared object for both DUT and TB

threads. We rely on the new attribute “GROUP” to

add adequate options for the simulation, such as

the .so file to be loaded according to the test we

are running.

<command>if ((%GROUP%) == "C_tests")

then</command>

<command>setenv VE_SIM_OPTS "-mvchome

(%QUESTA_MVC_HOME%)

+UVM_TESTNAME=(%TOPFILES%) -L dut_lib -L

tb_lib -L qvl_lib -t 1ps -64 -suppress 8683 -L qvl_lib

-L mtiUvm -sv_lib $QUESTA_HOME/uvm-

1.1a/linux_x86_64/uvm_dpi -sv_lib

./Tests_obj/main_(%TEST_NAME%)_DUT -sv_lib

./Tests_obj/main_(%TEST_NAME%)_TB

"</command>

<command>else </command>

<command>setenv VE_SIM_OPTS "-mvchome

(%QUESTA_MVC_HOME%)

+UVM_TESTNAME=(%TOPFILES%) -L dut_lib -L

tb_lib -L qvl_lib -t 1ps -64 -suppress 8683 -L qvl_lib

-L mtiUvm -sv_lib $QUESTA_HOME/uvm-

1.1a/linux_x86_64/uvm_dpi "</command>

<command>endif </command>

For SV simulation, there is no need for shared

objects.

In the regression tool, we also use the attribute

“GROUP” to distinguish between C regression test

and SV regression:

Figure 8- Regression run cockpit snapshot

And the user can choose the relevant test to run as

shown in the Figure 9.:

Figure 9- Regression run cockpit snapshot

Summary and results

We achieved our goal of vertical reuse.

At the IP level, using the C-API package we were

able to develop 10 test cases written in C that

checked the main LLI functionality using the same

UVM environment that we used to verify the

design.

We have developed testcases only necessary for

SoC integration and for the SW driver, as the

exhaustive verification will be completed by SV

scenarios.

We were also able to develop a software driver for

the LLI IP block.

At the SoC level, the integration team was able to

reuse our C tests with no modification and the

software development team was able to use our

LLI driver with only minimal changes.

The software reuse was made possible thanks to

guidance (SW framework cookbook) agreed and

deployed within STEricsson.

Modularity of this framework allows maximum

reuse of existing code and portability between

platforms with minimum coding and debugging

effort. The software stack as described in figure

10, is made of four main elements:

• Common modules exportable and

reusable through all platforms

• IPs modules, including IP, drivers,

interfaces and tests

• Framework or platform-specific drivers

and their interfaces

• Project-specific elements, including SoC

test bench maps and global test runners

Figure 10- Software modular architecture

In the light of our experience, we are now refining

the technique to improve performance through

the use of interrupts (instead of wait function) and

reduce the size of the driver code.

References:

1. UVM 1.1a

2. ST-Ericsson Alliance Software framework – SW

structure v1.5

3. http://verificationacademy.com/uvm-

ovm/CBasedStimulus

Acknowledgements:

We would like to thank the following colleagues

for their contributions to the development of the

C-API technique: Jamal EL-HAITOUT and Youssef

BAKRIM from ST-Ericsson; Mark PERYER, and

Yassine LAHLOU from Mentor Graphics.

