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Introduction 

At ST-Ericsson Rabat, Morocco, we develop 

hardware design IP and related driver software for 

wireless mobile platforms created elsewhere 

within the company. Our verification team has to 

achieve high levels of quality and provide 

verification deliverables that can be reused by 

integration teams to make their work more 

effective. 

We recently adopted the Universal Verification 

Methodology (UVM) since it provides an open-

source, vendor-independent, consistent 

architecture that allows us to share verification 

components and stimulus throughout the 

company. This paper describes a C-API package 

built on top of the UVM that allows us to develop 

software early in the life of a design IP. Our results 

are twofold: first, we are able to deliver software 

tests that can be reused by hardware integration 

and verification teams; second, we are able to 

deliver fully functional driver code to software 

developers early in the overall project cycle. 

Project background 

We developed the C-API package during 

development of  new design IP for the MIPI Low 

Latency Interface (LLI). The LLI allows two chips to 

share resources over a point-to-point high-speed 

interface.  

The LLI architecture is described in figure 1. 

Our UVM verification environment was used to 

meet an exhaustive verification plan for the LLI 

design IP using sequence-based stimulus. The 

environment is comprehensive and allowed us to 

use multi-channel constrained random stimulus 

combined with scoreboarding and functional 

coverage analysis that checked each physical and 

logical layer of the LLI protocol.  

 

Figure 1- LLI logical layers 
 

One of our required deliverables was a set of test 

cases that could be run as software by platform 

integration teams. ST-Ericsson has a SoC software 

framework that defines how these test cases 

should work and their interfaces. We realised that 

we could reuse the UVM environment to develop 

these test cases by developing an API package 

based on the use of the SystemVerilog Direct 

Programming Interface (DPI). 

The LLI UVM verification architecture 

The LLI DUV has several standard interfaces, some 

of which are design specific. The standard 

interfaces are the AMBA APB3 and AXI3, together 

with the MIPI LLI physical interface. The design-

specific interfaces concern low-level control and 

interrupts.  

The APB3 interface is used to program the 

registers within the LLI subsystem. A UVM register 

model was developed to abstract sequence-based 

register stimulus. 



The AXI interfaces are used for data transfer 

between the two sides of the LLI. The LLI 

subsystem has four physical channels that are used 

for this purpose: a low latency (LL) master 

interface; a LL slave interface; a best effort (BE) 

master interface; and a BE slave interface. Each 

interface was connected to a master or slave AXI3 

Questa Verification IP (QVIP) in order to source or 

sink data transfer across the LLI link as shown in 

figure 2 

 

 

Figure 2- UVM Testbench architecture 
 

A LLI QVIP connected to the PHY signals was used 

to represent the behaviour of a partner LLI device. 

The QVIP supports a transactional interface that 

makes it straightforward to configure and send 

different types of LLI traffic, including sourcing and 

sinking LL and BE data transfers. Both the LLI 

subsystem and the LLI QVIP could be configured as 

a master or a slave LLI device. 

Scoreboards and functional coverage monitors 

were developed that used the different 

transaction types available within the environment 

to check for correct device behaviour and to 

collect functional coverage. 

C-API integration with the UVM environment 

To support the use of a C-API, an optional layer 

was created for the UVM testbench. This was 

implemented as the lli_c_api SystemVerilog 

package. The C-API layer is implemented using the 

SystemVerilog DPI, which allows a number of 

SystemVerilog tasks and functions to be made 

available to C programs and executed as depicted 

in the Figure 3- SystemVerilog DPI mechanism.  

 

Figure 3- SystemVerilog DPI mechanism 
 

Furthermore, you can refer to Mentor Graphics 

Verification Academy located at 

http://verificationacademy.com/uvm-

ovm/CBasedStimulus for a detailed description of 

C/UVM tests integration principles. 

In our environment, the exposed API provides 

access to four main areas of functionality as shown 

in Figure 4 below. 

 

 



 

Figure 4- C API access block diagram 
 

The package implements the testbench side of the 

API as either DUT-centric (by configuring hardware 

registers via an APB3 QVIP and sending data traffic 

using DMA via the AXI3 QVIPs), or as LLI QVIP-

centric (by configuring the QVIP and streaming 

data traffic through it to emulate DMA transfers). 

C test cases were developed using this API using a 

runtime parameter to determine which side of the 

test bench the stimulus was directed to. 

The 4 main areas are: 

1. Register reads and writes using an 

address map implemented in the 

package. 

a. DPI_HAL_READ32 () 

b. DPI_HAL_WRITE32 () 

2. DMA Controller API, used for setting up a 

DMA transfer between the DUV and the 

LLI QVIP on LL and BE channels. The list of 

functions used are below 

a. DPI_dmac_drv_enable 

b. DPI_dmac_drv_disable 

c. DPI_dmac_drv_is_dma_enabled 

d. DPI_dmac_drv_get_dma_enable

d_channels 

e. DPI_dmac_drv_start_channel 

f. DPI_dmac_drv_is_channel_done 

g. DPI_dmac_drv_clear_channel_d

one 

h. … 

A code snippet below shows how one function is 

implemented: 

 function automatic byte 

DPI_dmac_drv_is_dma_enabled (device_type_e 

device); 

  return DMAC[device].get_dma_enable(); 

 endfunction: DPI_dmac_drv_is_dma_enabled 

 

It is then exported in the lli C API package as 

shown below and thus callable by the C test 

 

// DMA Functionality DPI Method Exports: 

export "DPI-C" function DPI_dmac_drv_enable; 

export "DPI-C" function DPI_dmac_drv_disable; 

export "DPI-C" function 

DPI_dmac_drv_is_dma_enabled; 

…. 

… 

3. Memory block functions, used for setting 

up and checking areas of memory used by 

the DMA controller. 

a. DPI_init_mem 

b. DPI_get_mem 

A code snippet below shows how one function is 

implemented: 

 

 



 

function automatic int DPI_get_mem(device_type_e device, int addr); 
`uvm_info("get_mem",$sformatf("%s get_mem at @:%08x START ... \n",device,addr), UVM_MEDIUM) 
if( (addr >= `LMI_MEMORY_BASE_ADDRESS) && (addr <= (`LMI_MEMORY_BASE_ADDRESS + 

`LMI_MEM_RANGE))) 
return LMI[device].get(addr);//local LMI memory init 
else if ((addr >= `EMI_MEMORY_BASE_ADDRESS) && (addr <= (`EMI_MEMORY_BASE_ADDRESS + 

`EMI_MEM_RANGE))) 
return EMI[device].get(addr);//local EMI memory init 
else//anything else is just stored temporarly into a "virtual" memory 
return mem[device].get(addr); 
endfunction: DPI_get_mem 
 

 

 

 

4. Delay functions. 

the main goal of those functions is to insert 

some delays in ns or us and also to establich 

the synchronisation between the C and SV 

domains. 

a. wait_n_ns 

b. wait_n_us 

c. esw_sync 

A code snippet below shows how one function is 

implemented: 

 
   task automatic wait_n_ns(int n); 

  time p; 

  p = 1ns; 

  p = p * n; 

  #p; 

endtask: wait_n_ns 

 

To link the DPI functions/tasks to the C test, during 

compilation a  header file is automatically 

generated declaring all exported/imported 

functions prototypes to be use either from SV to C 

or from C to SV. In our case the generated file is 

called lli_c_api.h. and contains the few functions 

detailed previously. 

  

C test execution example 

We will take a concrete example to illustrate a C 

test/UVM testbench interaction. As an example, 

one of our tests generates LL channel traffic 

concurrently on both the DUT and TB side to check 

that the link is working properly. Note, except 

during the initial setup process, both the DUT and 

the TB side are generally running the same SW. 

In that test, on the DUT and TB side, a call to the 

API will be done to request an LL channel transfer. 

The C test will call the API function 

DPI_HAL_READ32 through the DPI, requesting a 

32-bit read access in the range of the LL channel to 

happen in the UVM TB. 

A code snippet of that API function is shown 

below: 

task automatic DPI_HAL_READ32(input device_type_e device, input int address, output int data); 
 
`uvm_info("DPI_HAL_READ32",$sformatf("%s: HAL READ %0h STARTED ********************\n", device, 

address),UVM_LOW); 
// MF Address range: 
if( ( device==DUT && ((address >= `mf_base) && (address <= (`mf_base + `mf_length))) )//DUT READ ALL MF 

ADDRESSES 
|| ( device==TB && (address == `ALL_DONE_STATUS_OFFSET || address == `OUTPUT_DONE_OFFSET) ) //TB 

ONLY READ MF STATUS) 
do_mf_read(device,address, data); 
// AXI Address range: 
else if((address >= `LLI_LL_BASE_ADDRESS) && (address <= `LLI_LL_BASE_ADDRESS + `LLI_MEM_RANGE)) 
do_ll_be_read(device, LL, 32, address, data); 
else if((address >= `LLI_BE_BASE_ADDRESS) && (address <= `LLI_BE_BASE_ADDRESS + `LLI_MEM_RANGE)) 
do_ll_be_read(device, BE, 32, address, data); 
else   begin 



// Anything else: 
if(device == DUT) 

apb_read(device, address[15:0], data); 
else begin 
//decode QVIP read access to local/remote registers 
…. 

end 
`uvm_info("DPI_HAL_READ32",$sformatf("%s: HAL READ %0h @ %0h COMPLETED ********************\n", 

device, data, address),UVM_LOW); 
endtask: DPI_HAL_READ32 
 
 

 

As we can see in the code above, the call to the 

API function by the DUT translates into a call to 

do_ll_be_read with parameter device=DUT, 

channel=LL, size=32 and address equal to the 

address location to be read; data will return the 

read value. Whilst a call by the TB will call the  

 

same function but with the device parameter set 

to TB. 

 

The code below shows the function do_ll_be_read: 

 

 
task automatic do_ll_be_read(input device_type_e device,input rw_seq_channel_t channel, input int size, input 

int address, output int data); 
 
lli_ll_be_seq_base ll_rd_seq;//base class for LL/BE transfer 
lli_ll_be_read_DUT_seq ll_rd_seq_DUT= lli_ll_be_read_DUT_seq::type_id::create("ll_rd_seq_DUT"); 
lli_ll_be_read_TB_seq ll_rd_seq_TB= lli_ll_be_read_TB_seq::type_id::create("ll_rd_seq_TB"); 
//specialized sequence depending on initiator 
case(device) 

DUT: $cast(ll_rd_seq,ll_rd_seq_DUT); 
TB     $cast(ll_rd_seq,ll_rd_seq_TB); 
endcase 
//setup transaction -> AXI request if DUT and QVIP LL request if TB 
// constrain transfer size to "size" bits 
if (!ll_rd_seq.randomize() with 
{ 
ll_rd_seq.addr == address; 
transfer_byte_size == (local::size/8); 
} 
) 
…….. 
ll_rd_seq.transfer_channel = channel; 
ll_rd_seq.start(v_sqr); 
…… 

data = ll_rd_seq.data[0]; 
endtask: do_ll_be_read 
 

 

Eventually, the C test call to DPI_HAL_READ32 is 

translated into a UVM sequence generating the 

appropriate read transaction. If the function is 

called by the DUT, it will translate into a sequence  

 

 

 

generating an LL read transaction of the LL AXI 

interface. 

 

The code below shows the DUT LL sequence: 

 

 

// DUT->TB LL/BE READ REQ 
class lli_ll_be_read_DUT_seq extends lli_ll_be_DUT_seq_base; 
…… 
task body; 



axi_atomic_read_seq read_seq = axi_atomic_read_seq::type_id::create("read_seq"); 
 
super.body(); 
if (!read_seq.randomize() with 
{ 
addr == local::this.addr; 
transfer_byte_size==local::this.transfer_byte_size; 
} 
) 
…. 
read_seq.start(transfer_channel_sqr[transfer_channel]); 
//return data and response 
data = new[read_seq.data.size()]; 
foreach(data[i]) 

data[i] = read_seq.data[i]; 
resp = new[read_seq.resp.size()]; 
foreach(resp[i]) 
resp[i] = read_seq.resp[i]; 
 
endtask: body 
endclass: lli_ll_be_read_DUT_seq 
 

In the case of the TB, it will translate into a sequence generating an LL read transaction but on the QVIP LLI LL 

interface. 

 

The code below shows the sequence generating the TB LL sequence: 
 

// TB->DUT LL/BE READ REQ 
class lli_ll_be_read_TB_seq  extends lli_ll_be_TB_seq_base; 
….. 
task body(); 
 
lli_atomic_read_t read_seq= lli_atomic_read_t::type_id::create("read_seq"); 
int j=0; 
 
super.body(); 
 
if (!read_seq.randomize() with 
{ 
Addr == local::this.addr; 
transfer_byte_size== local::this.transfer_byte_size; 
} 
) 
case(transfer_channel) 
LL: read_seq.m_ch_id_user = MGC_LLI_CH_LL_REQ; 
BE: read_seq.m_ch_id_user = MGC_LLI_CH_BE_REQ; 
endcase 
read_seq.start(v_sqr.lli_sqr); 
…. 
//fill in data 
data[j] = '0; 
foreach(read_seq.m_read_data[i]) 
begin 
data[j] = data[j] | (read_seq.m_read_data[i]<< ( (i % (AXI_LL_MASTER_PARAMS::AXI_WDATA_WIDTH/8))*8)); 
if((i+1) % (AXI_LL_MASTER_PARAMS::AXI_WDATA_WIDTH/8) == 0) 
begin 
j++;//go to next data word 



data[j] = '0;//initialize data word 
end 
end 
endtask: body 
endclass: llih_ll_be_read_TB_seq 
 

In order to start the C program, DPI tasks need to 

be called from SystemVerilog start_DUT_c_code() 

and start_TB_c_code(); 

 

task run_phase(uvm_phase phase); 
… 
phase.raise_objection(this); 
//specific C test sequences to be launched 
 
//launch both SW and response sequence for QVIP LL/BE requests 
fork 
start_DUT_c_code(); 
start_TB_c_code(); 
be_slave_seq.start(m_env.v_sequencer.axi_ll_slave_sqr);//slave sequence to get QVIP->DUT BE req LLI->AXI 
ll_slave_seq.start(m_env.v_sequencer.axi_be_slave_sqr);//slave sequence to get QVIP->DUT LL req LLI->AXI 
join 
phase.drop_objection(this); 
endtask: run_phase 
 

In the C code, we need to implement a function 

call with the same name, 

 

int start_DUT_c_code() 
{ 
set_hal_mode(DUT); 
//-- Initialize LLI Driver 
 
 
lli_test_initialize(&lli_local, INSTANCE_NAME, 0, INSTANCE_MPHY, INSTANCE_REF_CLK); 
//-- Run Test 
run_test(&lli_local); 
printf(" ************ %s Test Done ! ************\n", INSTANCE_NAME); 
 
return(0); 
} 
 

 

int start_TB_c_code() 
{ 
set_hal_mode(TB); 
//-- Initialize LLI Driver 
lli_test_initialize(&lli_local,INSTANCE_NAME, LLI_SVC_BASE_ADDRESS,INSTANCE_MPHY, INSTANCE_REF_CLK); 
//-- Run Test 
run_test(&lli_local); 
 

printf(" ************ %s Test Done ! ************\n", INSTANCE_NAME); 
return(0); 
} 
 

The UVM testbench should call the above 

functions during an active UVM phase such as the 

run_phase; in our case, in order to start C 

execution. 

Horizontal reuse across UVM tests and C tests 



The overhead to execute a C test is limited, only 

residing in writing the C API package defining the  

 

DPI tasks. The UVM sequences described in the 

previous section will be reused for writing pure SV 

tests and generate traffic on the different 

interfaces. The result, depicted below with an 

example of C test and SV test both initiating LL 

read transfer on the DUT side, is easier test 

development and maximized reuse and maturity 

of the TB. 

 

Figure 5- C vs. UVM test reuse 
 

C tests contribution to coverage 

Since we are running the C tests on a SV UVM 

testbench containing our coverage model, we can 

measure the coverage contribution of our C test 

suite and more importantly, check which 

functionalities are covered and which are not by 

the test suite. It is then up to the verification team 

to choose to address the coverage holes using a C 

test or a SV test.  

 

Figure 6- Functional coverage snapshot 
 

For instance, the snapshot above shows the 

coverage contribution of one C test on the APB3 

interface protocol test plan. We can see that 

almost 85% of the protocol is covered running that 

single test. Other C tests—for instance setting 

LL/BE transfers—will contribute to the coverage of 

the AXI protocol as it is the interface used for the 

transfer. 

C/SV tests regression system 



Our regression system is using a text file as an 

input to define the regression test suite to be run. 

By adding a new attribute ”GROUP,” it was 

adapted to allow users to choose between running 

UVM sequence based tests and/or C-based tests. 

 

Figure 7- Regression suite input 
 

For compilation we have a top makefile that takes 

care of SV compilation and calls another dedicated 

makefile that handles C compilation (tests and 

driver). 

The top makefile has a C_TESTNAME variable that 

can be overridden at invocation to define the C 

test name to be compiled. If we run an SV test, we 

can omit C_TESTNAME: 

 

<command>if ((%GROUP%) == "C_tests") 

then</command> 

<command>make -f  (%MAKE_COMPILE%) all 

C_TESTNAME=(%TEST_NAME%) 

QUESTA_MVC_HOME=(%QUESTA_MVC_HOME%) 

</command> 

<command>else </command> 

<command>make -f  (%MAKE_COMPILE%) all 

QUESTA_MVC_HOME=(%QUESTA_MVC_HOME%) 

</command> 

<command>endif </command>  

In the case of a C test, C_TESTNAME will be  

passed to the C compilation makefile and thus 

create the according .so files to be loaded at 

simulation. 

In the simulation phase, to run a C test we need to 

load the shared object for both DUT and TB 

threads. We rely on the new attribute “GROUP” to 

add adequate options for the simulation, such as 

the .so file to be loaded according to the test we 

are running. 

<command>if ((%GROUP%) == "C_tests") 

then</command> 

<command>setenv VE_SIM_OPTS "-mvchome 

(%QUESTA_MVC_HOME%) 

+UVM_TESTNAME=(%TOPFILES%)  -L dut_lib -L 

tb_lib -L qvl_lib -t 1ps -64 -suppress 8683  -L qvl_lib 

-L mtiUvm -sv_lib $QUESTA_HOME/uvm-

1.1a/linux_x86_64/uvm_dpi -sv_lib 

./Tests_obj/main_(%TEST_NAME%)_DUT -sv_lib 

./Tests_obj/main_(%TEST_NAME%)_TB 

"</command>  

<command>else </command> 

<command>setenv VE_SIM_OPTS "-mvchome 

(%QUESTA_MVC_HOME%) 

+UVM_TESTNAME=(%TOPFILES%)  -L dut_lib -L 

tb_lib -L qvl_lib -t 1ps -64 -suppress 8683  -L qvl_lib 



-L mtiUvm -sv_lib $QUESTA_HOME/uvm-

1.1a/linux_x86_64/uvm_dpi "</command>   

<command>endif </command> 

For SV simulation, there is no need for shared 

objects. 

In the regression tool, we also use the attribute 

“GROUP” to distinguish between C regression test 

and SV regression: 

 

Figure 8- Regression run cockpit snapshot 
 

And the user can choose the relevant test to run as 

shown in the Figure 9.: 

 

Figure 9- Regression run cockpit snapshot 
 

Summary and results 

We achieved our goal of vertical reuse. 

At the IP level, using the C-API package we were 

able to develop 10 test cases written in C that 

checked the main LLI functionality using the same 

UVM environment that we used to verify the 

design.  

We have developed testcases only necessary for 

SoC integration and for the SW driver, as the 

exhaustive verification will be completed by SV 

scenarios. 

 

We were also able to develop a software driver for 

the LLI IP block. 

At the SoC level, the integration team was able to 

reuse our C tests with no modification and the 

software development team was able to use our 

LLI driver with only minimal changes. 

The software reuse was made possible thanks to 

guidance (SW framework cookbook) agreed and 

deployed within STEricsson. 

Modularity of this framework allows maximum 

reuse of existing code and portability between 

platforms with minimum coding and debugging 

effort. The software stack as described in figure 

10, is made of four main elements:  

 

• Common modules exportable and 

reusable through all platforms 

  

• IPs modules, including IP, drivers, 

interfaces and tests 

  

• Framework or platform-specific drivers 

and their interfaces 

  

• Project-specific elements, including SoC 

test bench maps and global test runners 

 



 

Figure 10- Software modular architecture 
 

 

In the light of our experience, we are now refining 

the technique to improve performance through 

the use of interrupts (instead of wait function) and 

reduce the size of the driver code. 
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